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1 Introduction

Description Logics (DL) are quite well-established as underlying logics for KR.

ALC 1 is a basic description logic. UML is among the most used semi-formal

artifacts in computer science. The DL-community has shown that one needs to

go a bit further to reason on UML models. ALCQI 2 is able to express most of

the features involved in an UML modeling. DL-Lite could also be taken for this,

although it might be more verbose.

When we define a theory, from UML models, the reasoner should provide

understandable explanations in order to facilitate the process of evolving the

theory towards its validation or extension. There are some works on explanation

in DL, we cite [McGuinness, 1996, Calvanese et al., 2004, Borgida et al., 1999,

Liebig & Halfmann, 2005] among them. They rely on the proof system imple-

mented by the reasoner. Tableaux and Sequent Calculus (SC) are the main

proof systems used. On the other hand, Natural Deduction (ND) is a proof sys-

tem that tries to naturally represent human mathematical/formal reasoning, at

least Gentzen3 aimed at this. Prawitz improved it, on top of Jaskowski’s work,

characterizing proofs without detours, called Normal Proofs. They correspond

1 Attributive Concept Language with Complements.
2 The extension of ALC with quantified number restrictions (Q) and inverse of roles
constructor (I).

3 “First I wished to construct a formalism that comes as close as possible to actual
reasoning. Thus arose a calculus of natural deduction” [Gentzen, 1935].
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to Analytic Tableaux and cut-free SC proofs. Curry observed that the proce-

dure that yields normal proofs from non-normal ones is related to the way typed

λ-terms are evaluated. This is, nowadays, known as the Curry-Howard isomor-

phism between algorithms and ND proofs. The typed λ-term associated to a

ND deduction is taken as its computational content. We believe that the com-

putational content of ND helps in choosing it as the basis to generate adequate

explanations on theorem hood in a theory.

We discuss why ND is the most adequate structure to explain theorems and

then use a ND for ALCQI to explain reasoning on an UML model cited by the

DL-community. A natural deduction calculus for the core logicALC is shown and

then extended toALCQI. In the following we discuss ND, Analytic Tableaux and

Sequent Calculus as a basis to explanation generation. In section 6 we compare

the use of these systems in providing explanation on UML reasoning.We mention

that according [Berardi et al., 2005], ALCQI is enough and adequate to express

UML class diagram consistency. Our work is strongly based on this results.

Finally, this article is an extended revision of [Haeusler & Rademaker, 2009]

based on reviewer’s suggestions. The main modifications are: (1) the proofs pre-

sented in sections 3 and 4 are now fully presented, we revised other proofs and

improve explanations about each proof step; (2) the notation of labeled concepts

in section 3 and 5 were completely redefined and simplified. The authors would

like to thank the reviewers insightful comments.

2 Proofs and Explanations

From a logical point of view, conceptual modeling tasks can be summarized by

the following steps:

1. Observe the “World”;

2. Determine what is relevant;

3. Choose or define your terminology by means of non-logical linguistic terms;

4. Write down the main laws, the axioms, governing your “World”;

5. Verify the correctness (sometimes completeness too) of your set of laws, that

is, the theory constructed.

Steps 1, 2 and 3 may be facilitated by the use of an informal notation (UML,

ER, Flow-Charts, etc) and their respective methodology, but it is essentially

“Black Art” [Maibaum, 2005]. Step 4 demands quite a lot of knowledge of the

“world” begin specified (the model). Step 5 essentially provides finitely many

tests as support for the correctness of an infinitely quantified property.
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A deduction of a proposition α from a set of hypotheses Γ is essentially

a means of providing convincing evidence that Γ entails α. When validating

a theory, represented by a set of logical formulae, we mainly test entailments,

possibly using a theorem prover. Considering a model M specified by the set of

axioms Spec(M), given a property φ about M , from the entailment tests results

one can rise the following questions:

1. If M |= φ and Spec(M) � φ, why φ is truth? One must provide a proof of φ;

2. IfM |= φ, but Spec(M) �� φ from the attempt to construct the proof of φ one

may obtain a counter-model and from that counter-model an explanation for

the failed entailment. Model-checking based reasoning can be used in such

situation;

3. If M �|= φ, but Spec(M) � φ, why does this false proposition holds? In this

case, one must provide a proof of φ.

Here we are interested in the last case, tests providing a false positive answer,

that is, the prover shows a deduction/proof for an assertion that must be invalid

in the considered theory. This is one of the main reasons to explain a theorem

when validating a theory, provide explanation of why a false positive is entailed.

Another reason to provide explanations on a theorem, has to do with providing

explanation of why some assertion is a true positive, the first case. This latter

use is concerned to certification, in this case the proof/deduction itself serves

as a certification document. This article does not take into account educational

uses of theorem provers, and their resulting theorems, since explanations in these

cases are more demanding.

For the tasks of providing proofs and explanations, we compare three de-

duction systems, Analytic Tableaux (AT) [Smullyan, 1968], Sequent Calculus

(SC) [Takeuti, 1975] and Natural Deduction (ND) [Prawitz, 1965] as presented

in the respective cited references. Because of the lack of space we do not show

the set of rules for each system. Nevertheless, they are quite well-known and this

may not prejudice reader’s understanding. In this section we consider the propo-

sitional logic as defined in [Prawitz, 1965]). Let us consider a theory (presented

by a knowledge base KB) containing the single axiom

KB ≡ (Quad ∧ PissOnFireHydrant) → Dog

which classifies a dog as a quadruped that pisses on a fire hydrant. This KB
draws the following proposition

(Quad→ Dog) ∨ (PissOnFireHydrant→ Dog)

Figure 1 presents three from many more possible proofs of this entailment in

the Tableaux system. In the proofs of Figure 1, the symbols V and F stands

3018 Rademaker A., Haeusler E.H.: Providing a Proof-Theoretical Basis ...



for “verum” and “falsum”, respectively, we adopted them instead of “true” and

“false” as a matter of style. Figure 2 presents three possible proofs in Sequent

Calculus, they are also sorted out from many others possible proofs in Sequent

Calculus. Figure 3 presents the only two possible normal proofs for this entail-

ment.

V Quad ∧ PoFH → Dog

F(Quad → Dog) ∨ (PoFH → Dog)

F(Quad → Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad ∧ PoFH

FQuad FPoFH

V Dog

V Quad ∧ PoFH → Dog

F(Quad → Dog) ∨ (PoFH → Dog)

F(Quad → Dog)

FPoFH → Dog

FQuad ∧ PoFH

FQuad

V Quad

FDog

FPoFH

V Quad

FDog

V PoFH

FDog

V Dog

V Quad

FDog

V Quad ∧ PoFH → Dog

FQuad ∧ PoFH

F(Quad → Dog) ∨ (PoFH → Dog)

F(Quad → Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad FPoFH

V Dog

F(Quad → Dog) ∨ (PoFH → Dog)

F(Quad → Dog)

FPoFH → Dog

V Quad

FDog

Figure 1: Tableaux proofs

Consider the derivations from Figure 1 and 2. They correspond to the Natu-

ral Deduction derivations that are shown in Figure 3. The Tableaux and Sequent

Calculus variants only differ in the order of rule applications. In ND there is no

such distinction. In this example, the order of application is irrelevant in terms

3019Rademaker A., Haeusler E.H.: Providing a Proof-Theoretical Basis ...



Figure 2: Sequent Calculus proofs

of explanation, although it is not for the prover’s implementation. The pattern

represented by the ND deduction is close to what one expects from an argument

drawing a conclusion from any conjunction that it contains. This example shows

how SC proofs carry more information than the need for a meaningful explana-

tion. Concerning the AT system, Smullyan noted that its proofs correspond to

SC proofs by considering sequents formed by positively signed formulas (Tα)

at the antecedent and negatively signed ones (Fα) appearing at the consequent.

A Block AT is defined then by considering AT expansion rules in the form of

inference rules. In this way, our example in SC would carry the same content

useful for explanation carried by the AT proofs. We must note that the different

SC proofs and its corresponding AT proofs, as the ones shown, are represented,

all of them, by only two possible variations of normal derivations in ND.

Natural Deduction seems to be the oldest among the three systems here

considered. Gentzen decided to move from ND to SC in order to detour from

technical problems faced by him in his syntactical proof of the consistency of

Arithmetic in 1936. As mentioned by [Prawitz, 1965], SC can be understood as
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Figure 3: Natural Deduction proofs

a meta-calculus for the deducible relation in ND. A consequence of this is that

ND can represent in only one deduction of α from γ1, . . . , γn many SC proofs

of the sequent γ1, . . . , γn ⇒ α. Gentzen made SC formally state rules that were

implicit in ND, such as the structural rules. We advice the reader that the SC

used here (see [Takeuti, 1975]) is a variation of Gentzen’s calculus designed with

the goal of having, in each inference rule, any formula occurring in a premise

as a sub-formula of some formula occurring in the conclusion. This sub-formula

property facilitates the implementation of a prover based on this very system.

Consider a normal ND deduction Π1 of α from {γ1, . . . , γk}, and, a de-

duction Π2 of γi (for some i = 1, . . . , k) from {δ1, . . . , δn}. Using latter Π1 in

the former Π2 deduction yields a (possibly non-normal) deduction of α from

{γ1, . . . , γk, δ1, . . . , δn}. This can be done in SC by applying a cut rule between

the proofs of the corresponding sequents δ1, . . . , δn ⇒ γi and γ1, . . . , γk ⇒ α

yielding a proof of the sequent γ1, . . . , γk, δ1, . . . , δn ⇒ α. The new ND deduc-

tion can be normalized, in the former case, and the cut introduced in the latter

case can be eliminated. In the case of AT, the fact that they are closed by modus

ponens implies that closed AT for δ → γ and γ → α entails the existence of

a closed AT for δ → α. The use of cuts, or equivalently, lemmas may reduce

the size of a derivation. However, the relevant information conveyed by a deduc-

tion or proof in any of these systems has to firstly consider normal deductions,

cut-free proofs and analytic Tableaux. They are the most representative formal
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objects in each of these systems as a consequence of the sub-formula property,

holding in ND too. Besides that they are computationally easier to build than

their non-normal counterparts.

These examples are carried out in Minimal Logic. 4 For Classical reasoning,

an inherent feature of most DLs, including ALC, the above scenario changes. Any
classical proof of the sequent γ1, γ2 ⇒ α1, α2 corresponds a ND deduction of

α1∨α2 from γ1, γ2, or, of α1 from γ1, γ2,¬α2, or, of α2 from γ1, γ2,¬α1, or, of ¬γ1
from ¬α1, γ2,¬α2, and so on. In Classical logic 5, each SC may represent more

than one deduction, since we have to choose which formula will be the conclusion

in the ND side. We recall that it still holds that to each ND deduction there

is more than one SC proof. In order to serve as a good basis for explanations

of classical theorems we choose ND as the most adequate. Note that we are

not advocating that the prover has to produce ND proofs directly. An effective

translation to a ND might be provided. Of course there must be a ND for the

logic involved. If, besides that, a normalization is provided for a system, we know

that it is possible to always deal with canonical proofs satisfying the sub-formula

principle. In the following we present a ND for ALC.
In section 6 an example illustrating the use of proofs to explain reasoning on

UML models is accomplished in ND, SC and AT.

3 A Natural Deduction for ALC

In this section we present a Natural Deduction (ND) system for ALC, named

NDALC . We briefly discuss the motivation and the basic considerations behind

the design of NDALC . We also show the completeness, soundness and normal-

ization theorems.

ALC is a basic description language [Baader et al., 2003] and its syntax of

concept descriptions, denoted as C, is described as follows:

C ::= ⊥ | 
 | A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C

where A stands for atomic concepts and R for atomic roles. The concept 
 can

be taken as ¬⊥.

The semantics of concept descriptions is defined in terms of an interpretation

I = (ΔI , �I). The domain ΔI of I is a non-empty set of individuals and the

interpretation function �I maps each atomic concept A to a set AI ⊆ ΔI and for

each atomic role r a binary relation rI ⊆ ΔI ×ΔI . The interpretation function

�I is extended to concept descriptions inductively as follows:

4 Minimal logic is obtained from Intuitionistic logic removing the “ex-falso quodlibet”
rule, that is, the rule that allows to deduce anything from a logical contradiction.

5 Intuitionistic Logic and Minimal Logic have similar behavior concerning the rela-
tionship between their respective systems of ND and SC.
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I = ΔI

⊥I = ∅
(¬C)I = ΔI \ CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∃R.C)I = {a ∈ ΔI | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
(∀R.C)I = {a ∈ ΔI | ∀b.(a, b) ∈ RI → b ∈ CI}

The NDALC presented in Figure 4 is based on the extension of the ALC
language in which concepts are decorated by a list of labels. Its syntax is as

following:

LB → ∀R | ∃R
L→ LB,L | ∅
φlc → Lφc

where R stands for atomic role names, LB for a label and L for list of labels and

φc for ALC concept descriptions. That is, labels are nothing but existencial or

universal quantified roles names. We say that a labeledALC concept is consistent

if it has an ALC concept equivalent. For instance, if ∃R2.∀Q2.∃R1.∀Q1.α is an

ALC concept, ∃R2.∀Q2.∃R1.∀Q1α is its labeled concept equivalent. 6 Labels are

syntactic artifacts of our system, which means that labeled concepts and its

equivalent ALC have the same semantics. NDALC was designed to be extended

to DLs with role constructors and subsumptions. This is one of the main reasons

to use roles-as-labels in its formulation.

The notation ¬Lα denotes the exchanging of the universal and existential

roles occurring in L in a consistent way. This is used to express the negation

of labeled concepts. That is, if γ ≡ ∃R2.∀Q2.∃R1.∀Q1α, then we can express its

negation by ¬γ ≡ ∀R2.∃Q2.∀R1.∃Q1¬α.
In the rule �-i, L1α � L2β depends only on the assumption L1α and no other

hypothesis. The proviso to rule Gen application is that the premise Lα does not

depend on any hypothesis. In ⊥c-rule,
Lα has to be different from ⊥. In some

rules the list of labels L has a superscript, L∀ or L∃. This notation means that

the list of labels L should contain only ∀R (resp. ∃R) labels. When L has no

superscript, any kind of label is allowed.

Despite the use of labelled formulas, the main non-standard feature of NDALC
is the fact that it is defined on two kinds of objects, namely concept descriptions

6 One can easly define a function σ : φlc → φc to transform labelled concept
into its equivalent ALC concept. That is, for example σ(∃R2.∀Q2.∃R1.∀Q1α) =
∃R2.∀Q2.∃R1.∀Q1.α.
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L∀
(α � β)
L∀
α

�-e
L∀

(α � β)
L∀
β

�-e
L∀
α L∀

β

L∀
(α � β)

�-i

L∃
(α � β)

[L
∃
α]
....
γ

[L
∃
β]
....
γ

γ �-e
L∃
α

L∃
(α � β)

�-i
L∃
β

L∃
(α � β)

�-i

Lα ¬L¬α
⊥ ¬-e

[Lα]
....
⊥

¬L¬α ¬-i

[¬L¬α]
....
⊥
Lα

⊥c

L∃R.α
L,∃Rα

∃-e
L,∃Rα
L∃R.α ∃-i

L∀R.α
L,∀Rα

∀-e

L,∀Rα
L∀R.α ∀-i Lα

∀R,Lα
Gen

L1α L1α � L2β
L2β

� -e

[L1α]
....

L2β
L1α � L2β

� -i

Figure 4: The Natural Deduction system for ALC

and subsumptions. Concept descriptions are interpreted as sets. 7 On the other

hand, a subsumption α � β, with α and β being concepts, is a truth-value

statement. Its truth depends on whether the interpretation of β includes the

corresponding interpretation of α.

The semantics of NDALC follows the ALC semantics, that is, it is given by an

interpretation. However, since NDALC deals with two different kinds of objects,

we must define how an interpretation satisfies both kinds.

Definition 1. Let Ω = (C,S) be a tuple composed by a set of labeled concepts

C = {α1, . . . , αn} and a set of subsumption S = {γ1 � δ1, . . . , γk � δk}. We say

that an interpretation I = (ΔI , �I) satisfies Ω and write I |= Ω whenever: (i)

7 See the presented ALC semantics.
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I |= C, which means
⋂

α∈C(α)
I �= ∅; and (ii) I |= S, which means that for all

(γi � δi) ∈ S, we have (γi)
I ⊆ (δi)

I .

We adopted the standard notation Ω � F if there exists a deduction Π with

conclusion F (concept or subsumption) from Ω as set of hypothesis.

From [Schild, 1991] we known that ALC is sound and complete for any Clas-

sical Propositional Logic axiomatization containing the axioms:

Definition 2 An Axiomatization of ALC.
∀R.(α � β) ≡ ∀R.α � ∀R.β (1)

∀R.
 ≡ 
 (2)

As usual, ∃R.α can be taken as a shorthand for ¬∀R.¬α, as well as ∀R.α as

a shorthand for ¬∃R.¬α. Taking ∃R.α as the definienens concept, the Axiom 1

can be rewritten to Axiom 3.

∃R.(α � β) ≡ ∃R.α � ∃R.β (3)

The following rule, also known as necessitation rule:

� α
� ∀R.α Nec

is sound and complete for ALC semantics. In fact, the Axiom 1 and this neces-

sitation rule are an alternative axiomatization for ALC.
In what follows, we proof that NDALC is sound and complete.

Theorem 3. NDALC is complete regarding the standard semantics of ALC.
Proof. To prove Theorem 3 we show how the axiomatic presentation of ALC
from [Schild, 1991] can be derived in NDALC .

The ALC necessitation rule (Nec) is a derived rule of NDALC , for supposing
� α implies the existence of a proof (without hypothesis) Π of α. We prove

∀R.α, without any new hypothesis by means of the following schema:

Π....
α
Rα

Nec

∀R.α ∀-i

The following proofs justify in NDALC the ALC axiom

∀R.(A �B) ≡ (∀R.A � ∀R.B)

where α ≡ β is an abbreviation for α � β and β � α, having obvious ≡
elimination and introduction rules, based on � elimination and introduction

rules.
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[∀R.(A �B)]
∀-e

R
(A �B)

�-e
RA ∀-i∀R.A

[∀R.(A �B)]
∀-e

R
(A �B)

�-e
RB ∀-i∀R.B �-i∀R.A � ∀R.B 	-i∀R.(A �B) � ∀R.A � ∀R.B

[∀R.A � ∀R.B]
�-e∀R.A ∀-e

RA

[∀R.A � ∀R.B]
�-e∀R.B ∀-e

RB �-i
R
(A �B)

∀-i∀R.(A �B)
	-i∀R.A � ∀R.B � ∀R.(A �B)

NDALC is a conservative extension of the classical propositional calculus. To

see that, let Δ be a set of formulas of the form {γ1, . . . , γk, α1 → β1, . . . , αn →
βn}, where each γi, αi and βi are propositional formulas and αi and βi do not

have any occurrence of →. One can easily verify that any propositional classical

consequence Δ |= α is justified by a proof in classical ND. Now trasform this

proof into a proof in NDALC by replacing each → by �.

Since NDALC is a conservative extension of the classical propositional ND

system that has the necessitation as a derived rule, and, proves axiom

∀R.(A �B) ≡ (∀R.A � ∀R.B)

we have the completeness for NDALC by a relative completeness to the axiomatic

presentation of ALC. ��

Theorem 4. NDALC is sound regarding the standard semantics of ALC.

if Ω � γ then Ω |= γ

Proof. It follows direct from Lemma 5. ��

Lemma5. Let Π be a deduction in NDALC of F with all hypothesis in Ω =

(C,S), then if F is a concept:

S |=
(�

A∈C A
)
� F

and if F is a subsumption A1 � A2:

S |=
(�

A∈C A
)
� A1 � A2
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For the sake of clear presentation in the following proof we adopt some spe-

cial notations. The labelled concept Lα will be taken as equivalent to its ALC
correspondent concept σ(Lα). Letters γ and δ stand for labelled concepts while

α and β stand for ALC concepts. We take C as the intersection of the concept

descriptions in C, �
A∈C A.

Proof. The proof of Lemma 5 is done by induction on the height of the proof

tree Π , represented by | Π |.
Base case If | Π |= 1 then Ω � Lα is such that Lα is in Ω. In that case, is

easy to see that Lemma 5 holds since by basic set theory (A ∩B) ⊆ A for all A

and B.

Rule �-e By induction hypothesis, if

Π1
L
(α � β) is a derivation with all hypoth-

esis in {C,S} then S |= C � L
(α � β). From the definition of labeled concepts

and Axiom 1 we can rewrite to S |= C � Lα � Lβ which from basic set theory

guarantee S |= C � Lα.

Rule �-i Let us consider the two derivations
Π1
Lα and

Π2
Lβ with all hypothesis

in {C1,S1} and {C2,S2}. By induction hypothesis, (1) S1 |= C1 � Lα an (2)

S2 |= C2 � Lβ. Now let us consider the deduction

Π1
Lα

Π2
Lβ

L
(α � β)

with all hypothesis in {C1 ∪ C2,S1 ∪ S2}. It is easy to see that from (1) and (2)

S1 ∪ S2 |= (C1 � C2) � Lα and S1 ∪ S2 |= (C1 � C2) � Lβ. From basic set theory

we may write S1 ∪ S2 |= (C1 � C2) � Lα � Lβ and finally from Axiom 1 we get

the desired result S1 ∪ S2 |= (C1 � C2) � L
(α � β).

Rules �-i Again by induction hypothesis, if
Π1
Lα is a derivation with all

hypothesis in {C,S} then S |= C � Lα. Using basic set theory we can rewrite to

S |= C � Lα � Lβ and using Axiom 3 to S |= C � L
(α � β).

Rule (�-e) By induction hypothesis, if

Π1
L
(α � β),

[Lα]
Π2
γ and

[Lβ]
Π3
γ

are derivations with hypothesis in {C,S}, {Lα,S} and {Lβ,S}, respectively.

Then, S |= C � L
(α � β), S |= Lα � γ and S |= Lβ � γ. From set theory

S |= (Lα�Lβ) � γ and from Axiom 3, S |= L
(α � β) � γ. Now by the transitivity

of set inclusion we can get the desired result S |= C � γ.

Rules ∀-i, ∀-e, ∃-i and ∃-e They are sound since the premises and conclu-

sions have the same semantics.
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Rule ¬-e By induction hypothesis, if

Π1
Lα and

Π2
¬L¬α

are derivation with hypothesis in {C1,S1} and {C2,S2} we know that S1 |= C1 �
Lα and S2 |= C2 � ¬L¬α. Now consider the deduction

Π1
Lα

Π2
¬L¬α
⊥

with hypothesis in {S1 ∪ S2, C1 ∪ C2}. By inductive hypothesis we can write

S1 ∪ S2 |= C1 � Lα and S2 ∪ S2 |= C2 � ¬L¬α. Now, from the fact that ALC
semantics states Lα and ¬L¬α as two disjoint sets, we have C1 � C2 = ∅ and we

can write S1 ∪ S2 |= (C1 � C2) � ⊥ as desired.

Rule ¬-i If {C,S} holds all the hypothesis of the deduction

Lα
Π2

⊥ then by

induction hypothesis S |= C � Lα � ⊥ (taking ⊥ as its semantics counterpart,

namely, the empty set). From basic set theory S |= C � ¬L¬α as desired.

Rule ⊥c The argument is similar from above.

Rule �-e By induction hypothesis, if
Π1
γ and

Π2

γ � δ are deduction with

hypothesis in {C1,S1} and {C2,S2}, we have (1) S1 |= C1 � γ and (2) S2 |=
C2 � γ � δ. Let us now consider the application of rule �-e to construct the

derivation
Π1
γ

Π2

γ � δ

δ

with hypothesis in {C1 ∪ C2, S1 ∪ S2}. From (2) and ALC semantics we can

conclude S1 ∪ S2 |= C2 � γ � δ. Finally, from basic set theory C1 � C2 � C2 we

obtain S1 ∪ S2 |= C1 � C2 � δ.

Rule �-i By induction hypothesis, if

γ
Π1

δ is a deduction with hypothesis in

{C,S} then S |= C � δ and we conclude S |= C− � γ � δ where C− is C − {γ}.
The semantics of C and C− � γ are obviously the same.

Rule Gen Let Π be a proof of Lα following from an empty set of hypothesis,

we may write � Lα. That is, Lα is a DL-tautology or σ(Lα)I ≡ ΔI . From the

necessitation rule, whenever a concept C is a DL-tautology, for any given R, the

concept ∀R.C will be also. For that, we can conclude that ∀R,Lα for any given

R will be also a tautology. Remember that ∀R,Lα ≡ ∀R.σ(Lα). ��
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4 Normalization theorem for NDALC

In this section we prove the normalization theorem for NDALC . It is worth noth-

ing that the usual reductions for obtaining a normal proof in classical proposi-

tional logic also applies to NDALC . Thus, the first thing to observe is that we

follow [Prawitz, 1965] approach incremented by [Seldin, 1989] permutation rules

for the classical absurdity ⊥c. That is, using a set transformations, we move any

application of ⊥c-rule downwards the conclusion. After this transformation we

end up with a proof having in each branch at most one ⊥c-rule application as

the last rule of it.

In order to move the absurdity rule downwards the conclusion and also to

have a more succinct proof we restrict the language to the fragment {¬, ∀,�,�}.
This will not limit our results since any ALC formula can be rewritten in an

equivalent one in this restricted fragment. We shall consider the system ND−ALC
obtained from NDALC by removing from NDALC �-rules and ∃-rules. The Propo-
sition 6 states that the system ND−ALC is essentially just a syntactic variation

of NDALC system.

Proposition6. The NDALC �-rules and ∃-rules are derived in ND−ALC.

Proof. Considering the concept description Lα � β being defined by
L¬(¬α � ¬β)

and the concept description L∃R.α by L¬∀R.¬α.
The rules (�-i) can be derived as follows:

Lα

[¬L
(¬α � ¬β)

]1

¬L¬α �-e
⊥ ¬-e

L¬(¬α � ¬β) ¬-i

Lβ

[
¬L

(¬α � ¬β)
]1

¬L¬β �-e
⊥ ¬-e

L¬(¬α � ¬β) ¬-i

where L contains only existential quantified labels. ¬L as described in Section 3,

is the negation of L, that is, universal quantified are changed to existential

quantified and vice versa. We note that rule �-i proviso requires that L contains

only existential quantified labels, what makes the rule �-e proviso satisfied since

¬L will only contains universal quantified labels. The rule �-e can also be derived:
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[
Lα

]
....
γ [¬γ]

⊥
¬L¬α

[
Lβ

]
....
γ [¬γ]

⊥
¬L¬β

¬L
(¬α � ¬β) L¬(¬α � ¬β)

⊥
γ

For rules (∃-i) and (∃-e), it is worth noting that ND−ALC does not restrict

the occurrence of existential labels, only the existential constructor of ALC. In
other words, we have just reused the ALC constructors ∀ and ∃ to “type” the

labels and keep track of the original role quantification when it is promoted to

label. Nevertheless, although the confusion could be avoided if we adopted ¬∀R
instead of ∃R in the labels of ND−ALC concepts, for clear presentation we choose

to allow ∃R on ND−ALC concept’s labels.

L,∃Rα

[
¬L∀R.¬α

]

(¬L),∀R¬α
⊥

L¬∀R.¬α

[
(¬L),∀R¬α]
¬L∀R.¬α L¬∀R.¬α

⊥
L,∃Rα

In the sequel, we adopt [Prawitz, 1965] terminologies such as: formula-tree,

deductions or derivations, rule application, minor and major premises, threads,

branches and so on. Nevertheless some terminologies have different definition in

our system, in that case, we will present that definition.

A branch in a NDALC or ND−ALC deduction is an initial part α1, α2, . . . , αn

of a thread such that αn is either (i) the first formula occurrence in the thread

that is a minor premise of an application of �-e or (ii) the last formula occurrence

of a thread (the end-formula of the deduction) if there is no such premise in the

thread.

Given a deductionΠ on NDALC or ND−ALC , we define the height of a formula

occurrence α in Π inductively:

– if α is the end-formula of Π (conclusion), then h(α) = 0;

– if α is a premise of a rule application, say λ, in Π and is not the end-formula

of Π , then h(α) = h(β) + 1 where β is the conclusion of λ.

In a similar matter we can define the height of a rule application in a deduction.
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A maximal formula is a formula occurrence that is consequence of an intro-

duction rule and the major premise of an elimination rule. A maximal �-formula

in a proof Π is a maximal formula that is a subsumption.

Lemma7. Let Π be a proof of α (concept or subsumption of concepts) from Δ

in ND−ALC. Then there is a proof Π ′ without maximal �-formulas.

Proof. We prove Lemma 7 by induction over the number of maximal �-formulas

occurrences. We apply a sequence of reductions choosing always a highest max-

imal �-formula occurrence in the proof tree. In the reduction shown below we

note that α cannot be a subsumption, so that, the reduction application will

never introduce new maximal �-formulas. In other words, we cannot have nested

subsumptions, subsumptions are not concepts.

Π1
α

[α]
Π2

β

α � β

β �

Π1

[α]
Π2

β

Lemma8 Moving ⊥c downwards on branches. If Ω �ND−ALC α, then there

is a deduction Π in ND−ALC of α from Ω where each branch in Π has at most

one application of ⊥c-rule and, whenever it has one, it is one of the following

cases: (i) the last rule applied in this branch; (ii) its conclusion is the premise

of a �-i application, being this �-i the last rule applied in the branch.

Proof. Let Π be a deduction in ND−ALC of α (subsumption of concepts or

concept) from a set of hypothesis Δ. Let λ be an application of a ⊥c-rule in Π

with h(λ) = d such that there is no other application of ⊥c-rule above λ. Let us

consider each possible rule application immediately below λ. For each case, we

show how one can exchange the rules decreasing the height of λ.

Rule ∀-e

[¬L¬∀R.α]
....
⊥

L∀R.α
L,∀Rα �

[L∀R.α]
L,∀Rα [¬L,∃R¬α]

⊥
¬L¬∀R.α....

⊥
L,∀Rα
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Rule ∀-i

[¬L,∃R¬α]
....
⊥

L,∀Rα
L∀R.α �

[L,∀Rα]
L∀R.α

[
¬L¬∀R.α

]

⊥
¬L,∃R¬α....

⊥
L∀R.α

Rule �-i

∃L¬α....
⊥

∀Lα
Π

∀Lβ
∀L(α � β) �

[∀Lα]2
Π

∀Lβ
∀L

(α � β)
[∃L¬(α � β)

]1

⊥
∃L¬α

2

....
⊥

∀L(α � β)
1

Rule �-e

∃L¬(α � β)
....
⊥

∀L
(α � β)
∀Lα �

[∃L¬α]2

[
∀L

(α � β)
]1

∀Lα
⊥

∃L¬(α � β)
1

....
⊥

∀Lα
2

Rule ¬-e

[¬L¬α]
....
⊥
Lα

[Δ]
Π

¬L¬α
⊥ �

[
Lα

]
[Δ]
Π

¬L¬α
⊥

¬L¬α....
⊥

One must observe that in all reductions above, the conclusion of ⊥c rule

application is the premise of the rule considered in each case. That is why

the ¬-i rule was not considered, if so, the conclusion of ⊥c rule would have

to be a ⊥, wish is prohibit by the restriction on ⊥c-rule.
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Rule �-e

[¬α]
Π1

⊥
α

Π2

α � β

β �

[α]1
Π2

α � β

β [¬β]2
⊥
¬α 1

Π1

⊥
β

2

The reductions below will be used in the induction step in Theorem 9.

Let Π be a deduction of α from Ω which contains a maximal formula occur-

rence F . We say that Π ′ is a reduction of Π at F if we obtain Π ′ by removing

F using the reductions below. Since F clearly can not be atomic, each reduction

refers to a possible principal sign of F . If the principal sign of F is ψ, then Π ′

is said to be a ψ-reduction of Π . In each case, one can easily verify that Π ′

obtained is still a deduction of α from Ω.

�-reduction
Π1
∀Lα

Π2
∀Lβ

∀L
(α � β)
∀Lα �

Π1
∀Lα

∀-reduction
Π1

L,∀Rα
L∀R.α
L,∀Rα �

Π1
L,∀Rα

¬-reduction
[
Lα

]
Π1

⊥
¬L¬α

Π2
Lα

⊥ �

Π2[
Lα

]
Π1

⊥

The fact that DL has no concept internalizing � imposes quite particular

features on the form of the normal proofs in NDALC .
A ND−ALC deduction is called normal when it does not have maximal for-

mula occurrences. Theorem 9 shows how we can construct a normal deduction

in ND−ALC .
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Consider a deduction Π in ND−ALC . Applying Lemma 7 we obtain a new

deduction Π ′ without any maximal �-formulas. Then we apply Lemma 8 to

reduce the number of applications of ⊥c-rule on each branch and moving the

remaining downwards to the end of each branch. Without loss of generality we

can from now on consider any deduction in ND−ALC as having no maximal �-

formula and at most one ⊥c-rule application per branch, namely, the last one

application in the branch.

Theorem 9 normalization of NDALC. If Ω �ND−ALC α, then there is a nor-

mal deduction in ND−ALC of α from Ω.

Proof. Let Π be a deduction in ND−ALC having the form remarked in the pre-

vious paragraph. Consider the pair (d, n) where d is the maximum degree among

the maximal formulas, and n is the number of maximal formulas with degree

d. We proceed the normalization proof by induction on the lexicographic pair

(d, n).

Let F be one of the highest maximal formula with degree d and consider

each possible case according the principal sign of F .

If F has as principal sign �, applying the �-reduction we get a new deduction

Π1 with complexity (d1, n1). We now have d1 ≤ d, depending on the existence

of other maximal �-formulas on Π . If d1 = d, then necessarily n1 < n. The cases

where the principal sign of F is ¬ or ∀ are similar. Two facts can be observed.

First, the �-reduction will not be used anymore, since Π does not have any

remaining maximal �-formula. Second, although the ¬-reduction can increase

the number of maximal formulas, those maximal formulas will undoubtedly have

degree less than d, so that, we indeed have (d1, n1) < (d, n). So, by the induction

hypothesis, we have that Π1 is normalizable and so is Π for each principal sign

considered.

As we have already mentioned NDALC has no concept internalization �.

This imposes quite particular form of the normal proofs in ND−ALC . Consider
a thread in a deduction Π in ND−ALC , such that no element of the thread is a

minor premise of �-e rule. We shall see that if Π is normal, the thread can be

divided into two parts. There is one formula occurrence A in the thread such

that all formula occurrences in the thread above A are premises of applications

of elimination rules and all formula occurrences below A in the thread (except

the last one) are premises of applications of introduction rules. Therefore, in

the first part of the thread, we start from the top-most formula an decrease the

complexity of that until A. In the second part of the thread we pass to more and

more complex formulas. Given that, A is said thus the minimum formula in the

thread. Moreover, each branch on Π has at most one application of ⊥c rule as

its last rule application.
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Normalization is important since from it one can provide complete procedure

to produce canonical proofs in ALC. Canonical proofs are important regarding

explaining theorem hood.

5 Dealing with ALCQI theories

One of the main goals of this article is to show how NDALCQI facilitates the

reasoning explanation on UML reasoning. To illustrate this in real cases, we

will need to move to a more expressive DL. In fact, from [Berardi et al., 2005],

[Calvanese et al., 1998b], [Calvanese et al., 1998a], [Calvanese et al., 2009], and

[Calvanese et al., 2004] we know that in order to express UML modeling and

reasoning, we have to use ALCQI. It is ALC with number restrictions and

inverse roles. That is, we extend the language adding the following constructors:

C ::= ⊥ | A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C |≤ nR.C |≥ nR.C

R ::= P | P−

where A stands for atomic concepts and P for atomic roles. Some of the above

operators can be mutually defined: (i) ⊥ for A�¬A; (ii) 
 for ¬⊥; (iii) ≥ kR.C

for ¬(≤ k − 1R.C); (iv) ≤ kR.C for ¬(≥ k + 1R.C); (v) ∃R.C for ≥ 1R.C.

An ALCQI theory is a finite set of inclusion assertions of the form C1 �
C2. The semantics of ALCQI constructors and theories is analogous to that of

ALC. The semantics of the new constructors, inverse roles and qualified number

restrictions, are as follows:

(P−)I = {(a, a′) ∈ ΔI ×ΔI | (a′, a) ∈ P I}
(≤ kR.C)I = {a ∈ ΔI | #{a′ ∈ ΔI | (a, a′) ∈ RI ∧ a′ ∈ CI} ≤ k}

The ND for ALCQI, named NDALCQI , is presented in Figure 5. The system

is a conservative extension of NDALC and each new introduced rule is sound,

so it is also sound. NDALCQI normalization is work in progress. For the main

purpose of this article, completeness does not matter. Anyway, a completeness

proof for NDALCQI follows from a (technically heavy) mapping from a complete

Sequent Calculus for ALCQI to NDALCQI . The notation used in Figure 5 is

similar of that used in Section 3. In some rules, we superscribe the list of labels

with the kind of labels allowed on it. For example, in rule �-e, we restrict L

to contain only ∀ and ≥ n labels using the notation L∀≥. Moreover, for easier

understanding, some provisos regarding the order relation between the number

n and m are presented on the right of the rule’s name.

A normalization proof for NDALCQI is obtained as an extension of the nor-

malization proof presented for ALC in Section 4. For instance, reductions as the

3035Rademaker A., Haeusler E.H.: Providing a Proof-Theoretical Basis ...



L∀≥
(α � β)
L∀≥

α
�-e

L∀≥
(α � β)
L∀≥

β
�-e

L∀≤
α L∀≤

β

L∀≤
(α � β)

�-i

L∃≤
(α � β)

[L
∃≤
α]

....
γ

[L
∃≤
β]

....
γ

γ �-e
L∃≥

α
L∃≥

(α � β)
�-i

L∃≥
β

L∃≥
(α � β)

�-i

L∀∃
α ¬L∀∃¬α

⊥ ¬-e

[L
∀∃
α]

....
⊥

¬L∀∃¬α
¬-i

[¬L∀∃¬α]

....
⊥

L∀∃
α

⊥c

L∃R.α
L,∃Rα

∃-e
L,∃Rα
L∃R.α ∃-i

L∀R.α
L,∀Rα

∀-e

L,∀Rα
L∀R.α ∀-i

L≤ nR.α
L,≤nRα

≤ -e
L,≤nRα

L≤ nR.α
≤ -i

L≥ nR.α
L,≥nRα

≥ -e
L,≥nRα

L≥ nR.α
≥ -i

∃R,Lα
≥1R,Lα

≥ ∃
≥nR,Lα
∃R,Lα

∃ ≥ (n ≥ 1)

≥mR,Lα
≥nR,Lα

dec (m ≥ n)
≤mR,Lα
≤nR,Lα

inc (m ≤ n)
Lα

∀R,Lα
Gen

L1α L1α � L2β
L2β

� -e

[L1α]
....

L2β
L1α � L2β

� -i
∃R,L1α � L2β

L1α � ∀R−,L2β
inv

Figure 5: The Natural Deduction system for ALCQI
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following
Π1

L1,≤nRαL2

L1≤ nR.αL2

L1,≤nRαL2 �

Π1
L1,≤nRαL2

have to be considered. The presentation of the complete normalization proof for

ALCQI is out of the scope of this paper since it can be considered as an article

in its own.

Normalization provides a proof procedure for NDALCQI . Initially decom-

pose the (candidate) conclusion (α � β) by means of introduction rules applied

bottom-up, until atomic labeled concepts. For each atomic concept, one chooses

an hypothesis from Δ and by decomposing it, by means of elimination rules,

tries to achieve this very atomic (labeled) concept. This allows us to derive a

(complete) proof procedure for the logic, decomposing the conclusions and the

hypothesis until atomic levels an proving one set using the other. In our case we

are interested in applying this proof procedure on top of theories.

Moreover, since theories must be closed under generalizations, we introduce

the following Generalization rules in order to reflect this closure.

α � β
G∀∀Rα � ∀Rβ

α � β
G∃∃Rα � ∃Rβ

α � β
G≤

≤nRα � ≤nRβ

α � β
G≥

≥nRα � ≥nRβ

6 Explaining UML in NDALCQI

In [Berardi et al., 2005], DLs are used to formalize UML diagrams. It uses two

DL languages: DLRifd or ALCQI. The diagram on Figure 6 and its formaliza-

tion on Figure 7, are from [Berardi et al., 2005].

We use examples ofDL deductions from [Berardi et al., 2005, page 84], using

NDALCQI to reason on the ALCQI KB. The idea is to exemplify how one can

obtain from NDALCQI proofs, a more precise and direct explanation.

The first example concerns a refinement of a multiplicity. That is, from rea-

soning on the diagram, one can deduce that the class MobileCall participates

on the association MobileOrigin with multiplicity 0 . . . 1, instead of the 0 . . . ∗
presented in the diagram. The proof on NDALCQI is as follows, where we abbre-

viate the class names for their first letters, for instance, Origin (O), MobileCall

(MC), call (c) and so on. Note that ¬ ≥ 2c−.MO is actually an abbreviation for

≤ 1c−.MO.
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Figure 6: UML class diagram

[≥ 2 c−.MO]2

MO 	 O
G≥

≥ 2 c−.MO 	 ≥ 2 c−.O 	-e
≥ 2 c−.O

[MC]1 MC 	 PC 	-e
PC PC 	 ≥ 1 c−.O � ≤ 1 c−.O 	-e

≥ 1 c−.O � ≤ 1 c−.O �-e
≤ 1 c−.O ¬-e⊥

2 ¬-i
¬ ≥ 2 c−.MO

1 	-i
MC 	 ¬ ≥ 2 c−.MO

To exemplify deductions on diagrams, an incorrect generalization between

two classes was introduced. The generalization asserts that each CellPhone is

a FixedPhone, which means the introduction of the new axiom CellPhone �
FixedPhone in the KB. From that improper generalization, several undesirable

properties could be drawn.

The first conclusion about the modified diagram is that Cellphone is now

inconsistent. The NDALCQI proof below explicits that from the newly introduced

axiom and from the axiom CellPhone � ¬FixedPhone in the KB, one can

conclude that CellPhone is now inconsistent.

Cell � ¬Fixed [Cell]1
	-e¬Fixed

Cell � Fixed [Cell]1
	-e

Fixed ¬-e⊥
1 	-i
Cell � ⊥

The second conclusion is that in the modified diagram, Phone ≡ FixedPhone.

Note that we have only to show that Phone � FixedPhone since FixedPhone �
Phone is an axiom already in the original KB. We can conclude from the proof

below that Phone � FixedPhone is not a direct consequence of CellPhone being

inconsistent, as stated in [Berardi et al., 2005], but it is mainly a direct conse-
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Origin � ∀place.String
Origin � ∃place.� � (≤ 1 place)

Origin � ∃call.PhoneCall � (≤ 1 call) � ∃from.Phone � (≤ 1 from)

MobileOrigin � ∃call.MobileCall � (≤ 1call) � ∃from.CellPhone � (≤ 1 from)

PhoneCall � (≥ 1 call−.Origin) � (≤ 1 call−.Origin)

� � ∀reference−.PhoneBill � ∀reference.PhoneCall
PhoneBill � (≥ 1 reference−)

PhoneCall � (≥ 1 reference) � (≤ 1 reference)

MobileCall � PhoneCall

MobileOrigin � Origin

CellPhone � Phone

FixedPhone � Phone

CellPhone � ¬FixedPhone
Phone � CellPhone 
 FixedPhone

Figure 7: The ALCQI theory obtained from the UML diagram on Figure 6

quence of the newly introduced axiom and a cases analysis over the possible

subtypes of Phone.

[Phone]1 Phone 	 Cell � Fixed 	-e
Cell � Fixed

[Cell] Cell 	 Fixed 	-e
Fixed [Fixed] �-e

Fixed
1 	-i

Phone 	 Fixed

Below it is shown the above discussed subsumption proved in SC, based on

the system presented in [Rademaker & Haeusler, 2008].

MO ⇒ O

≥ 2 call−.MO ⇒ ≥ 2 call−.O

MC,≥ 2 call−.MO ⇒ ≥ 2 call−.O

MC ⇒ PC PC ⇒ ≥ 1 call−.O � ≤ 1 call−.O

MC ⇒ ≥ 1 call−.O � ≤ 1 call−.O

MC,≥ 2 call−.MO ⇒ ≥ 1 call−.O � ≤ 1call−.O

MC,≥ 2 call−.MO ⇒ ≥ 1 call−.O � ≤ 1call−.O � ≥ 2call−.O

MC,≥ 2 call−.MO ⇒ ⊥
MC ⇒ ¬ ≥ 2 call−.MO

In order to the reader concretely see that it is harder explaining on Tableaux
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basis than on Natural Deduction basis, we prove the same MC � ¬ ≥ 2 call−.MO
subsumption in Tableaux. We follow [Baader et al., 2003, Section 2.3.2.1] and

represent the Tableaux constraints as ABox assertions without unique name

assumption. 8 The constraint“a belongs to (the interpretation of) C” is repre-

sented by C(a) and “b is an R-filler of a” by R(a, b). The interested reader

can find the complete presentation of the Tableaux procedure for ALCQI in

[Baader et al., 2003].

The Tableaux procedure starts translating the subsumption problem to a

satisfiability problem. The subsumption C � D holds if and only if C � ¬D
is unsatisfiable. In our case, C0 ≡ MC � ≥ 2 call−.MO should be unsatisfiable.

Since C0 is already in the NNF (negation normal form), we are ready to the

Tableaux algorithm, otherwise we would have to first transform it to obtain a

NNF equivalent concept description. Tableaux procedure starts with the ABox

A0 = {C0(x0)} and applies consistency-preserving transformation rules to the

ABox until no more rules apply. If the completed expanded ABox obtained does

not contain clashes (contradictory assertions), then A0 is consistent and thus C0

is satisfiable, and inconsistent (unsatisfiable) otherwise.

A0 is the initial ABox. By �-rule, we get A1. Than, by ≥-rule we get A2.

A3 is obtained by using the theory axioms MO � O and MC � PC. The ABox A4

is obtained by using the theory axiom PC �≥ 1 call−.O � ≤ 1 call−.O. Next, A5

by �-rule. ABox A5 now contains a contradiction, the individual a is required

to have at most one successor of type O in the role call−. Nevertheless, b and c
are also required to be of type O and successors of a in role call−, vide A3 and

A2. This shows that C0 is unsatisfiable, and thus MC � ¬ ≥ 2 call−.MO.

{(MC � ≥ 2 call−.MO)(a)} (A0)

A0 ∪ {MC(a), (≥ 2 call−.MO)(a)} (A1)

A1 ∪ {call−(a, b), call−(a, c), MO(b), MO(c), a �= b, b �= c, a �= c} (A2)

A2 ∪ {O(b), O(c), PC(a)} (A3)

A3 ∪ {(≥ 1 call−.O� ≤ 1 call−.O)(a)} (A4)

A4 ∪ {(≥ 1 call−.O)(a), (≤ 1 call−.O)(a)} (A5)

7 Conclusion

We presented ND systems for ALC and ALCQI and showed, by means of some

examples, how it can be useful to explain formal facts on theories obtained from

UML models. Instead of UML, ER could also be used according a similar frame-

work. Regarding the examples used in this article and the explanations obtained,

8 Instead, we allow explicit inequality assertions of the form x �= y. Those assertions
are assumed symmetric.
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it is worthwhile noting that the Natural Deduction proofs obtained are quite close

to the natural language explanation provided by the authors of the article from

which the examples are taken. It is an easy task to provide the respective natural

language explanation for a comparison. This article shows that ND deduction

systems are better than Tableaux and Sequent Calculus as structures to be used

in explaining theorem when validating theories in the presence of false positives.

We also remark and show how normalization is important in order to provide

well-structured proofs.
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