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Abstract: Software transactional memory (STM) is a new approach for coordinating
concurrent threads, for which many different implementation strategies are currently
being researched. In this paper we show that if a language implementation provides
reflective access to explicit memory locations, it becomes straightforward to both (a)
build an STM framework for this language and (b) to implement STM algorithms using
this framework. A proof-of-concept implementation in the form of a Scheme interpreter
(written in Common Lisp) is presented.
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1 Introduction

Software transactional memory (STM) [Shavit and Touitou 95] is a novel ap-
proach for coordinating concurrent threads. It proposes the use of a transactional
model for coordinating reads and writes of shared data in a multithreaded sys-
tem. Without such a mechanism, the (relative) order of these reads and writes
is undefined, during the execution of which a program can cause problems if two
threads try to write the same memory location. Such problems are known as
data races and are traditionally dealt with by the programmer by using low-level
mechanisms such as locks for controlling the progress of threads. Programming
with locks is known to be difficult because the programmer can easily write code
that introduces mistakes such as deadlocks or code that does not easily compose.
STM alleviates many of these problems by offering a well-defined protocol for
managing reads and writes of shared data automatically.

An efficient implementation of STM is however hard, and numerous strategies
have been proposed, but there is no definitive winner [Larus and Rajwar 07]. For
example, an STM’s transaction granularity determines the unit of storage over
which the system operates (object or word/pointer-based). Other design deci-
sions include the use of pessimistic or optimistic concurrency control, early or late
conflict detection, direct or deferred memory updates, and so on. For a detailed
taxonomy we refer to Larus and Rajwar’s work [Larus and Rajwar 07]. Each of
these options results in an STM that performs better for different applications.

A number of benchmark suites have been developed for assessing the different
variations of STM algorithms [Cao Minh et al. 08, Kulkarni et al. 07]. Bench-
mark suites focus on getting comparable benchmark results, by providing sets
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of dedicated test applications that can be run without change for different STM
algorithms. To make this work, a benchmark suite defines a so-called “generic”
STM interface that is used in those test applications, so that the implementations
of the STM algorithm can silently vary underneath. However, such benchmark
suites typically don’t provide reusable building blocks for implementing the ac-
tual STM algorithms, but leave the programmers of such algorithms on their
own. The latter is the focus of a STM framework that provides common STM
functionality and hooks. In this paper we propose such an STM framework.

Herlihy et al. previously proposed a framework for STM [Herlihy et al. 06],
but their approach differs greatly from ours. Their framework, in line with
other STM implementations we know of [Herlihy et al. 03, Harris and Fraser 03,
Larus and Rajwar 07, Ringenburg and Grossman 05], is built on top of an ex-
isting compiler that was not designed for supporting STM. In contrast, we start
by designing a language architecture from scratch that exposes the hooks for
supporting STM as a plugin. This simplifies both the implementation of the
framework itself as well as the use of the framework for plugging in different
STM algorithms.

The contributions of this paper are:

– an analysis of the hooks a language implementation needs to provide for
implementing STMs as plugins, and our solution that proposes to provide
reflective access to memory locations for this purpose;

– an interpreter framework with such explicit memory locations as a proof of
concept, here implemented for Scheme, but transferable to other languages;

– an implementation of three example STM algorithms as extensions of this
framework to validate our approach.

2 Concepts of Software Transactional Memory

2.1 Multiprocessing with shared memory

In multithreaded programs, the execution of threads is typically synchronized
using locks, which is a mechanism for temporarily granting threads exclusive
access to shared resources, for example shared memory locations. Though locks
can be used to avoid data races, programming with locks is notoriously diffi-
cult and alternative synchronization strategies are still an important research
topic [Harris and Fraser 03]. Recently, software transactional memory was pro-
posed.

The idea behind software transactional memory (STM) is to use transactions
for coordinating the execution of concurrent threads[Larus and Rajwar 07]. Soft-
ware transactions inherit the atomicity and isolation properties from database
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transactions. Atomicity requires a transactional piece of code to execute com-
pletely or, in case of failure, to pretend to never have been executed at all (i.e.
any side effects are undone). Isolation requires the result of executing a transac-
tion not to influence the result of other concurrently executing transactions. A
correct implementation of these properties assures that transactions do not lead
to data races.

STM has been realized both as libraries [Herlihy et al. 03, Herlihy et al. 06]
and language extensions [Harris and Fraser 03, Ringenburg and Grossman 05].
STM libraries offer programmers APIs for making transactions, while language
support for STM typically consist of a keyword atomic for delimiting a block
of code that needs to execute transactionally. For example, if Scheme had an
atomic construct, then a thread-safe implementation of the insert operation
for a double linked list could look like the code below. The underlying STM
implementation assures the code inside atomic executes transactionally.

(define insert (node new-node)
(atomic (set-previous new-node node)

(set-next new-node (next node))
(when (not (null-node-p (next node)))

(set-previous (next node) new-node))
(set-next node new-node)))

2.2 Structure of an STM implementation

An STM algorithm monitors the reads and writes of memory executed within
transactions, and implements an algorithm for checking whether any of these
accesses causes a data race. In case there is a data race, the STM makes sure
the conflicting execution is undone by rolling back one of the transactions.

Larus and Rajwar divide STM implementations into two categories: Deferred-
update and direct-update STMs [Larus and Rajwar 07]. They differ strongly in
the general implementation strategy. Deferred-update STM systems are imple-
mented following a nonblocking synchronization strategy. When transactions
access a memory location, they acquire a copy of its content and proceed exe-
cution in terms of the copy. Only when a transaction commits, the STM system
replaces the content of the accessed memory locations with such copies. In case
the STM detects a data race, transactions are cheaply rolled back, since their
side effects are not yet global and hence do not need to be undone.

Conversely, direct-update systems rely on a blocking synchronization strat-
egy. Transactions can temporarily get exclusive access to a memory location and
side effects are performed instantly. A more expensive rollback mechanism than
for deferred-update systems is needed, as the STM system needs to store old
content of memory locations to be able to restore them on a rollback. However,
in case there are few data race conflicts, such systems can be very efficient.

We claim that if a language implementation provides an explicit representa-
tion for memory locations, the implementation of both kinds of STMs is much
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easier to realize than when this is not the case. Consequently, we also claim
that explicit memory locations are a key ingredient for a framework in which to
express different kinds of STM. In what follows we sketch a design of a Scheme
interpreter with explicit memory locations, and discuss the implementation of
a direct-update and two deferred-update STM algorithms on top of the mem-
ory location abstraction. Afterwards, we discuss the inherent complexity of an
STM implementation on top of a language implementation without an explicit
representation for memory locations.

3 STM for a Scheme implemented in CLOS

Our experiment consists of extending a Scheme interpreter written in the Com-
mon Lisp Object System (CLOS [DeMichiel and Gabriel 87]) with explicit mem-
ory locations. The interpreter implements a non-trivial subset of Scheme. Ad-
ditionally, it supports parallel variants of familiar constructs like parallel-do,
parallel-let, etc as found in QLisp [Gabriel and McCarthy 84]. It also im-
plements the atomic construct for executing a piece of code transaction-
ally [Harris and Fraser 03]. Our interpreter is written using LispWorks1 and re-
lies on its multiprocessing package for threading and locking functionality. Our
implementation is primarily meant to illustrate our claims, but does not focus
on efficiency. We will discuss efficiency concerns in Section 6.

3.1 Transactional execution

Our interpreter extends the prototypical Lisp interpreter with a clause for eval-
uating atomic expressions. The code for eval-atomic is listed below. Note that
mp:*current-process* is part of the LispWorks API for getting hold of the
current active thread.

For evaluating an atomic expression, we put the current active thread
into a transactional state (see push-transactional-mode) and let it eval-
uate the expression. Afterwards, commit is called for finalizing the transac-
tion and restoring the thread to a non-transactional state for the rest of
the execution (see pop-transactional-mode). For this, we made it possi-
ble to add a transactional state to LispWorks threads, which is accessible
through the methods push-transactional-mode, pop-transactional-mode

and peek-transactional-mode. The transactional state of a thread itself is
modeled as a stack of transaction objects, for supporting the evaluation of nested
atomic expressions.

1 For LispWorks R©, see http://www.lispworks.com/.
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(defmethod eval-atomic (exp env cont)
(let ((transaction (make-transaction exp env cont)))

(push-transactional-mode mp:*current-process* transaction)
(eval exp env #’commit)))

(defmethod commit (result)
(funcall (cont (pop-transactional-mode mp:*current-process*)) result))

Transactions are modeled as objects that store a reference to their thread of
execution, and the interpreter’s state at the time the transaction is created. The
latter is needed for rolling back a transaction:

(defmethod roll-back ()
(let ((transaction (pop-transactional-mode mp:*current-process*)))

(eval-atomic (atomic-block transaction) (env transaction) (cont transaction))))

The methods for commit and roll-back shown here provide the default im-
plementations for these operations. They do not by themselves deviate from
normal execution without transactions. However, by defining them as methods,
we have established a protocol for transactional execution: Client code that ex-
tends our interpreter with STM can override these two methods to include the
extra functionality required for committing a transaction, and rolling it back.

3.2 Memory locations as objects

Memory locations are modeled as instances of the class memory-location, which
defines a slot for storing a memory location’s content. The class can be extended
to hold additional information necessary for implementing a particular STM.

A method make-memory-location is the constructor for making new mem-
ory location objects. It takes the content of the memory location as an argument.
The methods memory-location-value and (setf memory-location-value)

are used to respectively read and write the content of a memory location object.
The methods registered-read and registered-write implement a read or
write of a memory location that is registered by the STM. Both registered and
non-registered accesses to memory locations are necessary because some internal
memory accesses must not be registered to implement STM correctly.

The memory location and transaction abstractions we discussed make up
a complete STM framework. A detailed overview of the different classes and
methods is given in Appendix A.

4 Explicit memory allocation and access in Scheme

For implementing STM, it must be possible to advise all possible reads and
writes of memory. For Scheme, this means it should be possible to extend reads
and writes of variables, cons cells and vectors, that is, there are no other primi-
tive means for allocating and accessing memory. Fig. 1 gives an overview of the
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constructs in Scheme for manipulating variables, cons cells and vectors. We next
identify the methods in the interpreter that implement these operations and
open them up for extension. An overview of these methods is shown in Fig. 2.

Allocation Reading Writing

Variables (define x obj) x (set! x obj)

Cons cells (cons obj obj ) (car cons-cell) (set-car! cons-cell obj )
(cdr cons-cell) (set-cdr! cons-cell obj )

Vectors (vector size) (vector-ref vector idx) (vector-set! vector idx obj )

Figure 1: Allocating and accessing memory in Scheme

Allocation Reading Writing

Variables make-binding binding set-binding

Cons cells make-cl-cons cl-list-car cl-list-set-car
cl-list-cdr cl-list-set-cdr

Vectors make-cl-vector cl-vector-ref cl-vector-set

Figure 2: Methods implementing memory allocation and access

4.1 Variable allocation and access

Variable bindings are stored in an environment structure, a dictionary-like struc-
ture allocated on the Common Lisp heap that maps variable names onto values.
Internally, the latter mappings are represented using a structure binding.

Creating a new variable/value binding (for interpreting a define) is handled
by a method add-binding: It calls make-binding to create a new instance of the
structure binding and stores it into the global environment. Updating a vari-
able/value binding (for interpreting a set!) is done by a method set-binding.
Finally, looking up a variable (for interpreting a variable reference) is done by a
method binding.

In a next step, we can now override these methods to make the memory
locations referenced by variables explicit, by inserting explicit memory location
objects in the bindings. The code for creating and accessing a binding is appro-
priately changed:

(defmethod make-binding :around ((atom atom) value)
(list atom (make-memory-location value) ’binding))

(defmethod memory-location-of-value (binding) (second binding))

(defmethod binding-value :around (binding)
(memory-location-value (memory-location-of-value binding)))

(defmethod (setf binding-value) :around (value binding)
(setf (memory-location-value (memory-location-of-value binding)) value))
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Note that we use around methods to override rather than specialize the original
method definitions (they do not invoke call-next-method). This may seem
superfluous, as we could just omit the original definitions, but then we would
“lose” the original implementation of variable bindings without explicit memory
locations. The latter would break the layered design of our plugin architecture
and make the code conceptually incomplete. A less ad-hoc implementation can
be realized in a language which has explicit support for implementing these kinds
of software layers, such as ContextL (see Section 6).

Next, we override the methods binding and set-binding, which respectively
implement variable lookup and update, to work on the new bindings. Variable
lookup and update are operations that need to be monitored by the STM algo-
rithm, hence the use of registered-read and registered-write, the methods
we previously defined for monitored accesses.

(defmethod binding :around ((atom atom) (environment environment))
(let ((binding (binding-mapping atom environment)))

(registered-read (memory-location-of-value binding))))

(defmethod set-binding :around ((environment environment) (atom atom) (handle handle))
(let ((binding (binding-mapping atom environment)))

(if binding (registered-write (memory-location-of-value binding) handle)
(error "Cannot assign to an undefined variable"))

binding))

4.2 Vector allocation and access

Vectors are implemented using Common Lisp arrays, allocated on the Com-
mon Lisp heap. We represent vectors using a wrapper class cl-vector whose
instances hold references to such Common Lisp arrays. A method called
make-cl-vector is responsible for creating new vectors (for interpreting a
make-vector). Methods cl-vector-ref and cl-vector-set implement reading
and updating vector entries (for interpreting a vector-ref and vector-set!).

To allow advising of vector allocation and access, we now make the memory
locations vectors reference explicit. In the code listed below, we override the
constructor for vector objects. As previously discussed, vectors are represented
by a class cl-vector that wraps a Common Lisp array. Here, we initialize the
entries of the array with a memory location object:

(defmethod make-cl-vector :around (nr &optional initial-content)
(if initial-content

(make-instance ’cl-vector :cl-array (make-array nr :initial-contents
(mapcar #’make-memory-location initial-content)))

(make-instance ’cl-vector :cl-array (let ((new-array (make-array nr)))
(dotimes (i nr)

(setf (aref new-array i) (make-memory-location)))
new-array))))

Next, we override cl-vector-ref and cl-vector-set to operate on the
explicit memory locations:
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(defmethod cl-vector-ref :around ((cl-vector cl-vector) nr)
(let ((memory-location (aref (cl-array cl-vector) nr)))

(registered-read memory-location)))

(defmethod cl-vector-set :around ((cl-vector cl-vector) nr val)
(let ((memory-location (aref (cl-array cl-vector) nr)))

(registered-write memory-location val)))

4.2.1 Cons cells and other data structures

Cons cells are essentially vectors of fixed length two, so they are implemented
in a similar fashion as cl-vector, namely by providing a Common Lisp class
for wrapping Common Lisp cons cells and providing corresponding methods for
the respective operations on pairs. Similarly to what we did for vectors and
variables, memory locations are introduced into the cons cell implementation, so
that cons cell accesses can be advised to implement STM. Other data structures,
like classes, can be supported in a similar fashion as extensions of the interpreter,
or can be built on top of vectors and closures as user code in Scheme itself.

5 Plugging in STM implementations

5.1 Implementing a direct-update STM

Our first example STM is based on 2-phase locking with optimistic reads (as for
example used in BSTM [Harris et al. 06]). When a transaction reads a memory
location, the transaction takes a note of this. For writing a memory location,
a transaction needs to acquire an exclusive lock. On acquiring the lock, the
transaction first records a copy of the memory location’s content and only then
updates its content with the new value. The lock is released when the transac-
tion successfully finishes. The STM checks for data races at well-defined times.
Write-after-read conflicts are checked on reading a memory location by verifying
that no other transaction has a lock on it. Additionally, when a transaction fin-
ishes, the STM checks for read-after-write conflicts by checking that none of the
memory locations read by the transaction were updated afterwards. When there
are no conflicts, the transaction finishes (commits) and releases all of its locks.
Conversely, when a conflict is detected, the transaction rolls back, undoes any
of the writes it performed, releases its locks and restarts. Write-after-write data
races are avoided as transactions have to acquire an exclusive lock for writing a
memory location, and these locks are only released when a transaction commits.

5.1.1 Memory location and transaction extensions

From the description above we derive the following extensions to our interpreter.
We extend memory locations with a version for making it possible to check on
commit whether a read memory location was updated by comparing its current
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version with the version on read. A memory location’s version consists of a
counter and a reference to the transaction that performed the last write.
(defclass versioned-memory-location (memory-location)

((lock :initform (mp:make-lock) :accessor memory-location-lock)
(version :initform (make-instance ’version) :accessor memory-location-version)))

The code listed above shows the implementation of the class named
versioned-memory-location that extends memory-location with slots for
holding a lock and a version. The slots are initialized with default val-
ues, respectively a new lock and version object. The function mp:make-lock

for creating a lock comes from the LispWorks MP package. The accessor
memory-location-value for accessing a memory location’s content remains un-
changed. The constructor make-memory-location is overridden to create an
instance of the class versioned-memory-location:
(defmethod make-memory-location :around (&optional value)

(make-instance ’versioned-memory-location :value value))

We also extend transactions with a read and a write set. The sets are modeled
as property lists, mapping each accessed memory location object onto a version
object (in case of the read set) or a copy of the memory location’s previous
content (in case of the write set). Acessors get-read-set and get-write-set

are defined for accessing the read or write set of a transaction.

5.1.2 Advising access of memory locations

In this STM, registered-read and registered-write are implemented as fol-
lows. registered-read makes a copy of the memory location’s current version
and, together with the memory location, pushes it onto the transaction’s read
set. Subsequently, it calls locked-by-other-thread-p to check if another thread
holds a lock on the memory location: If so, there is a potential write-after-read
data race, and the transaction is rolled back. Otherwise, the memory location’s
content is returned.
(defmethod registered-read ((mem-loc versioned-memory-location))

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(when transaction
(setf (get-read-set transaction)

(list* mem-loc (duplicate (memory-location-version mem-loc))
(get-read-set transaction)))

(when (locked-by-other-thread-p mem-loc)
(roll-back)))

(memory-location-value mem-loc)))

registered-write calls obtain-lock for getting an exclusive lock on the
memory location. Subsequently, it pushes the memory location and its current
content on the transaction’s write set. The latter is a sufficient “copy” since we
register all memory writes by default. The next two expressions are responsible
for increasing the version number and updating the “process-that-did-the-last-
write.” Subsequently the memory location’s content is replaced by the new value.
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(defmethod registered-write ((mem-loc versioned-memory-location) value)
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(if transaction
(obtain-lock mem-loc

(lambda ()
(setf (get-write-set transaction)

(list* mem-loc (memory-location-value mem-loc)
(get-write-set transaction)))

(setf (process-that-did-last-write (memory-location-version mem-loc))
transaction)

(incf (version-nr (memory-location-version mem-loc)))
(setf (memory-location-value mem-loc) value)))

(setf (memory-location-value mem-loc) value))))

We also show the code for obtain-lock below, which tries to acquire the lock
(via a call to mp:process-lock), but if that fails – because another transaction
has the lock and waiting to get it takes too long – the transaction rolls back.
roll-back removes the current transaction from the current process, undoes the
writes it performed, releases its locks, removes the recorded read and write sets,
and finally, the transaction is restarted (call-next-method).

(defmethod obtain-lock ((mem-loc memory-location) cont)
(let* ((lock (memory-location-lock mem-loc))

(lock-is-mine (mp:process-lock lock :timeout 3)))
(if lock-is-mine (funcall cont) (roll-back))))

(defmethod roll-back :around ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(undo-writes-from-process transaction)
(release-locks transaction)
(call-next-method)))

The code for committing a transaction is shown below. It calls verify-reads
to check for data races. Recall that the read set of a transaction is modeled as a
property list: For each pair in that list, consisting of a memory location object
and its version at the time it was read, we check if the current version of the
memory location object is different from the old. If so, there is a data race and
the commit fails.

(defmethod commit :around (result)
(if (verify-reads)

(progn
(release-locks)
(call-next-method))

(roll-back)))

(defmethod verify-reads ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(loop for (memory-location version-on-read) on (get-read-set transaction) by #’cddr
when (version-changed-p memory-location version-on-read) return nil
finally (return T))))

This concludes the implementation of the STM algorithm based on 2-phase
locking. Note that the implementation is purely an extension of our memory
location and transaction abstractions: No other parts of the interpreter need to
be changed to plug in the STM.
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5.2 Implementing a deferred-update STM

The second example we implement is the DSTM system by Herlihy et
al. [Herlihy et al. 03]. It is a lock-free, deferred-update STM that implements
a nonblocking synchronization strategy. In DSTM, a memory location does not
store one content, but two. It also stores a reference to the transaction that did
the last write of the memory location. Depending on the status of that trans-
action – “active,” “aborted” or “committed” – one content takes the role of
the memory location’s content before the last write (the “old” content) and the
other plays the role of its current content (the “new” content).

When a transaction reads a memory location, DSTM checks the status of
the transaction that performed the last write. If its status is “aborted,” then the
memory location’s “old” content is returned. Otherwise, if the status is “com-
mitted,” then the “new” value is returned. In both cases, the read is successful
and recorded in the transaction’s read set. Finally, when the status is “active,”
the memory location is in use by another transaction, and a conflict resolution
is started to see if that transaction can keep using it or hands it over.

Similarly, for writing a memory location, DSTM checks the status of the
transaction that performed the last write. Again, when the status is “active,”
the transactions negotiate for “ownership” of the memory location. Otherwise,
when the status of the transaction that performed the last write is “committed”
(or “aborted”), a new memory location object is created, with as “old” content
a copy of the old memory location’s “new” (or “old”) content and as “new”
content the write value. Additionally, the “transaction that did the last update”
of the new memory location object is set to the transaction performing the write.
Then, using a compare-and-swap operation, the old memory location object is
atomically replaced by the newly created one.2

There are two places where DSTM checks for data races. On reading a mem-
ory location, DSTM checks for write-after-read data races by checking that the
status of the transaction that did the last write is not “active.” Otherwise, that
transaction wrote a value the other transaction still had to read. On committing
a transaction, DSTM checks for read-after-write data races by going through
the transaction’s read set and checking if any of the read memory locations was
updated by another transaction in between. If so, the transaction aborts, setting
its status to “abort.” However, it is not necessary to undo any of the writes
the aborted transaction performed, as the written memory locations still have a
copy of the “old” content, and because the transaction’s status is set to “abort,”
future accesses will return this “old” content. Write-after-write data races are
avoided by DSTM, since a transaction can only obtain write access when no
2 compare-and-swap is a known hardware primitive that atomically compares the con-

tent of a memory location to a value, and if they are the same, changes the content
of the memory location to a new, given value.
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other transaction is actively using the memory location, and the write access is
only given up when the transaction’s status changes to “commit” or “abort.”

5.2.1 Memory location and transaction extensions

Given the above description, we need to extend memory location objects and
transactions as follows. We create a new class dstm-memory-location for repre-
senting DSTM memory locations. We do not add new slots, but the idea is that
a memory location’s content is an instance of the class content-unit, as shown
in the code below (see the initialization of the slot memory-location-value

in make-memory-location). The class content-unit is a container for holding
the version, the “old” content and the “new” content of a memory location.
For convenience, we define methods version, memory-location-new-content
and memory-location-old-content for accessing the the latter three objects
directly from a memory location object (not shown).

(defmethod make-memory-location :around (&optional value)
(make-instance
’dstm-memory-location
:memory-location-value (make-instance ’content-unit :new-value value)))

(defclass content-unit ()
((version :initarg :version :initform (make-instance ’version) :accessor version)
(new-content :initarg :new-content :initform nil :accessor new-content)
(old-content :initarg :old-content :initform nil :accessor old-content)))

The memory-location-value reader is overridden as shown below. It dis-
patches on the status of the transaction that performed the last write: If the
status is “committed,” the transaction returns the “new” content. In case it is
“aborted,” it returns the “old content.” Otherwise, when the transaction that
performed the last write is still active, the current transaction negotiates with
that transaction to obtain access to the memory location. In our current imple-
mentation, the negotiation strategy is to simply wait, but any other strategy can
be implemented here. Also note that in case there is no transaction that per-
formed the last write – when a variable was only initialized, but never written
– then memory-location-value also returns the “new” content of the memory
location, which is set when defining a variable.

(defmethod memory-location-value ((mem-loc dstm-memory-location))
(let ((last-writer (process-that-did-last-write (version mem-loc))))

(cond ((or (null last-writer) (committed-p last-writer))
(memory-location-new-content mem-loc))

((aborted-p last-writer)
(memory-location-old-content mem-loc))

(t (negotiate-for mem-loc last-writer)))))

We extend transactions with a read set and a status flag. A transaction can
be in three states: When a transaction starts, its status is set to “active,” on
roll back it is set to “aborted” and on commit to “committed.” The predicates
aborted-p, committed-p and active-p are defined for querying the status of
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a transaction. Additionally, methods are defined for switching the status of a
transaction (change-status-to-aborted, change-status-to-committed and
change-status-to-active).

5.2.2 Advising access of memory locations

For DSTM, registered-read and registered-write are implemented as fol-
lows. The code for registered-read is quite straightforward: It makes an entry
in the current transaction’s read set, checks for (read after write) data races
and if that succeeds, it returns the memory location’s content, otherwise the
transaction is rolled back:

(defmethod registered-read ((mem-loc dstm-memory-location))
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(when transaction
(setf (get-read-set transaction)

(list* mem-loc (duplicate (version mem-loc))
(get-read-set transaction)))

(if (verify-reads) (memory-location-value mem-loc)
(roll-back)))

(memory-location-value mem-loc)))

The implementation of registered-write is a bit more tricky due the use
of the mp:compare-and-swap operation.3 We first get hold of the memory lo-
cation’s content unit (see content-unit-before-write) and we create a new
content unit by calling make-new-content-unit-from. Subsequently, we try to
replace the memory location’s content with new-content-unit through the call
to mp:compare-and-swap. For this, the latter fetches again what is in the slot
memory-location-value of the memory location object and compares it to the
previously fetched content-unit-before-write. When the compare-and-swap
fails, because these two do not point to the same object anymore, we know
that in between time, the memory location’s content was updated by another
transaction. To resolve this, the current transaction is rolled back and restarted.

(defmethod registered-write ((mem-loc dstm-memory-location) new-val)
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(if transaction
(let ((content-unit-before-write (slot-value mem-loc ’memory-location-value))

(new-content-unit
(make-new-content-unit-from content-unit-before-write new-val transaction)))

(unless (mp:compare-and-swap (slot-value mem-loc ’memory-location-value)
content-unit-before-write new-content-unit)

(roll-back)))
(setf (memory-location-value mem-loc) new-val))))

On committing a transaction, we verify if the transaction is involved in a read-
after-write conflict: See the call to verify-reads in the code below. If there is
no conflict, the transaction’s status is changed to “committed”, otherwise the
the transaction is rolled back.
3 mp:compare-and-swap is introduced in LispWorks 6.0, which is not yet publicly avail-

able, but accessible to us for testing. An alternative implementation is to use a lock.
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(defmethod commit :around (result)
(if (verify-reads)

(let ((transaction (peek-transactional-mode mp:*current-process*)))
(change-status-to-committed transaction)
(call-next-method))

(roll-back)))

Rolling back a transaction in DSTM is quite cheap: We just change its status
to “aborted.” Then the transaction can safely restart. There is no need to roll
back any of the side effects it performed, since memory locations store a copy
of the content before the transaction performed any update, and that copy will
from then on be accessed by other transactions.

(defun roll-back :around ()
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(change-status-to-aborted transaction)
(call-next-method)))

That’s it for the implementation of the DSTM algorithm. We stress again
that the implementation is purely an extension of our memory location and
transaction abstractions, and that there is no other parts of the interpreter that
needs to be changed to plug in the STM.

5.3 Implementing a multiversion STM

The last example STM we discuss is a deferred-update STM based on multi-
version concurrency control [Bernstein and Goodman 83], as for example used
in the Clojure programming language [Volkmann 09]. In a multiversion STM,
each memory location keeps track of its content history. For reading a memory
location, a transaction looks up what the content was at the time the transaction
was started. This way transactions that need to read a memory location that
was already updated by a newer transaction, can still proceed correctly.

A memory location’s access history consists of two parts: a read history and
a write history. The read history is a list of transactions that read the memory
location. The write history stores for every write on the memory location a pair
that maps the writer transaction onto the new content. For reading a memory
location, a transaction can query the write history for the content at the time
the transaction was started. Note that a transaction does not directly operate
on the access history of a memory location, rather it logs its accesses in a local
history, which on commit is merged with the memory location’s access history.
Because of this, rolling back a transaction is a cheap operation.

Data races are either avoided, or handled at commit time. Write-after-read
data races are avoided: A transaction that needs to read a memory location that
was already written by a newer transaction, just looks up the old content in
the memory location’s write history. Write-after-write data races are checked on
committing a transaction. If the transaction is trying to write a memory location
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that was already written by a newer transaction, then the commit fails and the
transaction is rolled back. Similarly, read-after-write data races are handled on
commit. There are two cases. Firstly, a transaction that read a memory location
that was afterwards written by an earlier transaction, is rolled back. Secondly,
a transaction that writes a memory location which was already read by a newer
transaction, is also rolled back. Since it then gets a new timestamp, it then
has a chance to run to a successful commit, cf. definitions of eval-atomic and
roll-back in Section 3.1.

One drawback of multiversion STM is the memory overhead associated with
storing the history of a memory location’s content. Any realistic multiversion
STM needs to implement some kind of garbage collection for keeping the access
histories small. On the other hand, according to [Bernstein and Goodman 83],
there should be less transaction rollbacks than in other transaction algorithms.

5.3.1 Memory location and transaction extensions

From the above description of multiversion STM, we derive the following ex-
tensions to our interpreter. We extend memory locations with a write and read
history for recording the memory location’s accesses. The read history is just a
list of transaction timestamps, ordered in descending order. The write history is
a list of pairs that each map a timestamp onto a value.

(defclass multiversion-memory-location (memory-location)
((lock :initform (mp:make-lock) :accessor lock)
(write-history :initform ’() :accessor write-history)
(read-history :initform ’() :accessor read-history)))

The code above shows the implementation of multiversion-memory-location,
a class that extends memory-location with slots for holding the write and read
history. Also note the slot lock, which we add for implementing atomic access
of a memory location object. We specialize the accessors to operate on the write
history:

(defmethod memory-location-value ((mem-loc multiversion-memory-location))
(cl:cdr (cl:first (write-history mem-loc))))

(defmethod (setf memory-location-value) (value (mem-loc multiversion-memory-location))
(push (cons 0 value) (write-history mem-loc)))

The “current” content of a memory location is the latest entry in the write
history, as returned by memory-location-value. To update the content of the
memory location, we add an entry to the write history. Note that we choose
“0” as a timestamp for this entry, but this is just a stub value, as (setf

memory-location-value) is only called when it is not important if the write
happens transactionally. In addition to specializing the memory location acces-
sors, we must also override the constructor make-memory-location so that it
creates an instance of the class multiversion-memory-location.
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We additionally extend transactions with a timestamp, a list of read memory
locations and a list of written memory locations. The code below shows the im-
plementation of the new transaction class named multiversion-transaction.

(defclass multiversion-transaction (stm-transaction)
((timestamp :initform (generate-timestamp) :accessor timestamp)
(locks :initform ’() :accessor locks)
(read-memory-loactions :initform ’() :accessor read-memory-locations)
(written-memory-locations :initform ’() :accessor written-memory-locations)))

The timestamp is unique for each transaction and defines an ordering rela-
tion between transactions. It is basically implemented with a counter. The slot
read-memory-locations holds a list where each entry maps a memory loca-
tion object object onto the length of the memory location’s write history at
the time the entry is created. Similarly, written-memory-locations represents
a list where each entry consists of a memory location, a value and the length
of the memory location’s write history at the time the entry is created. As we
explain in the next section, the latter is used for checking on commit if a writ-
ten memory location was updated by another transaction. Note the slot locks:
Its purpose is to hold a list of memory location locks so that commit can be
implemented as an atomic operation.

5.3.2 Advising access of memory locations

In our implementation of multiversion STM, the methods register-read and
registered-write are implemented as follows. registered-read first registers
the read access with the transaction (push). Then it tries to find the content to
return. It first checks if the transaction already wrote the memory location by
trying to look up its value in the transaction’s list of written memory locations
(find-if). If this is the case, then the locally stored value is returned. Otherwise,
the correct content to read is looked up in the memory location’s write history
(history-lookup). The function history-lookup takes the memory location’s
write history and the transaction’s timestamp as arguments. It returns the entry
with the largest timstamp that is smaller than or equal to the given timestamp.
Note that all of this code is wrapped in a mp:with-lock call, which grabs the
lock of the memory location being read. This is necessary to protect against
data races from concurrent accesses to the write history of a memory location
(in push and history-lookup).
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(defmethod registered-read ((mem-loc multiversion-memory-location))
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(if transaction
(mp:with-lock ((lock mem-loc))

(push (cons mem-loc (length (write-history mem-loc)))
(read-memory-locations transaction))

(let ((write-entry (find-if (lambda (entry) (eql (car entry) mem-loc))
(written-memory-locations transaction))))

(if write-entry
(cadr write-entry)

(cdr (history-lookup (write-history mem-loc) (timestamp transaction))))))
(memory-location-value mem-loc))))

The code for registered-write is listed below. It just adds an entry to the
transaction’s list of written memory locations (push), and therefore also needs
to lock the memory location.

(defmethod registered-write ((mem-loc multiversion-memory-location) value)
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(if transaction
(mp:with-lock ((lock mem-loc))

(push (list mem-loc value (cl:length (write-history mem-loc)))
(written-memory-locations transaction)))

(setf (memory-location-value mem-loc) value))))

The code for committing a transaction is listed below. It calls verify-reads
and verify-writes which check if the transaction we are trying to commit
causes a data race. If the transaction does not cause any data races, the transac-
tion’s writes are made global (commit-updates) and the transaction is finalized
(call-next-method). commit-updates merges the transaction’s list of read and
written memory locations with the respective memory locations’ access histories.

(defmethod commit :around (result)
(let ((transaction (peek-transactional-mode mp:*current-process*)))

(cond ((and (verify-reads transaction) (verify-writes transaction))
(commit-updates transaction)
(release-locks transaction)
(call-next-method))

(t
(release-locks transaction)
(roll-back)))))

Note the calls to release-locks. Committing a transaction must happen atom-
ically, and, as we next discuss, verify-reads and verify-writes take locks on
the memory locations accessed by the transaction: release-locks is there to
free those locks again.

The code for checking whether the writes of a transaction cause any data races
is shown below. verify-writes goes through a transaction’s list of written mem-
ory locations. For each memory location, it grabs its lock (mp:process-lock).
Then it performs two checks. First, it checks whether the memory location was
updated by a transaction that started later (later-transaction-updated-p).
If this is the case, as we discussed in our introduction on multiversion STM, this
may cause a write-after-write data race. In that case, verify-writes yields false
and causes a rollback in commit. The second check in verify-writes verifies if
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any newer transaction read the memory location. This may cause a read-after-
write data race and consequently verify-writes fails.
(defmethod verify-writes ((transaction multiversion-transaction))

(loop for entry in (written-memory-locations transaction)
do (mp:process-lock (lock (car entry)))
(push (lock (car entry)) (locks transaction))
when (later-transaction-updated-p (car entry) transaction (caddr entry))
return nil
when (later-transaction-read-p (car entry) transaction (caddr entry))
return nil
finally (return T)))

The code for later-transaction-updated-p works as follows. The method
goes through the entries of the write history of the memory location to check if
there is one with a timestamp that is smaller than the transaction’s. It doesn’t
go through the entire write list. It only checks the write list up until the en-
tries that were already in the memory location’s write list when the transaction
tried to write it. The code for later-transaction-read-p is very similar to
later-transaction-updated-p and is omitted here for the sake of conciseness.
(defmethod later-transaction-updated-p ((mem-loc multiversion-memory-location)

(transaction multiversion-transaction)
nr-of-writes-at-access)

(let ((bad-update nil))
(do ((ctr (- (cl:length (write-history mem-loc)) 1) (- ctr 1))

(updates-to-check (write-history mem-loc) (rest updates-to-check)))
((or (= ctr (- nr-of-writes-at-access 1))

bad-update) bad-update)
(setf bad-update (< (timestamp (first updates-to-check) (timestamp transaction)))))))

For completeness, the code for verify-reads is listed below. It has the same
structure as verify-writes. Finally, the implementation for roll-back is un-
changed from the default: It just restarts the current transaction. No writes need
to be undone: Before commit, these are only visible to the transaction itself.
(defmethod verify-reads ((transaction multiversion-transaction))

(loop for entry in (read-memory-locations transaction)
do (mp:process-lock (lock (car entry)))
(push (lock (car entry)) (locks transaction))
when (earlier-transaction-updated-p (car entry) transaction (cdr entry))
return nil
finally (return T)))

This concludes our implementation of multiversion STM. Again, we stress
that the implementation is purely an extension of our memory location and
transaction abstractions. There are no other parts of the interpreter that need
to be changed to plug in the STM. Also note that we added the multiversion
STM later, after our original paper at ELS 2009, and that no changes were
necessary to the memory location and transaction abstractions.

6 Discussion and Related Work

The implementation of the STMs we just discussed shows that it is indeed pos-
sible to use our memory location model for implementing STMs as plugins. We
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now address our original claim, that it is much harder to implement STM as part
of a language that doesn’t provide reflective access to explicit memory locations.

Assume we try to implement STM on top of plain Common Lisp. Common
Lisp provides some predefined data structures, like variables, cons cells, vectors,
and arrays, and ways of defining new user-defined data structures using defstruct,
defclass and define-condition. This means that the number of potential datatypes
in Common Lisp is open-ended, which is true for most general-purpose languages.

It is possible to implement STM algorithms for Common Lisp by deciding
to support one or more specific kinds of datastructures, for example by using
custom slot accessors in the CLOS MOP [Ton-That 07, Costanza et al. 09], or
by shadowing accessors for cons cells. However, because of the open-endedness
of Common Lisp, such STM libraries cannot provide complete coverage of all
possible data structures.

This is also true for DSTM2, which is the only other framework with sup-
port for implementing STM algorithms we are aware of [Herlihy et al. 06]. Their
approach is implemented as a library for Java that takes advantage of Java’s
reflection capabalities and its class loader architecture to create new classes at
runtime for speciallly annotated Java interface definitions. These new classes
contain pairs of getter and setter methods with additional behavior as required
by the various STM algorithms, much like the adaptations of accesses to mem-
ory locations that we described above. New STM algorithms can be plugged in
that provide templates for new such getter and setter methods. However, such
STM algorithms can only operate on instance variables of Java classes, but not,
for example, on class variables or array entries. This restriction is due to the
fact that Java does not provide reflective access to its internal representation of
memory locations.

Our interpreter framework provides a single abstraction for memory loca-
tions, and guarantees that all memory accesses always go through a handful of
well-defined accessor methods. So it is sufficient to override these accessor meth-
ods once to plug in new STM algorithms, without having to do this for each and
every kind of data structure over and over again.

A current drawback of our approach is that it doesn’t pay a lot of attention
to efficiency concerns: It introduces overhead because of the wrapping of internal
representations of data structures and because each memory access goes through
a generic function call. This is due to the fact that we focused on illustrating
the essential idea of explicit memory locations as our primary first goal. It has
been shown in the past that reflective architectures like the one presented in this
paper can indeed be implemented efficiently [Kiczales et al. 91], but it remains
to be shown to what extent we can do this for our approach as well.

As a first step, we have already taken the approach described in this paper
and reimplemented it on top of ContextL [Costanza et al. 09]. ContextL is an
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extension of CLOS that provides support for expressing behavioral variations
of programs in terms of layers that can be activated and deactivated with dy-
namic scope. The idea to implement the approach in ContextL is based on two
observations: One is that the interpreter framework presented in this paper is
already a layered design, consisting of the interpreter of the core language in
one layer, the introduction of explicit memory locations in a second layer, and
one or more STM algorithms in a third layer. Each of these layers extends the
functionality of the respective layer below by extending well-defined hooks in
the architecture of the overall framework. The extensions can be understood as
concerns that cut across various operationally distinct events in a program, i.e.,
read and write accesses, entering and leaving atomic blocks, and commits and
rollbacks. Therefore, ContextL’s layers provide a good mechanism to modularize
these crosscutting concerns.

The second observation is that the behavior of slot accesses depends indeed
on context: Slot accesses inside transactions behave differently from slot accesses
outside of transactions. In the interpreter framework described in this paper, this
distinction is described by way of if statements, but in [Costanza et al. 09], we
show how layer activation and deactivation at transaction boundaries can be
used instead to switch between these different slot access semantics. Further-
more, the distinction between registered and non-registered slot accesses can
also be expressed in terms of behavioral variations that can be selected by way
of ContextL’s layer activation and deactivation.

The integration of our STM framework in ContextL has the already described
disadvantage of being able to treat only CLOS/ContextL slots transactionally,
but not other kinds of memory locations. On the other hand, CLOS can be im-
plemented efficiently [Kiczales et al. 91], and ContextL uses efficient implemen-
tation techniques for context-dependent method dispatch and layer activations
[Costanza and Hirschfeld 07]. We have already implemented the Delaunay Mesh
Refinement algorithm from the Lonestar test suite [Kulkarni et al. 09] in this
ContextL-based realization of our approach, and this benchmark already con-
firms previous reports about the improved performance of direct-update over
deferred-update algorithms for STM [Herlihy et al. 03], among other things. See
[Costanza et al. 09] for more details. We plan to use this implementation as a
basis for further investigations of the relative performance of our approach.

7 Conclusions and Future Work

In this paper we have shown that if a language implementation provides reflec-
tive access to explicit memory locations, it becomes straightforward to imple-
ment both (a) a framework for software transactional memory, and (b) different
STM algorithms using this framework. We have presented a proof-of-concept
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implementation in the form of a Scheme interpreter with such explicit memory
locations and subsequently implemented two deferred-update and one direct-
update STM algorithm in terms of the memory location abstraction to back our
claims. The fact that we expressed three very different STM algorithms in our
framework, confirms that our approach is stable enough for a wide range of STM
algorithms.

For future work we intend to investigate efficient implementation techniques,
by removing overhead that is caused (a) by unnecessary wrappers in the in-
ternal representation of basic data types and (b) by unnecessary generic func-
tion calls for accessing memory locations that are never accessed by more than
one thread. We also plan to implement more standard benchmarks for STMs
[Cao Minh et al. 08, Kulkarni et al. 09]. Even without a more efficient imple-
mentation, we can already gain interesting insights from them, by counting the
number of unnecessary rollbacks under different STM algorithms and under dif-
ferent, simulated access patterns in competing threads.
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A Overview of the STM framework

commit Generic Function
Syntax:
commit result
Arguments and Values:
The result argument can be any Lisp value implementing a
Scheme object; it is the result for an atomic expression.
Purpose:
This method is called to finalize execution of an atomic expres-
sion. By default, it just removes the transactional state from the
currently active process (by calling pop-transactional-mode)
and continues computation. This method needs to be overrid-
den to plug in an STM algorithm, for example, to release the
locks held by a transaction.
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make-memory-location Generic Function
Syntax:
make-memory-location &optional value
Arguments and Values:
The method returns a new memory-location object where
the optional argument value specifies the initial content.
Purpose:
This method is a constructor for making memory location ob-
jects. By default, it makes an instance of the class memory-
location for which it fills in the content slot. The method
must be specialized for subclasses of memory-location.
make-transaction Generic Function
Syntax:
make-transaction exp env cont
Arguments and Values:
The argument exp is the atomic expression whose evaluation
triggers transactional execution. The argument env is the en-
vironment in which the atomic expression is evaluated. The
argument cont is the continuation of the atomic expression, i.e.
the computation that comes after evaluation of the atomic ex-
pression. It returns a transaction object that saves this state.
Purpose:
This method is a constructor for making transaction objects. By
default, it makes an instance of the class transaction and fills
in the exp, env and cont slots. The method must be specialized
for subclasses of transaction.
memory-location Class
Slots:
This class has one slot content. Accessors are registered-
read, registered-write, memory-location-value and (setf
memory-location-value).
Purpose:
This class is there to represent memory locations as explict
objects. It is subclassed by any STM algorithm that needs
to store additional information about memory locations beside
their content.
memory-location-value Generic Function
Syntax:
memory-location-value memory-location
Arguments and Values:
The method returns the content of a memory location object.
Purpose:
This method is a getter method for reading the content of a
memory location object. This method is called whenever it
is important that the access is not registered by the STM
algorithm. This method can be specialized for subclasses of
memory-location.
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(setf memory-location-value) Generic Function
Syntax:
(setf make-memory-location) value memory-location
Arguments and Values:
The method sets the content slot of a give memory-location
object to value. memory-location is an instance of memory-
location; value can be any Lisp value implementing a Scheme
object.
Purpose:
This method is a setter for the content of a memory location
object. This method is used whenever it is important that the
access is not registered by the STM algorithm. Specialize this
method for subclasses of memory-location.
peek-transactional-mode Generic Function
Syntax:
peek-transactional-mode process
Arguments and Values:
The process argument is a LispWorks process object. Typically,
this will be mp:*current-process*. This method returns the
top of the process’ transaction stack.
Purpose:
This method is called to get hold of the transactional state
that is currently active for a process. It does not need to be
specialized to implement an STM algorithm.
pop-transactional-mode Generic Function
Syntax:
pop-transactional-mode process
Arguments and Values:
The process argument is a LispWorks process object. Usually,
this will be mp:*current-process*. This method removes and
returns the top of the process’ transaction stack.
Purpose:
This method is called to get hold of the transactional state that
is currently active for a process. It also removes that trans-
actional state from the process. It does not need need to be
specialized to implement an STM algorithm.
push-transactional-mode Generic Function
Syntax:
push-transactional-mode process transaction
Arguments and Values:
The process argument is a LispWorks process object. The trans-
action argument is an instance of class transaction.
This method puts transaction on the top of the process’ trans-
action stack.
Purpose:
This method is called when the interpreter is evaluating an
atomic expression. It puts a transaction object onto the process’
transaction stack. It does not need need to be specialized to
implement an STM algorithm.
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registered-write Generic Function
Syntax:
registered-write memory-location value
Arguments and Values:
The method updates the content slot of a memory-location
object with value, which can be any Lisp value that implements
a Scheme object.
Purpose:
This method is a setter method for updating the content of the
memory location object. This method is called for accesses that
are registered by the STM algorithm, and can be specialized for
subclasses of memory-location.
registered-read Generic Function
Syntax:
registered-read memory-location
Arguments and Values:
memory-location is an instance of class memory-location.
Purpose:
This method is a getter method for reading the content of the
memory location object. This method is called for accesses that
are registered by the STM algorithm, and can be specialized for
subclasses of memory-location.
roll-back Generic Function
Syntax:
roll-back
Arguments and Values:
n/a
Purpose:
This method is called to restart a transaction. By default, it re-
moves the transactional state from the currently active process
(by calling pop-transactional-mode) and restarts evaluation
with the atomic expression, environment and continuation state
stored in the discarded transaction. This method needs special-
ization for specific STM implementations, for example to undo
any changes made by a transaction.
transaction Class
Slots:
This class has a slot thread, for storing a reference to the
LispWorks process that is executing transactionally. There is
also a slot exp for storing the atomic expression that triggers
transactional evaluation, and a slot env and cont for storing
the environment and continuation for evaluating the atomic ex-
pression.
Purpose:
This class is there to represent transactional state. Its slots store
the state that is necessary to restart execution of an atomic
expression. It must be subclassed to implement STM-specific
transactions.
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