
Execution Model and Authoring Middleware Enabling

Dynamic Adaptation in Educational Scenarios Scripted

with PoEML

Roberto Perez-Rodriguez, Manuel Caeiro-Rodriguez
Luis Anido-Rifon, Martin Llamas-Nistal

(Telematics Engineering Department, University of Vigo, Spain
roberto.perez.rodriguez@gmail.com, mcaeiro@det.uvigo.es

lanido@det.uvigo.es, martin@det.uvigo.es)

Abstract: The design of adaptive e-learning systems has been approached from differ-
ent points of view. Adaptive Educational Hypermedia (AEH) conceptual frameworks,
usually decompose this problem into separate concerns: a User Model (UM), an Adap-
tation Model (AM), and a Domain Model (DM). Regarding Educational Modelling
Languages (EMLs), they provide adaptation mechanisms such as the modelling of
participants following conditional learning paths over a common content structure. The
design of adaptive learning paths in EMLs (the Adaptation Model) is predefined during
design-time, and no changes on it are allowed during run-time. In this paper we describe
the support of dynamic adaptation features (run-time changes on models) using PoEML
(Perspective-oriented EML) as modelling language, with focus on the execution model
of the PoEML engine and on a SOA-based middleware used by authoring tools to
invoke change primitives.
Key Words: Adaptive Learning Systems, Dynamic Adaptation, Educational Mod-
elling Languages
Category: M.5

1 Introduction

Adaptation in web-based e-learning systems is being subject to intensive research
nowadays. Many approaches to adaptation can be found out in the literature.
Some of the approaches to the development of adaptive e-learning systems are
implementation-oriented, that is, there is no high-level formalism to describe the
behaviour of such systems. The other face of the coin is the model-oriented ap-
proach, which aims at capturing the requirements of the system in a model, being
possible to develop several final systems compliant to the same model. Model-
oriented approaches come principally from Adaptive Educational Hypermedia
(AEH) and Educational Modelling Languages (EMLs) research fields [Hendrix
et al. 2009].

In the AEH field, some works follow a separation-of-concerns approach and
decompose the problem into layered models: a Domain Model (DM), an Adap-
tation Model (AM) and a User Model (UM)1. Regarding EMLs in general, and
1 The LAOS framework [Cristea and de Mooij 2003] proposes a Goal and Constraints

Model (GM) between the DM and the AM, in order to orientate the initial material.

Journal of Universal Computer Science, vol. 16, no. 19 (2010), 2821-2840
submitted: 1/3/10, accepted: 29/9/10, appeared: 1/10/10 © J.UCS

IMS-LD [IMS 2003] in particular, they enable the modelling of Units of Learning
(UoL) in accordance with many different pedagogical approaches, thus easing the
reuse of such models [Koper 2002]. Differently from models that pivot around
contents, an EML not only manages contents, but also activities to perform, in-
volved roles, environments and available tools, the order in which activities have
to be performed, etc. The modelling language PoEML2 (Perspective-oriented Ed-
ucational Modelling Language) [Caeiro-Rodriguez 2007][Caeiro-Rodriguez et al.
2007] is positioned in this conceptual field, and it constitutes the foundation for
this work.

In many approaches to adaptation in e-learning accordingly to AEH or EMLs,
models cannot be updated/modified in run-time. We term this approach as
static adaptation, because they are based on preprocessing models to adapt
them to users. The other approach is the dynamic one, by which some parts of the
model may be updated/changed at run-time. We term this approach dynamic
adaptation, classifying it in two levels, in function of the parts of the model
that can be changed/updated in run-time:

– Level A. In this level, only user models allow run-time changes. The execution
of the other models can vary in accordance with changes in the user model,
but those models are not modified at all.

– Level B. In this level, it is allowed to change/update in run-time any part of
the model, not just the user model. For example: the parts of the model that
deal with the definition of activities to perform, order between activities, etc.

The support of this dynamic adaptive behaviour imposes several requirements3

on the execution model of EML engines. Several research groups and inter-
national initiatives like the workshop on adaptation in CSCL’09 [Stahl and
Kirschner 2009] have addressed this problem. However, suitable EML-based
solutions to this problem have not been hitherto developed.

This paper introduces a solution to support dynamic adaptation in EML
educational scenarios that also involves authoring functionality. In the one hand,
we define an execution model flexible enough to enable run-time changes on
the different perspectives of PoEML models. In the other hand, we present a
SOA-based architecture whose central component is a PoEML execution engine
developed in accordance with the PoEML execution model and that includes a
run-time authoring interface based on change primitives.
2 PoEML divides the modelling of adaptive courses into different perspectives following

a separation-of-concerns approach.
3 Constraints involve traceability (to conditionally select constructs from a running

model) and on-the-fly reconfiguration of the model.

2822 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

2 Related Work

Adaptive e-learning environments are the subject of some research projects,
such as GRAPPLE [Hendrix et al. 2008], SALTIS4 , and SUMA5. The design of
adaptive e-learning environments has been approached from different research
fields, mainly AEH (Adaptive Educational Hypermedia) and EMLs. We made
an extensive literature review of existing proposals, classifying them as static
adaptation or dynamic adaptation, and among the dynamic type we have checked
at what extent it is allowed to modify the design at run-time, for example, if it
is possible to make structural changes or only to change the value of some basic
parameters.

LAOS [Cristea and de Mooij 2003] follows a separation-of-concerns approach
to the design of AEH by dividing an integrated model into a Domain Model
(DM), a Goals and Constraints Model (GM), a User Model (UM), an Adaptation
Model (AM), and a Presentation Model (PM). The DM follows a hierarchical
paradigm and the GM imposes completion dependencies and constraints between
goals. This allows making explicit that information which otherwise would be
implicit in the Adaptation Model and hidden in adaptation rules [Cristea and
de Mooij 2003]. The AM is implemented by the LAG grammar [Cristea and
Kinshuk 2003], which allows defining adaptive behaviour using a high-level lan-
guage. In [Cristea and Kinshuk 2003] authors say that no run-time changes on
the GM or AM are contemplated in their approach6.

Regarding EMLs, IMS-LD does not impose a standard execution model
[Vogten et al. 2006] and different approaches can be found in literature:

– In [Vidal et al. 2008], authors describe an execution model based on Petri
nets7. This work does not address Petri net reconfiguration, which is a
requisite to fully support dynamic adaptation.

– In [Vogten et al. 2006] an IMS-LD execution model based on Moore Machines
is described: a User Model is comprised by a number of sets of Properties
and they can be updated at run-time. This system is known as Coppercore
engine, and there are no references to dynamic updating of the Adaptation
Model, that is, reconfiguration of the Moore machines.

– In [Zarraonandia et al. 2006] the authors follow an Aspect-oriented approach
to design an extension of the Coppercore engine. The authors’ approach
does not guarantee automatic consistency in the migration of a running UoL
instance, therefore a further consistence check is needed.

4 http://www.saltis.org/principles.html
5 http://www.ines.org.es/suma/en/proyectos.php
6 Authors say that not allowing to make run-time changes on the GM or AM makes

sense because adaptation to one user should not modify the public domain.
7 Traceability may be lost in the IMS-LD to Petri net translation.

2823Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Other e-learning specifications such as SCORM [Bohl et al. 2002] have also
addressed adaptation. SCORM packages can be considered sequences of learning
contents. In [Rey-López et al. 2006] it is proposed to extend SCORM at an ac-
tivity level to enable conditional display of activities depending on the student’s
profile. In [Abdullah and Davis 2003] authors compare adaptive behaviour in
Simple Sequencing and AEH.

In the literature, there are works based on the task/method paradigm. Opera-
tionalisation languages such as DSTM [Trichet and Tchounikine 1999] (that uses
task/method based operationalisation primitives) translate paper-based models
into implemented models. Two drawbacks on operationalisation languages are
noted: (i) current operationalisation languages impose their modelling point-
of-view8, (ii) operationalisation languages do not propose any help for refining
models. These two drawbacks are caused basically by the loss of traceability
between the paper-based model and the implemented model. Regarding course-
generation approaches, the one based on SCARCE [Tetchueng et al. 2008] com-
poses courses before run-time, therefore it falls into the static adaptation type; in
[Ullrich 2005] and [Marcke 1992], authors propose to postpone some adaptation
decisions until run-time, so that they may take into account a dynamic UM
(dynamic adaptation level A).

In summary, adaptation in e-learning has been usually approached as static
adaptation or dynamic adaptation at level A. Some works extend e-learning
specifications to support dynamic adaptation, but the scope of allowed changes
does not cover all the elements in the EML in use. Our work differs from these in
that we define an execution metamodel, enabling a complete dynamic replanning
of the course, using a set of run-time change primitives. The requirements for
this objective are explained in the next section.

3 Requirements

The life-cycle of an adaptive course is as follows. We are using learning-by-
doing educational scenarios that follow Goal-Based Scenarios philosophy. A GBS
paper-based model is then operationalised to a computer-understandable model
by using PoEML. Finally, computer-understandable models are transformed to
executable form and they are run by an execution engine.

To support dynamic adaptation some requirements are presented over the
course life-cycle:

– To maintain structural correspondence between paper-based models and Po-
EML models, as well as between PoEML models and running models (trace-
ability).

8 They impose a particular definition of a task and a particular definition of how tasks
are selected at run-time.

2824 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

– To provide a full set of primitives for run-time changes on running-models.
This entails to support on-the-fly reconfiguration of model structures.

Our objective is to support changes in running GBSs. The scope of changes
is focused into scenario operations. In the literature, there are some approaches
that use a pattern-based approach for classifying the non-predefined changes
that are supported by the run-time environment, such as [Weber et al. 2007].
In particular, our approach was focused on the following change patterns: (i)
insert task, (ii) delete task, (iii) move task, (iv) replace task, (v) swap task, (vi)
extract sub task, (vii) inline sub task, (viii) embed task in loop, (ix) parallelise
task, (x) embed task in conditional branch, (xi) add control dependency, (xii)
remove control dependency, (xiii) update condition.

4 The Modelling Language

Following a separation-of-concerns approach, PoEML decomposes an integrated
model into several perspectives (a perspective is a separated part of the modelling
domain involving a specific purpose) and orthogonal concerns that we term
aspects (different modes of control on the behaviour of each perspective), and
that have to do with adaptation and personalisation. Perspectives involve issues
that can be adapted, while aspects enclose the logic to decide what changes have
to be performed. This separation of concerns approach is key for the reuse and
adaptation of PoEML models. Perspectives are useful to selectively filter one
part of the model.

The PoEML components are elements, specifications, and expressions.
The assembly of language components allows designing a model in a ”lego-like”
way.

Elements represent things that may be part of an Educational Scenario
(ES), which is the basic building block for creating PoEML models. An ES may
include several types of elements, each one representing a particular purpose.
The following elements are at disposal:

– Causal Description represents information that introduces and describes
the ES.

– Role represents the participant that is going to carry out the tasks that are
required in the ES.

– Goal represents the tasks that must be carried out in the ES, indicating
what has to be done in it. An ES must include at least one Goal.

– Environment represents a space in which a task required in the ES has to
be done. These spaces include the Tools that roles can use to achieve the
Goals.

2825Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

– Tool represents a functionality at disposal. Besides, PoEML also takes into
account the explicit representation of the following components in Tools:
Permissions, Operations, and Events.

– Data Elements. They allow representing the data used in the ES. ESs may
include Variables, Goals may include Input and Output Parameters, Roles
may include Attributes, Tools may include parameters in their Operations
and Events, etc.

Specifications represent restrictions that may be set on the Elements of
an ES. Two of the key specifications in an ES are:

– Order represents the Order in which the Sub-ESs of an ES have to be done.

– Temporal represents time at which the Sub-ES of an ES have to be start-
ed/finished.

Expressions represent change possibilities in accordance with the aspects
that may affect to the structure or behaviour of the ES or its components.

– Constant represents a change possibility that is not going to change during
run-time. They are important to facilitate making changes during design-
time.

– Condition represents a change possibility in function of data inside a Data
Element. Since Data Elements may be included in different Elements, these
Expressions enable to define changes in Elements of a type in function of
Elements from other types.

– Signal represents a change possibility in function of a signalling event that
can be produced in an unexpected way.

– Decision represent a change possibility in function of the decision of a Role.

4.1 Declarative Modelling in PoEML

PoEML follows a declarative9 (constraint-based) approach [Van der Aalst et al.
2009] to course modelling. The declarative approach gives a great freedom degree
in run-time, because the execution control of a course is modelled as a set of
constraints, and the consistency of a course instance is guaranteed whenever the
constraints are not broken. In this sense, it can be said that in a course instance
every state is permitted unless it is not explicitly forbidden. This approach
provides a higher degree of flexibility than in traditional approaches, which use
a procedural approach (step-by-step).
9 A good approach that helps in run-time reconfiguration by easing a problem known

as the dynamic change bug [Van der Aalst 2001].

2826 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 1 shows a schematic representation of a course design inside the jPo-
EML graphical authoring tool. Boxes represent Scenarios, whilst circumferences
represent Goals. It can be perceived how low-level Scenarios are aggregated into
high-level ones. That composition relationship is represented in the figure by
means of ESs including Sub-ESs. In order to support the modelling of relation-
ships between Goals, two elements of the PoEML language are involved:

– Attempt Relation can be established between two Goals belonging to the
same ES. In the Figure 1, an Attempt Relation is represented by a circle
with a + symbol inside it. This indicates that to initiate Goal Test Program
the Goal Make UML Model has to be satisfied first.

– Completion Relation can be set between a Goal in a ES and a Goal in one
of its sub-ESs. In this sense, the consecution of a high-level Goal depends on
the consecution of one or several low-level Goals. Completion Relations may
be: (i) Completion AND, represented in Figure 1 as a circle with a & symbol
inside it; (ii) Completion OR, represented in Figure 1 as a circle with a ||
symbol inside it; (iii) other types.

– Goal Flow. It serves to describe the direction of a dependency, the source is
expressed by input from and the sink is expressed as an output to.

4.2 Formalisation of a Paper-Based Model with PoEML

PoEML is ”agnostic” concerning pedagogy. This means that the PoEML meta-
model is flexible enough to operationalise models from different pedagogical
approaches.

We propose an example of a course in the context of a software engineering
subject (see Figure 1). The goal of the course is twofold: to learn how to make
UML models and to learn Java or C++ application programming. The mission is
to make an UML model of a management application and later to develop it. The
cover story presents a context for the practice, explaining the requirements of the
software that has to be developed. Feedback is provided in the form of forums and
chats. Finally, the scenario operations formalise the process of making the design
as well as the software development process. Scenario operations are formalised
as a network of PoEML Goals. The role of a student in this GBS course is
twofold: analyst and programmer, whilst the role of a teacher is both senior
analyst and project manager.

The operationalisation of this GBS consists structurally on a root ES that
contains two Sub-ESs:

– The Modelling sub ES contains resources and tools for making UML models.

2827Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 1: Stand-alone authoring with jPoEML.

– The Programming sub ES contains resources and tools for writing code in
several programming languages, as well as for compiling and executing that
code.

Functionally, the operationalisation of this ES consists on two goals:

– The Make UML model goal requires for its completion the previous com-
pletion of one sub goal: Make component model.

– The Test program goal requires for its completion the previous completion
of one from two sub goal: Make C++ program or Make Java program.
Additionally, an output constraint is attached to it, imposing a restriction
on the percentile rate of test programs that the program must pass in order
to considering it to be correct. This constraint is modelled by a expression.

5 Execution Metamodel

The execution metamodel enables PoEML ESs to be run in such a way that al-
lows their behaviour to be modified before and during run-time. Object-oriented

2828 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

elements in the language are run as Finite State Machines (FSM). Modular
FSM support this usage when designed following certain patterns, such as the
hierarchical one [Lee et al. 2002] [Sklyarov 1999].

The exposition of the execution metamodel is threefold:

– A description of a situation part, that is, how the actual state of a FSM
network is derived from the state of its contained FSMs (which maintain a
structural correspondence to the elements in the modelling language).

– A description of a execution part, how a user-generated event triggers tran-
sitions on a FSM network.

– A description of a change part10, that is, a change primitive triggers transi-
tion on a FSM network to move from situation ”a” to situation ”b”.

5.1 The Situation Part: State Machines for ESs and Goals

A situation in the FSM network is an screenshot of the states of individual
FSMs. We designed individual FSMs in such a way that it allows to evaluate
its state when required. For that reason the figures of Scenario and Goal states
do not include all the possible run-time transitions between states, instead they
show the order that the evaluation procedure follows to check conditions and set
the new state. Other PoEML elements are also instantiated as FSMs, but they
are simpler that ES and Goal ones. A change in a FSM state may trigger the
reevaluation of related FSMs.

5.1.1 ES Instances Life-Cycle

The execution states of an ES instance are shown in Figure 2. ES instance
creation happens when its ”parent” ES passes to state Switched On. It is an on-
demand approach to the instantiation process: ES instances are created when
they are needed, being thus a scalable approach. When the instance is created,
it is at the Not Accessible state. Thus, the instance cannot be provided to
be accessed by a participant. It is transition (Not Accessible - Accessible)
the one that enables the instance to be accessed by a participant, and this
transition is directly dependent on the Order and Temporal Perspectives (Order
and Temporal constraints must be satisfied).

The other possible states are Switched on, Switched off, and Locked. An
ES becomes Switched on when a participant enters it, and becomes Switched
off when the last participant leaves it. An ES gets the Locked state when all
the goals that it contains have been already achieved and some Specification

restrains the access to it.
10 The scope of allowed changes determines the level of dynamic adaptation.

2829Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 2: Execution states of an ES instance in PoEML

5.1.2 Goal Instances Life-Cycle

The execution states of a Goal are shown in Figure 3. The creation of a Goal
instance happens when a ”parent” Goal is attempted. This means that when a
participant attempts a Goal, all the Goals that have Completion dependencies

with it have to be instantiated. The Goal instantiation process is therefore very
similar to the ES instantiation process, creating instances when they are needed.
In a way similar to the ES instantiation process, a newly created Goal instance
is not automatically ready to be attempted by a Participant. There are certain
Attempt dependencies and Input Constraints that have to be satisfied in order
to reach the Attemptable state.

When a participant attempts a Goal, its state is set to Pending. This means
that somebody has attempted the Goal but its achievement has not yet been
evaluated. Once it is evaluated, the Goal possible states are:

– Failed, when the Output Constraints and/or Completion Dependencies are
not satisfied.

– Achieved, when the Output Constraints and Completion Dependencies are
satisfied.

– Expired, when the deadline of the ES instance containing the Goal is over.

2830 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 3: Execution states of a Goal instance in PoEML

5.2 The Execution Part

The execution part describes how a single change in the state of either a goal
instance or an ES instance may trigger changes in related scenario and/or goal
instances. The execution part also describes the strategy to propagate changes
up in the course tree model. The execution model is based on Event-Condition-
Action (ECA) rules. Table 1 shows a sample of them. When an event is produced,
it may trigger some action whenever a certain condition is satisfied. In this sense,
a single event may change the state of several elements in the hierarchy of goals
and scenarios.

The two main requirements imposed over the execution metamodel are to
guarantee termination and confluence. Figure 4 shows a network of FSMs that
correspond to the objects in the PoEML design of Figure 1. Lines between objects
represent the flow of triggered events between objects. As it can be seen in Figure
4, the events flow forms an Acyclic Graph, which guarantees that there are no
loops in the design, so termination is assured. The events flow is of a hierarchical
nature as well, as no concurrent events are contemplated, so confluence is also
guaranteed. This is a quite conservative an very simple approach, but we consider
it to be functional enough to design complex courses.

6 Dynamic Adaptation

In this section we describe the change part, that is, how a change in a course
definition may trigger changes in its related course instances. On-the-fly recon-
figuration is achieved automatically as all the changes trigger the re-evaluation
of the states of all the related instances.

2831Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Associated to
Element

Event Condition Action

ES Update in the state of
a ES

The new state is
Switched On

Evaluate sub ESs

ES Update in the state of
a ES

The new state is Not
Accessible

Evaluate sub ESs

Data Element Update in the value of
a Data Element

Evaluate Data
Expressions that
contain this Data

Element
Data Expression Update in the state of

a Data Expression
Evaluate Goals that

have this Data
Expression as
Input/Output
Constraints

Goal Flow Update in the state of
a Goal Flow

Evaluate Goal
Instances indicated by

output
Goal Update in the state of

a Goal
The new state is

Achieved
Evaluate Goal Flows

that have this Goal as
input

Goal Update in the state of
a Goal

The new state is
Pending

Evaluate sub Goals

Goal A Goal gets the Not
Accessible state

Evaluate sub Goals;
Evaluate Goal Flows

that have this Goal as
input

Table 1: Sample of ECA rules implementing the execution part.

Some change patterns introduced at the Requirements section can be imple-
mented directly by one change primitive: insert task as add goal, delete task
as delete goal, replace task as update goal, Add control dependency may be
implemented as add goal flow, update condition as update data expression,
etc. Others can be implemented as sequences of change primitives. For ex-
ample, move task can be implemented as: (i) remove goal flow, (ii) add goal

flow; swap task can be implemented as three update attempt dependency in
sequence, etc.

Figure 5 illustrates this. It shows the same hierarchy of previous figure, but
inside each object two states are drawn: the one in the left represents the initial
state of the object (before the reevaluation), whilst the one in the right represents
the state of the object after reevaluation. The analysed primitive is add control
dependency. This transition is triggered by the addition of a dependency from
the goal Make Behavioural Model to the goal Make UML Model. This change
in the model causes the reevaluation of the goal hierarchy. This is a dual process:

– Events are propagated from the addition point to the root of the hierar-
chy. Elements change their state in cascade: CompletionDependency (False),
MakeUMLModel (Pending), GoalFlow (False), AttemptDependency (False),
TestProgram (Not Attemptable).

– Events are propagated from the addition point to leaves. The cascade of
changes in elements is: GoalFlow (False), MakeBehaviouralModel (Attempt-

2832 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 4: The FSM network with the PoEML design.

able).

7 Implementation

We have developed an implementation of an execution engine for PoEML courses
in accordance with the execution model presented in this paper. The execution
engine is integrated into the overall architecture of the e-learning system by
a well-defined interface of Web Services. In this section we present the overall
architecture based on the Service-orientation paradigm.

7.1 Overall Architecture

Figure 6 shows the overall architecture of the system, which is based on the
service-orientation paradigm. The structure of a general e-learning system is
composed of three layers: Presentation Layer, Business Logic Layer, and Database
Layer. The purpose of this decomposition is to separate presentation-related
concerns. As a consequence, over the same Business Logic Layer, it is possible
to deliver courses with different presentation settings.

2833Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 5: Initial and final state of the FSM network before and after adding a
control dependency. Black dots represent the Not Created state.

The Presentation Layer is in charge of displaying educational scenarios,
making use of the functionality provided by the Business Logic Layer. Presen-
tation components are designed following a decomposition based on three main
functionalities: authoring, monitoring and delivering. Table 2 lists the methods
in the three interfaces provided by the Business Logic Layer. The Presentation
layer has been developed in PHP11, and uses the NuSOAP library12 to consume
service methods.

The Business Logic Layer has been implemented as a Web application run-
ning in Tomcat13, and we use the Axis framework14 to publish the service
methods. The Business Logic Layer provides two main functionalities, namely:
models management, and instances management:

– The Models Manager manages the educational scenario models. It main-
tains the version of models, and provides an authoring interface for updating
them by an authorised user.

11 http://www.php.net
12 http://sourceforge.net/projects/nusoap
13 http://tomcat.apache.org
14 http://ws.apache.org/axis/

2834 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 6: Overall architecture as a three-tier architecture.

– The Instances Manager is in charge of managing instances of PoEML
elements. This component provides two interfaces: one for the passive re-
trieval of information, employed by the delivering component to display ESs;
and the other one for the communication of events which are the result of
participants’ interaction with the presentation delivering component. This
component is composed by three subcomponents: the ECA Rules Engine,
which implements the execution part ; the Constraints Evaluator, which im-
plements the reevaluation of constraints after an update in the process model,
or change part ; and the To-Do List Extractor, which gets the pending tasks
for each course instance from leaves to root in the hierarchy.

Finally, the Database Layer maintains two separate schemas: one for PoEML
models, and another one for run-time instances. These two models are not fully
independent, because a change in one scenario model may trigger as many
changes in scenario instances as instances are running in the e-learning system.
The Database Layer has been implemented in Oracle 11g.

7.2 Authoring

The authoring modes are two: not-connected mode, and connected mode.

– Not-connected mode. In Figure 1 we can see the same ES that we use
throughout the paper as an example created with the jPoEML graphical

2835Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Method Input
Parameters

Output Parameters Description

Information Retrieval
getESInstancesByESId id :ESInstance[] Retrieves all

ESInstances from a
ES

getESInstancesByParentId id :ESInstance[] Retrieves all
descendants from a

ESInstance
getGoalInstancesByGoalId GoalId :GoalInstance[] Retrieves all

GoalInstances from
a given GoalId

getEnvironmentInstances
ByESInstanceId

ESInstanceId :EnvironmentInstance[] Retrieves all
Environment

Instances from a
given ESInstance

getDataElementInstances
ByESInstanceId

ESInstanceId :DataElementInstance[] Retrieves all
DataElement

Instances from a
given ESInstance

Events
updateDataElementInstance id, name,

description,
type, ESId,

ESInstanceId,
value

id Updates a
DataElement
Instance

setGoalInstanceOutput
Parameter

id,
outputParameter

id Adds an
OutputParameter to

a GoalInstance

Authoring
deployPoEMLManifest manifest ESRootId Deploys a PoEML

manifest
undeployPoEMLManifest ESRootId manifest Undeploys a PoEML

manifest
addGoalFlow outputFrom,

inputTo,
goalConnector,

value

Inserts a GoalFlow

getESsRoot :ES[] Retrieves all ESs
that are root

getESsByParentId parentId :ES[] Retrieves all ESs
from its common

ancestor
getGoalsByESId id :Goal[] Retrieves all Goals

in an ES

getDataElementsByESId id :DataElement[] Retrieves all
DataElements in an

ES

Table 2: Methods in the execution engine interface. The authoring interface
contains only a sample of get methods. There are similar methods for adding
and updating elements. The : means that it is retrieved an object, and [] means
that it is retrieved an array.

authoring tool. Once the design is done, jPoEML enables to export the design
to XML. This XML manifest file can be imported in the execution engine
by using the deployPoEMLManifest method in the authoring interface (see
Table 2).

– Connected mode. In connected mode the user has to provide his creden-
tials as well as the URL of the execution engine. In this authoring mode

2836 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

the authoring tool uses the capabilities of the database to make run-time
changes. The author may invoke change primitives, and doing so the state
of the model gets updated inside the authoring tool by invoking the get
methods in the interface.

The representation of models inside the authoring tool is made in accordance
to the PoEML separation-of-concerns approach. The authoring process can be
separated in several steps/stages, and a different tab in the jPoEML environment
is used in each step:

– In stage 1 the knowledge domain is modeled as a set of ESs and Sub ESs.
At this stage, the different elements that are part of ESs are aggregated:
environments, goals, resources, tools, order and temporal specifications, etc.

– In stage 2 the dependencies between goals are added to the model.

– In stage 3 the different aspects are situated in the model.

These stages are overlapped for run-time changes, but having at our disposal
a different tab in the authoring tool for representing each concern facilitates
committing run-time changes and keeping track of them.

7.3 Delivering

The delivering component is in charge of displaying participants’ working space.
Typically, the working space provides some useful views, such as educational
scenarios into which the participant is enrolled, and environments that are at
the participant’s disposal for communicating with other participants and for
carrying out learning activities (see Figure 7).

The presentation layer calls the information retrieval interface to display ESs
to a participant, calling for example the getESInstances ByESId, getEnviron-
mentInstances ByESInstanceId,getDataElementInstancesByESInstanceId
and other related methods. When a participant finishes a learning activity, the
presentation layer communicates to the business logic layer that the value of a
Data Element (e.g. a grade in a quiz activity) has to be updated. This is done
by calling the updateDataElementInstance method in the events interface.

8 Conclusions

In this paper we have presented an execution model and SOA-based middleware
for courses scripted with PoEML that allows for run-time changes on course
models, enabling on-the-fly reconfiguration of control structures. PoEML is very
suitable for supporting on-the-fly changes due to two main characteristics:

2837Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

Figure 7: Screenshot of the course delivery.

– Its separation-of-concerns approach, that encapsulates different concerns in
the modelling of courses as different elements in the language. This approach
allows us to design a modular execution engine based on FSMs, and a
modular interface for run-time changes, minimising crosscutting concerns.

– Its declarative approach, which allows a great flexibility, as everything is
permitted unless it is explicitly forbidden by some constraint. This approach
allows us to design a Constraints Evaluator, which re-evaluates all con-
straints in a course instance after a change has been committed on its related
course model (and not only in the user model). This approach has shown
to be more suitable than the step-by-step one, since the latter may lead to
inconsistencies during the migration process.

Feedback from programmers that are developing different presentation mod-
ules permits us to list the following preliminary results/evaluation of our pro-
posal:

– The division of the authoring interface in perspectives and aspects minimises
the cognitive load of course authors.

– Our proposal allows a dynamic refining of PoEML models, because test users
can be easily created to check the behaviour of refined models.

Acknowledgements

This work is co-funded by the European Community eContentPlus Programme
ECP 2007 EDU 417008. The content of this paper is the sole responsibility of

2838 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

the authors. It does not represent the opinion of the European Community and
the Community is not responsible for any use that might be made of information
contained here in.

References

[Abdullah and Davis 2003] Abdullah, N., Davis, H.: “Is Simple Sequencing Simple
Adaptive Hypermedia?”; Proceedings of the Fourteenth ACM Conference on
Hypertext and Hypermedia; 172–173; ACM, 2003.

[Bohl et al. 2002] Bohl, O., Schellhase, J., Sengler, R., Winand, U.: “The Sharable
Content Object Reference Model (SCORM)–A Critical Review”; Proceedings of the
International Conference on Computers in Education; 950–951; Citeseer, 2002.

[Caeiro-Rodriguez 2007] Caeiro-Rodriguez, M.: Handbook of Visual Languages for
Instructional Design: Theories and Practices; chapter PoEML: A Separation-of-
Concerns Proposal to Instructional Design, 185–209; Information Science Reference,
2007.

[Caeiro-Rodriguez et al. 2007] Caeiro-Rodriguez, M., Marcelino, M. J., Llamas-Nistal,
M., Anido-Rifon, L., Mendes, A. J.: “Supporting the Modeling of Flexible
Educational Units PoEML: A Separation of Concerns Approach”; Journal of
Universal Computer Science; 13 (2007), 7, 980–990.

[Cristea and de Mooij 2003] Cristea, A., de Mooij, A.: “LAOS: Layered WWW AHS
Authoring Model and their Corresponding Algebraic Operators”; WWW03 (The
Twelfth International World Wide Web Conference), Alternate Track on Education,
Budapest, Hungary; Citeseer, 2003.

[Cristea and Kinshuk 2003] Cristea, A., Kinshuk, K.: “Considerations on LAOS, LAG
and their Integration in MOT”; (2003).

[Hendrix et al. 2009] Hendrix, M., Cristea, A., Burgos, D.: “Comparative Analysis
of Adaptation in Adaptive Educational Hypermedia and IMS-Learning Design”;
(2009).

[Hendrix et al. 2008] Hendrix, M., De Bra, P., Pechenizkiy, M., Smits, D., Cristea,
A.: “Defining Adaptation in a Generic Multi Layer Model: CAM: The GRAPPLE
Conceptual Adaptation Model”; Proceedings of the 3rd European Conference on
Technology Enhanced Learning; Springer, 2008.

[IMS 2003] IMS, L.: “Learning Design specification v1”; Retrieved: November; 20
(2003), 2004.

[Koper 2002] Koper, R.: “Modeling Units of Study from a Pedagogical Perspective-The
Pedagogical Metamodel behind EML,(2001)”; Educational Expertise Technology
Centre, Open University of the Netherlands; (2002).

[Lee et al. 2002] Lee, S., Yoo, S., Choi, K.: “Reconfigurable SoC Design with
Hierarchical FSM and Synchronous Dataflow Model”; Proceedings of the Tenth
International Symposium on Hardware/Software Codesign; 204; ACM, 2002.

[Marcke 1992] Marcke, K.: Instructional Models in Computer-Based Learning Envi-
ronments; chapter A Generic Task Model for Instruction, 171–194; Springer-Verlag,
1992.

[Rey-López et al. 2006] Rey-López, M., Fernández-Vilas, A., Dı́az-Redondo, R., Pazos-
Arias, J., Bermejo-Muñoz, J.: “Extending SCORM to Create Adaptive Courses”;
Lecture Notes in Computer Science; 4227 (2006), 679.

[Sklyarov 1999] Sklyarov, V.: “Hierarchical Finite-State Machines and their Use for
Digital Control”; IEEE Transactions on Very Large Scale Integration (VLSI)
Systems; 7 (1999), 2, 222–228.

[Stahl and Kirschner 2009] Stahl, G., Kirschner, P.: “Introduction to CSCL 2009
Workshops, Tutorials and Seminars”; Proceedings of the 9th International Confer-
ence on Computer Supported Collaborative Learning-Volume 2; 207; International
Society of the Learning Sciences, 2009.

2839Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

[Tetchueng et al. 2008] Tetchueng, J., Garlatti, S., Laube, S.: “A Context-Aware
Learning System Based on Generic Scenarios and the Theory in Didactic
Anthropology of Knowledge”; International Journal of Computer Science and
Applications; 5 (2008), 71–87.

[Trichet and Tchounikine 1999] Trichet, F., Tchounikine, P.: “DSTM: a Framework to
Operationalise and Refine a Problem Solving Method Modeled in Terms of Tasks
and Methods”; Expert Systems With Applications; 16 (1999), 105–120.

[Ullrich 2005] Ullrich, C.: “Course Generation Based on HTN Planning”; Proceedings
of 13th Annual Workshop of the SIG Adaptivity and User Modeling in Interactive
Systems; 74–79; Citeseer, 2005.

[Van der Aalst 2001] Van der Aalst, W.: “Exterminating the Dynamic Change Bug: A
Concrete Approach to Support Workflow Change”; Information Systems Frontiers;
3 (2001), 3, 297–317.

[Van der Aalst et al. 2009] Van der Aalst, W., Pesic, M., Schonenberg, H.: “Declar-
ative Workflows: Balancing Between Flexibility and Support”; Computer Science-
Research and Development; 23 (2009), 2, 99–113.

[Vidal et al. 2008] Vidal, J., Lama, M., Sanchez, E., Bugarın, A.: “Application of Petri
Nets on the Execution of IMS Learning Design Documents”; Proceedings of EC-TEL
2008; 461; Springer-Verlag New York Inc, 2008.

[Vogten et al. 2006] Vogten, H., Tattersall, C., Koper, R., Van Rosmalen, P., Brouns,
F., Sloep, P., van Bruggen, J., Martens, H.: “Designing a Learning Design Engine
as a Collection of Finite State Machines”; International Journal on E-Learning; 5
(2006), 4, 641.

[Weber et al. 2007] Weber, B., Rinderle, S., Reichert, M.: “Change Patterns and
Change Support Features in Process-Aware Information Systems”; Lecture Notes
in Computer Science; 4495 (2007), 574.

[Zarraonandia et al. 2006] Zarraonandia, T., Dodero, J., Fernández, C.: “Crosscutting
Runtime Adaptations of LD Execution”; Journal of Educational Technology and
Society; 9 (2006), 1, 123.

2840 Perez-Rodriguez R., Caeiro-Rodriguez M., Anido-Rifon L., Llamas-Nistal M. ...

