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Abstract: We prove the correctness of a formalised realisability interpretation of ex-
tensions of first-order theories by inductive and coinductive definitions in an untyped
λ-calculus with fixed-points. We illustrate the use of this interpretation for program
extraction by some simple examples in the area of exact real number computation and
hint at further non-trivial applications in computable analysis.
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1 Introduction

This paper studies a formalised realisability interpretation of an extension of

first-order predicate logic by least and greatest fixed points of strictly positive

operators on predicates. The main technical results are the Soundness Theorem

for this interpretation and the Computational Adequacy Theorem for the realisers

with respect to a call-by-name operational semantics and a domain-theoretic

denotational semantics. Both together imply the Program Extraction Theorem

stating that from a constructive proof one can extract a program that is provably

correct and terminating.

In order to get a flavour of the system we discuss some examples within the

first-order theory of real closed fields with the real numbers as intended model.

In the first example we define a set N of real numbers (inductively) as the least

subset of R satisfying

N(0) ∧ ∀x (N(x) → N(x+ 1))

More formally, N := μX.{x | x = 0 ∨ ∃y (x = y + 1 ∧ X(y))}, i.e. N is the

least fixed point of the operator on P(R) mapping a set X to the set {x | x =

0∨∃y (x = y+1∧X(y))}. Clearly, in the intended model N is the set of natural

numbers.

For the second example, we set I := [−1, 1] = {x | −1 ≤ x ≤ 1} ⊆ R, SD :=

{0, 1,−1} (signed digits), and avi(x) := (x+ i)/2. We define C0 (coinductively)

as the largest set of real numbers satisfying

∀x (C0(x) → ∃i ∈ SD, y ∈ I (x = avi(y) ∧C0(y)))
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Formally, C0 := νX.{x | ∃i ∈ SD, y ∈ I (x = avi(y) ∧ X(y))}, i.e. C0 is the

greatest fixed point of the operator mapping X to {x | ∃i ∈ SD, y ∈ I (x =

avi(y)∧X(y))}. One easily shows that, classically, C0 = I, hence the coinductive

definition seems to be unnecessary. However, the point is that in order to prove

C0(x) for x ∈ I constructively, one needs the extra assumption that there is

a rational Cauchy sequence converging to x. The (coinductive) proof of C0(x)

contains a (coiterative) program transforming the Cauchy sequence into a signed

digit representation of x.

Our third example extends the previous to unary functions. We add a new

sort for real functions, and let II denote the set of real functions mapping I to I.

Define a set of real functions by

C1 := νF.μG.{g | ∃i ∈ SD, f ∈ I
I (g = avi ◦ f ∧ F (f)) ∨

∧

i∈SD

G(g ◦ avi)}

One can show that C1 coincides with the set of functions in I
I that are (construc-

tively) uniformly continuous. Moreover, a constructive proof of C1(f) contains a

program implementing f as a non-wellfounded tree which acts as a (signed digit)

stream transformer. The trees generated in this way are similar to the structures

studied by Ghani, Hancock and Pattinson [Ghani et al. 2006]. The interpretation

of these trees as stream transformers is the computational content of a construc-

tive proof the formula ∀f (C1(f) → ∀x (C0(x) → C0(f(x)))), which is a special

case of a constructive composition theorem for analogous predicates Cn of n-ary

functions. Details as well as concrete applications with extracted Haskell pro-

grams are worked out in [Berger 2009]. The algorithmic idea embodied in the def-

inition of the predicate C1 has been used before in [Edalat and Heckmann 2002]

and elsewhere to develop exact real number algorithms based on the signed digit

and the more general linear fractional transformation representation. One way

to look at our paper is that we use inductive/coinductive definitions to give an

elegant formalisation of the work in loc. cit. and use program extraction to get

correctness proofs for free.

Note that in the definition of C1, the inner inductive definition depends on the

set parameter F which is then maximised in the outer coinductive definition. In

the context of classical propositional modal logic a system allowing similar “in-

terleaved” fixed points is known as the μ-calculus [Bradfield and Stirling 2007].

Möllerfeld [Möllerfeld 2003] analysed the first-order version of the μ-calculus

(which is essentially the classical version of our system) and showed that it has

the same proof-theoretic strength as Π1
2 -comprehension. Tupailo [Tupailo 2004]

later showed that the intuitionistic version has the same strength. Möllerfeld

used iterated interleavings of least and greatest fixed points to define generalisa-

tions of the Souslin quantifier allowing the emulation of non-monotonic inductive

definitions which lead to this enormous strength. If one forbids these interleav-

ings, one obtains the proof-theoretically much weaker system ID<ω of finitely
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iterated inductive definitions [Buchholz et al. 1981].

The realisability interpretation we are going to study is related to interpreta-

tions given in [Tatsuta 1998] and [Miranda-Perea 2005]. We point out the main

similarities and differences. Like Tatsuta, we use untyped programs as realisers

that allow for unrestricted recursion. The necessary termination proof for ex-

tracted programs is obtained by a general Computational Adequacy Theorem

relating the operational with a (domain-theoretic) denotational semantics. In

contrast to this, Miranda-Perea extracts typed terms and uses the more general

“Mendler-style” (co)inductive definitions [Mendler 1991] which extract strongly

normalising terms in extensions of the second-order polymorphic λ-calculus or

stronger systems [Matthes 2001, Abel and Matthes 2005]. Furthermore, Tatsuta

studies realisability with truth while we omit the “truth” component. From a

practical point of view the most important difference to Tatsuta’s interpretation

is that we treat quantifiers uniformly (as Miranda-Perea does): For universally

quantified formulas realisability, M r∀xA(x), is defined as ∀x (M rA(x)) (in-

stead of ∀x (M x rA(x))) and M r∃xA(x) is defined as ∃x (M rA(x)) (instead

of π2(M) rA(π1(M))). In general, the object language and the language of re-

alisers are kept strictly separate. This means in particular that a realiser neither

depends on variables of the object language nor produces output in that lan-

guage. Realisers are extracted exclusively from the “propositional skeleton”of

a proof ignoring the first-order part. The latter matters for the correctness of

the realisers only. This widens the scope of applications considerably because

it is now possible to deal with abstract structures that are not necessarily

“constructively” given. For example the real numbers in our examples above,

were treated abstractly (i.e. axiomatically) without assuming them to be con-

structed in a particular way. The ignorance w.r.t. the first-order part can also

be seen as a special case of the interpretations studied in [Schwichtenberg 2009],

[Hernest and Oliva 2008] and [Ratiu and Trifonov 2009], which allow for a fine

control of the amount of computational information extracted from proofs. A

related method of importing computational information in a controlled way is

the realisability interpretation via assemblies in [Bauer and Blanck 2009] where

realisers are drawn from an arbitrary partial combinatory algebra (PCA). In

constrast, we are working with a fixed PCA of λ-terms with constructors (see

Sect. 3).

2 Induction and coinduction

We fix a first-order language L. Terms, r, s, t . . ., are built from constants, first-

order variables and function symbols as usual. Formulas, A,B,C . . ., are s = t,

P(t) where P is a predicate (predicates are defined below), A∧B, A∨B, A → B,

∀xA, ∃xA. A predicate is either a predicate constant P , or a predicate variable
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X , or a comprehension term λx.A (sometimes also written {x | A}) where A

is a formula and x is a vector of first-order variables, or an inductive predicate

μX.P , or a coinductive predicate νX.P where P is a predicate of the same arity

as the predicate variable X and which is strictly positive in X , i.e. X does not

occur free in any premise of a subformula of P which is an implication. The

application, P(t), of a predicate P to a list of terms t is a primitive syntactic

construct, except when P is a comprehension term, P = {x | A}, in which case

P(t) stands for A[t/x].

It will sometimes be convenient to write x ∈ P instead of P(x) and also

P ⊆ Q for ∀x (P(x) → Q(x)) and P ∩ Q for {x | P(x) ∧ Q(x)}, e.t.c. We also

write {t | A} as an abbreviation for {x | ∃y (x = t∧A)} where x is a fresh variable

and y = FV(t) ∩ FV(A). Furthermore, we introduce operators Φ := λX.P (or

Φ(X) := P), where P is strictly positive in X , and then write Φ(Q) for the

predicate P [Q/X ] where the latter is the usual substitution of the predicate Q
for the predicate variable X . We also write μΦ and νΦ for μX.P and νX.P . For

convenience, we also write A(X) to distinguish a particular predicate variable

X in A, and A(P) for the substitution of every free occurrence of X in A by

P . A formula, predicate, or operator is called non-computational, if it contains

neither free predicate variables nor the propositional connective ∨. Otherwise it

is called computational.

The proof rules are the usual ones of intuitionistic predicate calculus with

equality augmented by rules expressing that μΦ and νΦ are the least and greatest

fixed points of the operator Φ. As is well-known, the fixed point property can be

replaced by appropriate inclusions. Hence we stipulate the axioms and rules

Closure Φ(μΦ) ⊆ μΦ Induction Φ(Q) ⊆ Q → μΦ ⊆ Q
Coclosure νΦ ⊆ Φ(νΦ) Coinduction Q ⊆ Φ(Q) → Q ⊆ νΦ

In addition we allow any axioms expressible by non-computational formulas that

hold (classically) in the intended model. For instance, our running examples take

place in the classical theory of real closed fields. Since the axioms must be non-

computational, we have to express disjunctive properties, such as linearity of

the order, negatively, e.g. ∀x, y (x �< y ∧ y �< x → x = y). However, it is easy

to see that for the natural numbers N, as defined in the introduction, one can

prove constructive linearity, ∀x, y ∈ N (x < y ∨ y < x ∨ x = y), and hence

decidability of equality, ∀x, y ∈ N (x = y ∨ x �= y). We write Γ 
 A if A

is derivable (intuitionistically) from assumptions in Γ in this system. If A is

derivable without assumptions we write 
 A, or just A. We define falsity as

⊥ := μX.X where X is a 0-ary predicate variable (i.e. a propositional variable).

From the induction axiom for ⊥ it follows ⊥ → A for every formula A. By

induction on derivations one easily proves:

Lemma1 (Instantiation). If Γ (X) 
 A(X), then Γ (P) 
 A(P).
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Lemma2 (Monotonicity). Let Φ, Ψ be operators, P , Q predicates, Γ a con-

text and X a predicate variable not free in Γ .

(a) If Γ 
 Φ(X) ⊆ Ψ(X), then Γ 
 μΦ ⊆ μΨ and Γ 
 νΦ ⊆ νΨ .

(b) P ⊆ Q → Φ(P) ⊆ Φ(Q).

Proof. (a) Assume Γ . We show μΦ ⊆ μΨ using the Induction Axiom. Hence, we

have to show Φ(μΨ) ⊆ μΨ . By the hypothesis of the lemma, the Instantiation

Lemma, and the Closure Axiom, we have Φ(μΨ) ⊆ Ψ(μΨ) ⊆ μΨ . The proof for

ν is similar.

(b) Straightforward structural induction on the built-up of Φ, using (a) in

the case of inductive and coinductive predicates.

The following lemma, which is well-known and easy to prove, can be viewed as

an instance of Lambek’s Lemma [Lambek 1968].

Lemma3 (Fixed Point). Let Φ be an operator.

(a) Φ(μΦ) = μΦ.

(b) Φ(νΦ) = νΦ.

3 Realisability

The realisers of formulas are terms of an untyped λ-calculus with pairing, in-

jections and recursion Program-terms, M,N,K,L,R . . . (terms for short) are

variables x, y, z, . . ., the constant (), and the composite terms 〈M,N〉, inl(M),

inr(M), λx.M , πi(M) (i = 1, 2), caseM of{inl(x) → L ; inr(y) → R}, (M N),

recx .M . The free variables of a term are defined as usual (the constructs λx,

recx and inl(x) →, inr(x) → in a case term bind the variable x). The usual

conventions concerning bound variables apply.

Of particular interest are closed terms that are built exclusively from ()

by pairing 〈·, ·〉 and the injections inl(·), inr(·). We call these terms data and

denote them by d, e, . . .. Roughly speaking, data stand for themselves and will

in any reasonable denotational semantics coincide with their value. In Section 5

we study such a denotational and also an operational semantics for arbitrary

program terms and prove an Adequacy Theorem.

In order to formalise realisability we need a system that can talk about math-

ematical objects and realisers. Therefore we extend our first-order language L to

a language r(L) by adding a new sort for program terms. All logical operations,

including inductive and coinductive definitions, are extended as well. All axioms

and rules for L, including closure, induction, coclosure and coinduction and the
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rules for equality, are extended mutatis mutandis for r(L). In addition, we have

as extra axioms the equations

πi(〈M1,M2〉) = Mi (i = 1, 2)

case inl(M) of{inl(x) → L ; inr(y) → R} = L[M/x]

case inr(M) of{inl(x) → L ; inr(y) → R} = R[M/y]

(λx.M)N = M [N/x]

recx .M = M [recx .M/x]

The realisability interpretation assigns to every L-formula A a unary r(L)-
predicate r(A). Intuitively, for any program term M the r(L)-formula r(A)(M)

(sometimes also writtenM rA) states thatM “realises”A. The definition of r(A)

is relative to a fixed one-to-one mapping from L-predicate variables X to r(L)-
predicate variables X̃ with one extra argument place for program terms. The

definition of r(A) is such that if the formula A has the free predicate variables

X1, . . . , Xn, then the predicate r(A) has the free predicate variables X̃1, . . . , X̃n.

Simultaneously with r(A) we define a predicate r(P) for every predicate P , where

r(P) has one extra argument place for program terms.

r(A) = {() | A} if A is non-computational

Otherwise

r(A ∧B) = r(B ∧ A) = {x | A ∧ r(B)(x)} if A is non-computational

r(A → B) = {x | A → r(B)(x)} if A is non-computational

Otherwise

r(P(t)) = {x | r(P)(x, t)}
r(A ∧B) = {〈x, y〉 | r(A)(x) ∧ r(B)(y)}
r(A ∨B) = {inl(x) | r(A)(x)} ∪ {inr(y) | r(B)(y)}
r(A → B) = {f | ∀x (r(A)(x) → r(B)(fx)}

r(∀y A) = {x | ∀y (r(A)(x))}
r(∃y A) = {x | ∃y (r(A)(x))}

r(P) = {((),x) | P(x)} if P is non-computational

Otherwise

r({x | A}) = {(y,x) | r(A)(y)}
r(X) = X̃

r(μX.P) = μX̃.r(P)

r(νX.P) = νX̃.r(P)
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If one uses for operators Φ = λX.P the notation r(Φ) := λX̃.r(P) one can

shorten the last two clauses to

r(μΦ) = μr(Φ)

r(νΦ) = νr(Φ)

We call an L-formula a parametric data formula if every subformula of the form

A → B or νΦ(t) is non-computational. A data formula is a parametric data

formula without free predicate variables. We also define inductively a unary

predicate Data by

Data = {()} ∪ inl(Data) ∪ inr(Data) ∪ 〈Data,Data〉

Of course, this definition is shorthand for

Data := μX.{()} ∪ {inl(x) | x ∈ X} ∪ {inr(x) | x ∈ X} ∪ {〈x, y〉 | x, y ∈ X}

Lemma4 (Data formulas). r(A) ⊆ Data for every data formula A.

Proof. We show that for every parametric data formula A

r(A)′ ⊆ Data

where r(A)′ is obtained from r(A) by replacing every n + 1-ary r(L)-predicate
variable X̃ by Data′ := {(x,y) | Data(x)}. The proof is by induction on the

structure of A. If A is an implication, or of the form νΦ(t), or P (t) where P is a

predicate constant, then A is non-computational, therefore r(A)′ ⊆ {()} ⊆ Data.

If A is X(t), then r(A) = {x | X̃(x, t)}, hence r(A)′ = {x | Data′(x, t)} = Data.

The remaining cases are ∃xA, ∀xA, A ∨ B, A ∧ B, and μΦ(t). The first four

follow by a straightforward application of the induction hypotheses. In the last

case it suffices to show μr(Φ)′ ⊆ Data′, which can be done by induction. We

have to show r(Φ)′(Data′) ⊆ Data′, i.e. ∀x,y (r(Φ(X))′(x,y) → Data(x)) where

X is fresh. But this is the same as ∀y (r(Φ(X)(y))′ ⊆ Data. The latter follows

from the (structural) induction hypothesis.

Theorem 5 (Soundness). From a closed derivation of a formula A one can

extract a program term M and a derivation of r(A)(M).

We prove the Soundness Theorem in Sect. 4.

Let us see what we get when we apply realisability to our examples from the

Introduction. In the first example, r(N) is the least relation such that

r(N) = {(inl(()), 0)} ∪ {(inr(n), x+ 1) | r(N)(n, x)}

Hence, we have for a data d and x ∈ R that d rN(x) holds iff x is a natural

number and d = x := inrx(inl(())), i.e. d is a unary representation of x.
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In the second example we first note that the formula SD(i) is shorthand for

the formula i = 0 ∨ i = 1 ∨ i = −1. Hence for suitable data di (i ∈ SD) we have

that r(C0) is the largest predicate such that

r(C0) = {(〈di, a〉, avi(y)) | i ∈ SD, y ∈ I, r(C0)(a, y)}

Hence, semantically, r(C0)(a, y) means that a = a0, a1, . . . is an infinite stream

of digits ai ∈ SD such that y = Σ∞
i=02

−(i+1) ∗ ai.
In the third example we have

r(C1) = νF̃ . μG̃ . {(〈di, t〉, avi ◦ f) | i ∈ SD, f ∈ I
I, F̃ (t, f)} ∪

{(〈t0, t1, t−1〉, g) |
∧

i∈SD

G̃(ti, g ◦ avi)}

One sees that a realiser of C1(f) is a non-wellfounded tree with two kinds of

nodes: “writing nodes” labelled with (a representation of) a signed digit, which

means the algorithm writes that digit to the output without reading the in-

put stream, and “reading nodes” where the tree branches into three subtrees

meaning that the algorithm reads the first digit of the input stream and contin-

uous with the branch corresponding to the digit read and the tail of the input

stream. Due to the inner “μG̃” infinitely many writing nodes occur on each path

through the tree ensuring that in the limit an infinite output stream is produced

(see [Berger 2009] for details). The reading and writing nodes correspond to the

absorption and emission of digits in [Edalat and Heckmann 2002].

4 Proof of the Soundness Theorem

The main task in proving the Soundness Theorem (Thm. 5) is to define the

realisers of induction and coinduction and to prove their correctness.

We define program terms mapX,A, mapX,P , ItμX.P , and CoitνX.P , where
X is a predicate variable, A is formula and P is a predicate, both strictly pos-

itive in X . In Lemma 9 we will show that mapX,P realises the monotonicity

of P w.r.t. X . Since we haven’t yet proven the Soundness Theorem, we cannot

extract the map-programs from Lemma 2, but have to code them “by hand”.

The terms ItμX.P and CoitνX.P will be used to realise induction and coin-

duction. In [Miranda-Perea 2005] the iterators and coiterators are given as con-

stants which expect map-terms as extra arguments, and the property stated in

Lemma 9 is an assumption in the Soundness Theorem. Here, the terms mapX,A,

mapX,P , ItμX.P , and CoitνX.P are defined by recursion on the structure of A

and P . We write M ◦N as an abbreviation for λx.M(N x) where x is fresh.

mapX,A = λfλx . x if X is not free in A, otherwise

mapX,P(t) = mapX,P
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mapX,A∨B = λfλx . casex of{inl(y) → mapX,A f y ; inr(z) → mapX,B f z}
mapX,A∧B = mapX,B if A is non-computational

= mapX,A if B is non-computational

= λfλx . 〈mapX,Af (π1(x)),mapX,Bf (π2(x))〉 otherwise

mapX,A→B = mapX,B if A is non-computational

= λfλg .mapX,B f ◦ g otherwise

mapX,P = λfλx . x if X is not free in P , otherwise

mapX,{x|A} = mapX,A

mapX,X = λf . f

mapX,μY.P = λf . ItμY.P(mapX,Pf)

mapX,νY.P = λf .CoitνY.P(mapX,Pf)

ItμX.P = λs . rec g . s ◦mapX,Pg

CoitνX.P = λs . rec g .mapX,Pg ◦ s

Lemma6. (a) ItμX.Ps = s ◦mapX,P (ItμX.Ps)

(b) CoitνX.Ps = mapX,P (CoitνX.Ps) ◦ s
(c) mapX,μY.Pg = mapX,Pg ◦mapY,P(mapX,μY.Pg)

(d) mapX,νY.Pg = mapY,P(mapX,νY.Pg) ◦mapX,Pg

Proof. (a) and (b) follow immediately from the definitions. For (c) we calculate

mapX,μY.Pg = ItμY.P(mapX,Pg)

= mapX,Pg ◦mapY,P(ItμY.P(mapX,Pg))

= mapX,Pg ◦mapY,P(mapX,μY.Pg)

The proof of (d) is similar to the proof of (c).

Lemma7 (Substitution). r(Φ)(r(Q)) = r(Φ(Q)), for every operator Φ and

every computational predicate Q.

Proof. Straightforward induction on the (syntactic) size of Φ.

In the next lemmas we consider predicates in the language r(L) whose first

arguments range over program terms. The following definitions will be used:

P ◦ f := {(x,y) | (f x,y) ∈ P}
f ∗ P := {(f x,y) | (x,y) ∈ P}
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Clearly, (P ◦ f) ◦ g = P ◦ (f ◦ g) and f ∗ (g ∗ P) = (f ◦ g) ∗ P . The rationale for

the first of the two definitions is that for computational predicates P , Q,

r(P ⊆ Q) = {f | r(P) ⊆ r(Q) ◦ f}

and the Induction Axiom is an implication between inclusions of predicates. The

following easy lemma shows that the two definitions are adjoints. This will allow

us to treat induction and coinduction in a similar way.

Lemma8 (Adjunction). Q ⊆ P ◦ f ⇔ f ∗ Q ⊆ P

Lemma9 (Map). Let Φ be an operator in the language L. and X a fresh pred-

icate variable. Then mapX,Φ(X) realises the monotonicity of Φ, that is

mapX,Φ(X) r (P ⊆ Q → Φ(P) ⊆ Φ(Q))

for all computational L-predicates P and Q. By the definition of realisability and

the Adjunction Lemma this is equivalent to each of the following two statements

about arbitrary computational r(L)-predicates P and Q of appropriate arity and

all f :

(a) P ⊆ Q ◦ f → r(Φ)(P) ⊆ r(Φ)(Q) ◦mapX,Φ(X)f

(b) f ∗ P ⊆ Q → mapX,Φ(X)f ∗ r(Φ)(P) ⊆ r(Φ)(Q)

Furthermore, setting in (a) P := Q ◦ f and in (b) Q := f ∗ P one obtains

(c) r(Φ)(Q ◦ f) ⊆ r(Φ)(Q) ◦mapX,Φ(X)f

(d) mapX,Φ(X)f ∗ r(Φ)(P) ⊆ r(Φ)(f ∗ P)

Proof. We show a slight generalisation of (a). Let Φ be an operator of n+ 1 ar-

guments, and X,Y fresh predicate variables. Let Q = Q1, . . . ,Qn be predicates

in the language r(L). Then for all f , P , Q

P ⊆ Q ◦ f → r(Φ)(P ,Q) ⊆ r(Φ)(Q,Q) ◦mapX,Φ(X)f

The proof is by induction on the structure of Φ(X,Y). In the proof we allow

ourselves to switch between (a) and (b) whenever convenient.

Case X does not occur freely in Φ(X,Y). Then mapX,Φ(X,Y)f is the identity.

Furthermore, the operator r(Φ) does not depend on its first argument. Therefore,

the assertion clearly holds.

In the following we assume thatX does occur freely in Φ(X,Y). In particular,

this implies that Φ(X,Y) is computational.

We only look at the remaining interesting cases, namely those where Φ(X,Y)

is X , μZ.Φ0(X,Y, Z) or νZ.Φ0(X,Y, Z).
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Case Φ(X,Y) = X . Then r(Φ)(X̃, Ỹ) = X̃. Since mapX,Xf = f , the asser-

tion holds.

Case Φ(X,Y) = μZ.Φ0(X,Y, Z). Then r(Φ)(X̃, Ỹ) = μZ̃.r(Φ0)(X̃, Ỹ, Z̃).

Assume P ⊆ Q ◦ f . Setting R := r(Φ)(Q,Q) = μZ̃.r(Φ0)(Q,Q, Z̃), we have to

show

μZ̃.r(Φ0)(P ,Q, Z̃) ⊆ R ◦mapX,Φ(X,Y)f

We use induction on μZ̃.r(Φ0)(P ,Q, Z̃). Hence, we have to show

r(Φ0)(P ,Q,R ◦mapX,Φ(X,Y)f) ⊆ R ◦mapX,Φ(X,Y)f

r(Φ0)(P ,Q,R ◦mapX,Φ(X,Y)f)

i.h.(c)
⊆ r(Φ0)(P ,Q,R) ◦mapZ,Φ0(X,Y,Z)(mapX,Φ(X,Y)f)

i.h.(a)
⊆ r(Φ0)(Q,Q,R) ◦mapX,Φ0(X,Y,Z)f ◦mapZ,Φ0(X,Y,Z)(mapX,Φ(X,Y)f)

Lem. 6 (c)
= r(Φ0)(Q,Q,R) ◦mapX,Φ(X,Y)f

= r(Φ0)(Q,Q, μZ̃.r(Φ0)(P ,Q, Z̃)) ◦mapX,Φ(X,Y)f

Fixed P.
= μZ̃.r(Φ0)(Q,Q, Z̃) ◦mapX,Φ(X,Y)f

= R ◦mapX,Φ(X,Y)f

Case Φ(X,Y) = νZ.Φ0(X,Y, Z). Then r(Φ)(X̃, Ỹ) = νZ̃.r(Φ0)(X̃, Ỹ, Z̃).

Obviously, it is now more convenient to show (b). Assume f ∗ P ⊆ Q. Setting

R := r(Φ)(P ,Q) = νZ̃.r(Φ0)(P ,Q, Z̃), we have to show

mapX,Φ(X,Y)f ∗ R ⊆ νZ̃.r(Φ0)(Q,Q, Z̃)

We use coinduction on νZ̃.r(Φ0)(Q,Q, Z̃). The proof is exactly dual to the

inductive proof above (using the structural induction hypothesis in the form (d)

and (b)).

Proof of the Soundness Theorem (Thm. 5). As usual, one shows by in-

duction on derivations the following more general statement: From a derivation

B1, . . . , Bn 
 A one can extract a program term M with free variables among

x1, . . . , xn such that r(B1)(x1), . . . , r(Bn)(xn) 
 r(A)(M). The only interesting

cases are the axioms concerning inductively and coinductively defined computa-

tional predicates. Hence, let Φ be an operator such that μΦ (and hence νΦ) is

computational.

Closure. We have r(Φ(μΦ) ⊆ μΦ) = {f | r(Φ(μΦ)) ⊆ r(μΦ)◦f} Subst. L.
= {f |

r(Φ)(μr(Φ)) ⊆ μr(Φ) ◦ f}. Hence, we can choose M to be the identity and apply

the Closure Axiom for r(Φ).
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Coclosure. Similar. Again, the identity is a realiser.

Induction. By the Substitution Lemma, we have

r(Φ(Q) ⊆ Q → μΦ ⊆ Q) = {f | ∀s (r(Φ)(r(Q)) ⊆ r(Q)◦s → μr(Φ) ⊆ r(Q)◦fs)}

Therefore, in order to show that ItμΦ (=: M) realises induction, we assume

r(Φ)(r(Q)) ⊆ r(Q) ◦ s

and show μr(Φ) ⊆ r(Q) ◦ ItμΦs. We use induction on μr(Φ), which reduces the

problem to showing r(Φ)(r(Q) ◦ ItμΦs) ⊆ r(Q) ◦ ItμΦs.

r(Φ)(r(Q) ◦ ItμΦ)s
Map Lemma (c)

⊆ r(Φ)(r(Q)) ◦mapμΦ(ItμΦs)

assumption
⊆ r(Q) ◦ s ◦mapμΦ(ItμΦs)

Lemma 6 (a)
= r(Q) ◦ ItμΦs

Coinduction. Similar, using the Map Lemma (d) and Lemma 6 (b).

5 Semantics of program terms

Now we study a call-by-name operational semantics of program terms which

allows us to use the program terms extracted from a formal proof (according

to the Soundness Theorem) as programs that compute useful data. The situa-

tion can be illustrated by our first two examples. Suppose we have a proof of

C0(π/4). Then the Soundness Theorem yields a program term S and a proof of

S rC0(π/4). As explained in Sect. 3, this intuitively means that S denotes an

infinite stream of signed binary digits representing π/4. Hence we cannot expect

S to compute an observable (and therefore necessarily finite) data. However, as

we will show in Sect. 6, we can conclude from C0(π/4), for example, the formula

∃z (Z(z, 10) ∧ |π/4− z/210| ≤ 1/210) (1)

where Z(z, n) means that n is a natural number and z is an integer with |z| < 2n.

The predicate Z can be defined inductively by

Z = μX.{(0, 0)} ∪ {(2ni+ z, n+ 1) | i ∈ SD ∧X(z, n)}

It easy to see that a realiser of Z(z, n) is a signed binary representation of z

(that permits leading zeros). The Soundness Theorem extracts from a proof

of (1) a term M denoting an integer z in signed binary (i.e. M rZ(z)) such that

|π/4 − z/210| ≤ 1/210. It remains to be shown that the number z can be com-

puted from the term M . More precisely, we want to compute from M a data
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term representing the binary representation of z. More generally, we know, by

the Soundness Theorem, that from a proof of a formula A we can extract a pro-

gram term M and a proof of M rA. Furthermore, if A is a data formula, then we

can prove Data(M), by the Data Lemma. Hence, all that remains to be shown is

that whenever Data(M) is provable, then we can compute from M a data term d

such thatM = d is provable. In the following we show that this is indeed possible

using an operational big-step semantics. As an intermediate step we employ a

standard domain-theoretic denotational semantics, which is of independent in-

terest since it directly reflects the intuitive mathematical meaning of program

terms. We would also like to stress that our Adequacy Theorem is a general result

about an untyped λ-calculus with full recursion which is completely independent

of the theory of inductive and coinductive definitions. Hence, if we were to gener-

alise the realisability interpretation to more general kinds of (co)induction (e.g.

arbitrary positive or monotone) the Adequacy Theorem would not have to be

changed.

In the following we mean by a domain a Scott-domain, i.e. an algebraic,

countably based, bounded complete, dcpo [Gierz et al. 2003]. Note that every

domain has a least element ⊥ w.r.t. the domain ordering �. Let D be the least

solution of the domain equation

D = 1 + D + D + (D ×D) + [D → D]

where 1 is the one-point domain {()}, and +,×, [· → ·] denote the usual domain

operations, separated sum, cartesian product, and continuous function space. Of

course, the domain equation holds only “up to isomorphism”, however, we will

usually suppress the isomorphism notationally. Hence, every element of D is of

exactly one of the following forms: ⊥, (), inl(a), inr(a), 〈a, b〉, abst(f), where
a, b ∈ D and f ∈ [D → D]. It follows from standard facts in domain theory

that every program term M defines in a natural way a continuous function

[[M ]] : DVar → D. For example, [[λx.M ]]ξ = abst(f) where f(a) = [[M ]]ξ[x �→ a]

and [[recx .M ]]ξ is the least fixed point of f . Furthermore, if [[M ]]ξ = abst(f),

then [[M N ]]ξ = f([[N ]]ξ), otherwise the result is ⊥.

If Ax is a set of non-computational L-axioms we denote by r(Ax) the system

of r(L)-axioms consisting of the axioms in Ax together with the extra axioms

introduced in Sect. 3. IfM is a model of Ax, then we denote by r(M) the obvious

expansion of M to a model of r(Ax) using the definition above of the value of

a program term. Again, it follows from standard results in domain theory that

r(M) satisfies the axioms for program terms and hence is indeed a model of

r(Ax). Note that in this model the interpretation of the predicate Data defined

in Sect. 3 is the least subset [[Data]] of D such that

[[Data]] = {()} ∪ inl([[Data]]) ∪ inr([[Data]]) ∪ 〈[[Data]], [[Data]]〉
Hence, if Data(M) is provable, then [[M ]] ∈ [[Data]].
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Now we introduce the operational semantics of program terms. A closure is

a pair (M, η) where M is a program term and η is an environment, i.e. a finite

mapping from variables to closures, such that all free variables of M are in the

domain of η. Note that this is an inductive definition on the meta-level. A value

is a closure (M, η) where M is an intro term, i.e. a term of the form (), or

inl(M0), or inr(M0), or 〈M1,M2〉, or λx.M0. We let c, c′, . . . range over closures

and v, v′, . . . range over values. We inductively define the relation c −→ v (big-

step reduction):

(i) v −→ v

(ii)
η(x) −→ v

(x, η) −→ v

(iii)
(M, η) −→ (inl(M0), η

′) (L, η[x �→ (M0, η
′)]) −→ v

(caseM of{inl(x) → L ; inr(y) → R}, η) −→ v

(iv)
(M, η) −→ (inr(M0), η

′) (R, η[y �→ (M0, η
′)]) −→ v

(caseM of{inl(x) → L ; inr(y) → R}, η) −→ v

(v)
(M, η) −→ (〈M1,M2〉, η′) (Mi, η) −→ v

(πi(M), η) −→ v

(vi)
(M, η) −→ (λx.M0, η

′) (M0, η
′[x �→ (N, η)]) −→ v

(M N, η) −→ v

(vii)
(M, η[x �→ (recx .M, η)]) −→ v

(recx .M, η) −→ v

Finally, in order to compute data we need a ‘print’ relation c =⇒ d between

closures c and data terms d, which we define inductively as follows:

(i)
c −→ ((), η)

c =⇒ ()

(ii)
c −→ (inl(M), η) (M, η) =⇒ d

c =⇒ inl(d)

(iii)
c −→ (inr(M), η) (M, η) =⇒ d

c =⇒ inr(d)

(iv)
c −→ (〈M1,M2〉, η) (M1, η) =⇒ d1 (M2, η) =⇒ d2

c =⇒ 〈d1, d2〉
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Clearly, the inductive definitions of −→ and =⇒ give rise to an algorithm com-

puting d from c whenever c =⇒ d holds. Since this algorithm corresponds to a

call-by-name evaluation of terms one can conclude that if (M, ∅) =⇒ d, then in

a call-by-name language such as Haskell the evaluation of the program corre-

sponding to M will terminate with a result corresponding to d.

To every closure c we assign a term c by ‘flattening’, i.e. removing the struc-

ture provided by the nested environments:

(M, η) = M [η(x)/x | x ∈ dom(η)]

Note that this is a recursive definition on the meta-level.

Lemma10 (Correctness). (a) If c −→ v, then c = v is provable.

(b) If c =⇒ d, then c = d is provable.

Proof. (a) can be proven by straightforward induction on the definition of c −→
v. (b) Follows from (a) and induction on the definition of c =⇒ d.

The Computational Adequacy Theorem below states that if a term M denotes

a data d, then d can be computed from M .

Theorem 11 (Computational Adequacy). If [[M ]] = d, then (M, ∅) =⇒ d.

The proof of this theorem is obtained by transferring Plotkin’s Adequacy Theo-

rem for PCF [Plotkin 1977] to the untyped setting by using a domain-theoretic

variant of the reducibility or candidate method [Girard 1971, Tait 1975]. Similar

methods were used before to prove computational adequacy for related calculi

(e.g. [Amadio 1993] and [Winskel 1993]) and strong normalisation of λ-calculi

with constants and rewrite rules ([Coquand and Spiwack 2006], [Berger 2008]).

To carry out the proof, we first exploit the algebraicity of the domain D. Every

element of D is the directed supremum of compact elements, i.e. elements of D

that are generated at some finite stage in the construction of D. Let D0 be the

set of compact elements of D. There is a rank function rk(·) : D0 → N with the

following properties:

(rk1) The images of the injections inl(·), inr(·), and the pairing function 〈·, ·〉 are
compact iff their arguments are. Furthermore, injections and pairing increase

rank.

(rk2) If abst(f) is compact, then for every a ∈ D, f(a) is compact with

rk(f(a)) < rk(abst(f)), and there exists a compact a0 � a with rk(a0) <

rk(abst(f)) and f(a0) = f(a).
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These properties allow us to define for every compact a a set Cl(a) of closures,

by recursion on rk(a):

Cl(⊥) = the set of all closures

Cl(()) = {c | ∃η (c −→ ((), η))}
Cl(inl(a)) = {c | ∃(M, η) ∈ Cl(a) (c −→ (inl(M), η))}
Cl(inr(a)) = {c | ∃(M, η) ∈ Cl(a) (c −→ (inr(M), η))}

Cl(〈a1, a2〉) = {c | ∃M1,M2, η ((M1, η) ∈ Cl(a1) ∧ (M2, η) ∈ Cl(a2) ∧
c −→ (〈M1,M2〉, η))}

Cl(abst(f)) = {c | ∃x,M, η (c −→ (λx.M, η) ∧ ∀a ∈ D0 (rk(a) < rk(abst(f))

→ ∀c′ ∈ Cl(a) (M, η[x �→ c′]) ∈ Cl(f(a))))}
Alternatively, one could use the method in [Pitts 1994] to define similar “candi-

date” sets. Using (rk1) and (rk2) one can prove:

Lemma12. If a, b are compact with a � b, then Cl(a) ⊇ Cl(b).

Proof. Induction on the maximum of rk(a) and rk(b). The only interesting case

is abst(f) � abst(g). Then f � g (pointwise). Let c ∈ Cl(abst(g)). Then c −→
(λx.M, η), and for all compact b with rk(b) < rk(abst(g)) and all c′ ∈ Cl(b) we

have (M, η[x �→ c′]) ∈ Cl(g(b)). We show c ∈ Cl(abst(f)) using the same witness

(λx.M, η). Let a be compact with rk(a) < rk(abst(f)) and let c′ ∈ Cl(a). By

(rk2), there exists a compact b � a with rk(b) < rk(abst(g)) and g(b) = g(a).

By induction hypothesis, Cl(b) ⊇ Cl(a), hence c′ ∈ Cl(b). It follows (M, η[x �→
c′]) ∈ Cl(g(b)) = Cl(g(a)).

Lemma13. c ∈ Cl(a) iff there exists a value v with c −→ v and v ∈ Cl(a).

Proof. This can be seen by a trivial induction in rk(a) using the fact that for

values v, v′ we have v −→ v′ iff v = v′.

Lemma14. If c ∈ Cl(d), where d is a data, then c =⇒ d.

Proof. Straightforward induction on d.

In the following we write η ∈ Cl(ξ) if for all x ∈ dom(η), ξ(x) is compact and

η(x) ∈ Cl(ξ(x)).

Lemma15 (Approximation). If η ∈ Cl(ξ) and a is compact with a � [[M ]]ξ,

then (M, η) ∈ Cl(a).

Proof. Let [[M ]]nξ denote the n-th stage in the definition of [[M ]]ξ. Hence, [[M ]]0ξ =

⊥ and e.g. [[λx.M ]]n+1ξ(a) = [[M ]]nξ[�→ a], e.t.c. Since the [[M ]]nξ form an in-

creasing chain in D with [[M ]]ξ as its supremum, it follows that if a is compact

and a � [[M ]]ξ, then a � [[M ]]nξ for some n. Hence, it is enough to show:
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If η ∈ Cl(ξ) and a is compact with a � [[M ]]nξ, then (M, η) ∈ Cl(a).

We prove the assertion by induction on n ∈ N. The induction base, n = 0, is

easy, since [[M ]]0ξ = ⊥ and therefore a = ⊥, and Cl(⊥) is the set of all closures.

In the induction step, n + 1, we do a case analysis on the shape of M . We

may assume a �= ⊥, since otherwise the assertion is trivial.

Case x. By assumption, a � [[x]]n+1ξ = ξ(x) and η(x) ∈ Cl(ξ(x)). By

Lemma 12, η(x) ∈ Cl(a). By Lemma 13, there exists a value v with η(x) −→ v

and v ∈ Cl(a). It follows (x, η) −→ v and therefore (x, η) ∈ Cl(a), again by

Lemma 13.

Case (). By assumption, a � [[()]]n+1ξ = (). Hence a = () (since a �= ⊥).

Clearly, ((), η) ∈ Cl(()).

Case inl(M). By assumption, a � [[inl(M)]]n+1ξ = inl([[M ]]nξ). Hence a =

inl(a0) with a0 � [[M ]]nξ. By induction hypothesis, (M, η) ∈ Cl(a0). Since

(inl(M), η) −→ (inl(M), η) ((inl(M), η) is a value), it follows (inl(M), η) ∈
Cl(inl(a0)).

Cases inr(M), 〈M1,M1〉. Similar.

Case λx.M . By assumption, a � [[λx.M ]]n+1ξ = abst(g) where g(b) =

[[M ]]nξ[x �→ b]. Hence, a = abst(f) with f � g. By induction hypothesis,

(M, η[x �→ c]) ∈ Cl(f(b)), for all compact b and all c ∈ Cl(b). Since (λx.M, η) −→
(λx.M, η), it follows (λx.M, η) ∈ Cl(abst(f)).

Case caseM of{inl(x) → L ; inr(y) → R}. By assumption we have a �
[[caseM of{inl(x) → L ; inr(y) → R}]]n+1ξ. Since a �= ⊥ we have, w.l.o.g.

[[M ]]nξ = inl(b) and a � [[L]]nξ[x �→ b]. Since a is compact and the function

mapping b to [[L]]nξ[x �→ b] is continuous it follows that a � [[L]]nξ[x �→ b0] for

some compact b0 � b. By induction hypothesis, (M, η) ∈ Cl(inl(b0)). Hence,

(M, η) −→ (inl(M0), η0) with (M0, η0) ∈ Cl(b0). Again, by induction hypothe-

sis, (L, η[x �→ (M0, η0)]) ∈ Cl(a). By Lemma 13, (L, η[x �→ (M0, η0)]) −→ v) for

some value v ∈ Cl(a). It follows (caseM of{inl(x) → L ; inr(y) → R}, η) −→ v

and consequently (caseM of{inl(x) → L ; inr(y) → R}, η) ∈ Cl(a), again by

Lemma 13.

Cases πi(M). Similar.

Case M N . By assumption, a � [[M N ]]n+1ξ. Since a �= ⊥ we have, [[M ]]nξ =

abst(f) and a � f([[N ]]nξ). Since function application is continuous, there are

a compact f0 � f and a compact b � [[N ]]nξ with a � f0(b). By (rk2), we may

assume rk(b) < rk(abst(f0)). By induction hypothesis, (M, ξ) ∈ Cl(abst(f0))

and (N, η) ∈ Cl(b). Therefore, M −→ (λx.M0, η0) such that (M0, η0[x �→ c]) ∈
Cl(f0(b0)) for all compact b0 with rk(b0) < rk(abst(f0)) and all c ∈ Cl(b0).

Applying this to b0 := b and c := (N, η) we obtain (M0, η0[x �→ (N, η)]) ∈
Cl(f0(b)). By Lemma 13, (M0, η0[x �→ (N, η)]) −→ v for some v ∈ Cl(f0(b)). It

follows (M N, η) −→ v and hence (M N, η) ∈ Cl(f0(b)) ⊆ Cl(a), by Lemma 13

and Lemma 12.
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Case recx .M . By assumption, we have a � [[recx .M ]]n+1ξ = [[M ]]nξ[x �→
[[recx .M ]]nξ]. By a similar continuity argument as earlier in the proof, there

exists a compact b � [[recx .M ]]nξ such that a � [[M ]]nξ[x �→ b]. By induction

hypothesis, (recx .M, η) ∈ Cl(b) and (M, η[x �→ (recx .M, η)]) ∈ Cl(a). By

Lemma 13, (M, η[x �→ (recx .M, η)]) −→ v for some value v ∈ Cl(a), therefore

(recx .M, η) −→ v, and finally, (recx .M, η) ∈ Cl(a).

Proof of the Adequacy Theorem (Thm. 11).

Assume [[M ]] = d for some data d. Since d is compact, it follows, by the Approx-

imation Lemma, (M, ∅) ∈ Cl(d). Hence (M, ∅) =⇒ d, by Lemma 14.

6 Program extraction

The Soundness Theorem (Thm. 5) can be viewed as a general program extraction

result since it states that from a proof of an arbitrary formula A one can extract

a term M realizing A. The following theorem adds to this that if the realiser

represented by M is an observable data, then this data can be computed.

Theorem 16 (Program Extraction). From a proof of a data formula A one

can extract a program term M with the property that (M, ∅) =⇒ d for some data

d provably realising A, i.e. r(A)(d) is provable.

Proof. By the Soundness Theorem, we obtain from a proof of A a program term

M and a proof of r(A)(M). By Lemma 4, Data(M) is provable and therefore true

in D, i.e. [[M ]] = d for some data d. By the Adequacy Theorem, (M, ∅) =⇒ d,

and by Lemma 10, M = d is provable. It follows that r(A)(d) is provable.

Note that Theorem 16 is the best program extraction result one can hope for,

because if the realiser is not a finite data, for example, an infinite stream, then

it cannot be observed completely, but only finite initial segments of it can. We

highlight this aspect by resuming our example from Sect. 5.

Lemma17 (Printing digits).

∀n (N(n) → ∀x (C0(x) → ∃z (Z(z, n) ∧ |x− z

2n
| ≤ 1

2n
)))

Proof. Induction on N(n). Set P := {n | ∀x (C0(x) → ∃z (Z(z, n) ∧ |x − z
2n | ≤

1
2n ))}. We have to show (1) P(0), (2) ∀n (P(n) → P(n+1). For (1), we can take

z := 0, since C0(x) implies |x| ≤ 1. For (2), assume P(n) (i.h.) and C0(x). Let

i ∈ SD such that x = avi(y) for some y with C0(y). By i.h. there exists z such

that Z(z, n) and |y − z
2n | ≤ 1

2n . It follows Z(2
ni+ z, n+ 1) and

|x− 2ni+ z

2n+1
| = 1

2
|y − z

2n
| ≤ 1

2n+1

2552 Berger U.: Realisability for Induction and Coinduction ...



The program extracted from this proof takes as inputs a (unary) natural number

n and a signed digit stream a representing some real number in I, and computes

a signed binary representation of an integer z < 2n such that |x− z/2n| ≤ 1/2n.

In fact the digits of that representation will be exactly the first n elements of the

stream a. Hence, the extracted program is essentially Haskell’s function take

that computes the first n elements of a stream.

7 Conclusion and further work

In this paper we laid the logical and semantical foundations for the extraction of

programs from proofs involving inductive and coinductive definitions. The main

results where the Soundness Theorem for a realisability interpretation stating

that the extracted program provably realises the proven formula, and the Ad-

equacy Theorem stating that for data formulas the realisers can be computed

into canonical form via a call-by-name operational semantics.

We restricted ourselves to simple examples illustrating the method. More

substantial applications are described in [Berger 2009]. Strictly speaking our re-

sults do not apply to loc. cit. because there realisers are typed (with Haskell or

ML style polymorphic types) while our realisers are untyped. We plan to recast

our results with typed realisers, which will allow for a direct interpretation of

realisers as programs in a call-by-name typed programming language.

A major piece of work that remains to be done is the implementation of

the realisability interpretation in an interactive theorem prover in order to for-

mally carry out the case studies that have so far been sketched on an infor-

maly basis only. Furthermore, one needs to clarify the relation to other recent

work on the theory and the implementation of inductive and coinductive defini-

tions [Caffaglione and Gianantonio 2006], [Bertot 2007], [Niqui 2008], exact real

number computation [Escardo and Marcial-Romero 2007], [Geuvers et al. 2007],

[O’Connor and Spitters 2009], and realisability [Bauer and Stone 2007].
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