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1 Introduction

Given an algebra, by which we mean a set with constants and operations, is

there a largest subalgebra which carries a computable structure, and is the

structure unique up to computable isomorphism? Without further assump-

tions the answer is in general negative. For example, within the context of

Recursive Mathematics every computable subfield of reals may be properly ex-

tended to a subfield which is again computable, and this remains true even

if we require the subfields to be effectively complete. However, as was proved

by Moschovakis [Moschovakis 1965], by requiring also that the strict linear or-

der be semidecidable, we are left with only one choice, namely the recursive

reals. An analogous result for type 2 effectivity (TTE), was established by

Hertling [Hertling 1999].

We show how these results, as well as others, can be seen as standard facts

about completions of metric spaces in the context of constructive mathematics,

suitably interpreted in realizability models. We prove two main theorems which

together give conditions under which an algebra A, equipped with a complete
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metric d, has a unique effective subalgebra B that is effectively complete and for

which the relation d(x, y) < q is semidecidable in x, y ∈ B and q ∈ Q.

Rather than choosing a specific model of computation, we work in a general

realizability model. Thus our results apply to established schools of computable

mathematics, such as type 1 and type 2 effectivity, domain representations, equi-

logical spaces, and others.

The outline of the paper is as follows. Sections 2–4 introduce the necessary

background, namely realizability models, algebras, and premetric spaces. Sec-

tion 5 states the main theorems, Section 6 extends them to algebras with partial

operations, and Section 7 considers extensions to multi-sorted algebras. Finally,

in Section 8 we apply the results to specific examples. We conclude with a brief

discussion of possible further directions of research.

We would like to thank the anonymous referees for many useful comments

and suggestions.

2 Assemblies and Realizability

Among the different kinds of realizability the most suitable one for our pur-

poses is relative realizability, because it subsumes type 1 and type 2 effectivity,

domain representations, equilogical spaces, and other standard models of com-

putation, see [Bauer 2000]. We review the basic definitions here and refer the

readers to [van Oosten 2008] for background material on realizability.

A partial combinatory algebra (PCA) is a set A with a partial application

operation x · y, where we write x y instead of x · y, and associate application

to the left, x y z = (x y) z. Furthermore, there must exist k, s ∈ A satisfying

k x y = x, s x y ↓ and s x y z � (x z) (y z), where the expression t ↓ means “t is

defined” and a � b is Kleene’s equality which means that if one side is defined

then so is the other and they are equal. A PCA is a general model of computation

which supports encoding of pairs, natural numbers, recursion, partial recursive

functions, etc. An elementary sub-PCA is a subset B ⊆ A which is closed under

application and contains k and s suitable for A. Thus B is a PCA on its own

with the application operation inherited from A.

For the rest of the discussion we fix a PCA A and an elementary sub-

PCA Aeff ⊆ A. The elements of A are thought of as “arbitrary” and those of

Aeff as “effective” data or programs, although the exact meaning of these words

depends on the particular choice of A and Aeff.

An assembly S = (S,�S) is a set S together with a realizability relation

�S ⊆ A × S, such that for every x ∈ S there is at least one a ∈ A for which

a �S x. We read “a �S x” as “a realizes, or represents, the element x ∈ S”.

Note that a realizer a may represent several elements of x ∈ S.

A realized map f : S → T between assemblies is a map f : S → T between the

underlying sets which is tracked by some f ∈ Aeff, which means that whenever
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a �S x then f a ↓ and f a �T f(x). Note that we require maps to be realized

by the elements of the subalgebra Aeff. Assemblies and realized maps form a

category Asm(A,Aeff) which we abbreviate as Asm. An assembly S is modest,

or a modest set, if each realizer realizes at most one element: for all a ∈ A and

x, y ∈ S, if a �S x and a �S y then x = y.

An assembly S is equivalent to a multi-valued representation δS : A →
P(S) via the correspondence a �S x ⇐⇒ x ∈ δS(a). A modest set is

equivalent to a single-valued representation. Traditional schools of computable

mathematics typically use (single-valued) representations, see [Bauer 2000]

and [van Oosten 2008, Sect 1.4]:

– When A = Aeff = N is the first Kleene algebra whose application is defined by

m ·n = {m}(n), i.e., the m-th partial recursive function applied to n. In this

case the modest sets are equivalent to type 1 representations, or numbered

sets, which are used in the study of recursive mathematics. In this model

“effective” means “computable by (type 1) Turing machine”.

– Computability with respect to an oracle O is obtained if we take A = Aeff =

N with the application m · n = {m}O(n), where {m}O(n) is the result of

applying the m-th partial recursive function with access to oracle O to ar-

gument n.

– When A = NN is the second Kleene algebra and Aeff the subalgebra of total

computable functions we get type 2 representations [Weihrauch 2000]. In this

case “effective” means “computable by type 2 Turing machine”.

– The case A = Aeff = NN is the continuous version of type 2 effectivity in

which “effective” means “continuously realized”.

– When A is a universal Scott domain and Aeff its computable analogue, the

modest assemblies are equivalent to domain representations and computable

maps between them. Of course, “effective” is now interpreted in the sense of

domain representations.

– With Scott’s graph model A = Pω and its r.e. counterpart Aeff = RE we

obtain effective equilogical spaces.

Single-valued representations seem to be preferred to general assemblies, per-

haps because from a programmer’s perspective it makes little sense to use a single

realizer for representing several things. We use assemblies because they contain

the category of sets, as explained in Section 3.3. This allows us to consider clas-

sical and effective algebras in a single framework. Realizability toposes could be

used instead, but assemblies are easier to describe and work with.
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2.1 The realizability interpretation of first-order logic

Assemblies support an interpretation of first-order intuitionistic logic in which

a formula is deemed valid when there is an element r ∈ Aeff witnessing it. The

interpretation is given in terms of a realizability relation r � φ which is read as

“r realizes φ”, and is defined inductively on the structure of the sentence φ:

– always r � 	, and never r � ⊥,

– 〈p, q〉 � φ ∧ ψ iff p � φ and q � ψ,1

– 〈0, r〉 � φ ∨ ψ iff r � φ, and 〈1, r〉 � φ ∨ ψ iff r � ψ,2

– r � φ⇒ ψ iff for all q ∈ A, if q � φ then r q ↓ and r q � ψ,

– r � ∀x∈S . φ(x) iff for all a ∈ A, a ∈ S, if a �S a then r a ↓ and r a � φ(a),

– 〈a, r〉 � ∃x∈S . φ(x) iff for some a ∈ S, a �S a and r � φ(a),

– r � a = b iff a = b.

A sentence φ is valid when there exists r ∈ Aeff such that r � φ. Note that

r must be an element of the subalgebra Aeff. A formula with free variables

is valid when its universal closure is valid. Intuitionistic logic is sound with

respect to the realizability relation: if intuitionistic logic proves φ then φ is valid.

Realizability also validates additional principles such as Markov’s principle and

the constructively acceptable dependent choice.

Realizers for formulas reveal their computational content. For example, as-

suming we have an assembly C representing the complex numbers, a realizer r

for the formula ∀ z ∈C . ∃w ∈C . z = w2 represents a function which accepts a

realizer z of a complex number z and computes a pair r z = 〈w, p〉 such that

w realizes a number w and p realizes the equation z2 = w. In other words, r

computes square roots. Note that it does not have to respect equality of com-

plex numbers, i.e., if we give it a different realizer for the same number, it may

compute a different square root. In type 2 effectivity such realizers are thought

of as realizing multi-valued functions.

2.2 The role of double negation

Negation ¬φ is defined as φ⇒ ⊥. This gives us

r � ¬φ iff for all q ∈ A, not q � φ,

r � ¬¬φ iff there is q ∈ A such that q � φ.

1 〈p, q〉 is the encoding of the pair whose components are p and q.
2 n is the encoding of the natural number n.

2499Bauer A., Blanck J.: Canonical Effective Subalgebras ...



A realizer r of a doubly negated formula ¬¬φ does not carry any information

about the computational content of φ, because it is as good as any other realizer.

Thus double negation is a way of erasing the constructive or computational

meaning of a formula. To illustrate this, consider a morphism f : S → T and a

realizer r of the formula

∀ y ∈T . ∃x∈S . f(x) = y. (1)

Whenever b �T y then r b ↓ and r b �S x for some x ∈ S such that f(x) = y.

Thus r is like a right inverse of f , except that it is a realizer, not a morphism,

and it need not respect equality on T. In the terminology of type 2 effectivity, r

would be a realizer for a multi-valued right inverse of f . Now, if we put a double

negation in front of (1) we obtain a formula that is intuitionistically equivalent

to

∀ y∈T .¬∀x∈S . f(x) �= y. (2)

A realizer of (2) does not compute anything useful. Indeed, it accepts a realizer b

and outputs whatever it wants because a negation is realized either by everything

or nothing. Thus (2) is realized when f is onto and (1) when it is “effectively”

onto.

A formula which is equivalent to its double negation is called ¬¬-stable. Since
φ ⇒ ¬¬φ is always intuitionistically provable, only the direction ¬¬φ ⇒ φ is

relevant. An important family of stable formulas are the negative ones, which

are those built from ⊥, 	, =, ¬, ∧, ⇒, ∀, and possibly other ¬¬-stable primitive

relations. The realizers of a ¬¬-stable formula φ are computationally irrelevant

in the sense that any information that can be computed with the help of a

realizer r � φ can be computed without r. Ultimately, this implies that r itself

can be computed from nothing, as long as it exists.

In Asm the morphism f : S → T is mono precisely when f : S → T is

injective as a map between underlying sets. The formula expressing injectivity

of f ,

∀x, y∈S . f(x) = f(y) ⇒ x = y, (3)

is negative. Thus it has computationally irrelevant realizers and its “classical”

and “effective” readings are the same.

A mono f : S → T which also satisfies (1) is an isomorphism because in this

case a realizer r for (1) respects equality on T. If a mono f : S → T satisfies (2)

then f is a bijection but f−1 : T → S need not be realized. Such a mono is called

¬¬-dense, and is always isomorphic to a mono i : S � T such that S = T and i

is the identity map. A realizer of the identity on S, considered as a morphism

(S,�S) → (S,�T ), is precisely a many-one reduction between representations

�S and �T , thus the ¬¬-dense monos play in Asm the role of reductions between

representations.
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A mono i : S � T is called ¬¬-stable when

∀x∈T . (¬¬(x ∈ S) ⇒ x ∈ S)

is realized, where “x ∈ S” is a shorthand for ∃ y∈S . i(y) = x. Up to isomor-

phism, such a mono is a restriction of T to a subset S ⊆ T , and the realizability

relation �S is �T restricted to S. Thus the ¬¬-stable monos into T correspond

to subsets of T (with the induced realizability relations).

Knowing that a formula is ¬¬-stable may be quite useful because it allows

us to ignore its realizers. Markov’s principle

∀ f ∈{0, 1}N . (¬¬∃n∈N . f(n) = 1) ⇒ ∃n∈N . f(n) = 1. (4)

states that a formula of the form ∃n∈N . f(n) = 1 is ¬¬-stable, uniformly in f .

HereN is the modest set of natural numbers, cf. Section 3.2, and the exponential

{0, 1}N is the modest set of those maps N → {0, 1} which are tracked by elements

of A. A realizer mp for (4) accepts f that tracks f and an (irrelevant) realizer r

for the antecedent of the implication. It then computes a pair 〈n, s〉 such that

f(n) = 1, and s is irrelevant. The realizer mp may accomplish this by searching

for the smallest n ∈ N that yields f n = 1. The search terminates because

¬¬∃n∈N . f(n) = 1 is realized by r so that f(n) = 0 cannot be the case for all

n ∈ N.

2.3 Semidecidable predicates

To illustrate how the realizability interpretation is used, and for later use, we

explain how to treat semidecidability in Asm. We say that a mono i : S � T,

seen as a predicate on T, is semidecidable when

∀x∈T . ∃ f ∈{0, 1}N . (x ∈ S ⇐⇒ ∃n∈N . f(n) = 1) (5)

is realized. By Markov’s Principle the formula ∃n∈N . f(n) = 1 is ¬¬-stable.
Hence, without loss of generality we may restrict attention to those i : S � T

that are ¬¬-stable and for which i is a subset inclusion. Validity of (5) is then

equivalent to there being r ∈ Aeff which works as follows: if a �T x then, for

all n ∈ N, r a n ↓ and r a n ∈ {0, 1}, and furthermore, x ∈ S if, and only if,

r a n = 1 for some n ∈ N.

The semidecidable monos have the expected properties: decidable monos are

semidecidable, and the semidecidable monos are closed under conjunctions and

existential quantification over N, by which we mean that ∃n∈N . (n, x) ∈ S

interpreted in the internal language denotes a semidecidable mono, provided

that S � N × T is semidecidable. Consequently, a mono is semidecidable if

it can be expressed in the internal language as a formula built from decidable

predicates, conjunctions, disjunctions, and existential quantifications over N.
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In type 1 effectivity our notion of semidecidability coincides with the usual

one, while in type 2 effectivity the notion is known as “r.e. open subset”. In

a purely topological model, such as the continuous version of type 2 effectivity

“semidecidable” means “topologically open”. The interpretation in Set is trivial

because there every subset is semidecidable (even decidable) thanks to the law

of excluded middle.

3 Algebras

A signature Σ for an algebra is given by a list of function symbols f1, . . . , fk. Each

fi has an arity, which is a non-negative integer. The set Term(Σ) of terms over

Σ is built inductively from variables x, y, z, . . ., and terms f(t1, . . . , tn), where f

is a function symbol with arity n and t1, . . . , tn are terms.

We assume that a standard numbering ν(−) : N → {�} ∪ Term(Σ) of terms

is given. The qualifier “standard” means that the syntax of the terms can be

manipulated in a computable way. The special value ν(n) = � signifies that n is

not a valid code. This is needed for enumerating the set of closed terms, which

is an empty set when Σ contains no constant symbols, as well as in Section 6

where we consider partial operations.

The numbering induces the structure of a modest set on Term(Σ) with the

realizability relation

n �Term(Σ) t ⇐⇒ ν(n) = t.

We may similarly form the modest set of all closed terms over Σ.

A Σ-algebra A in a category C with finite products is given by an object |A|
called the carrier of A, and for each function symbol f with arity n a morphism

fA : |A|n → |A|, called an operation. Each term t ∈ Term(Σ) whose free variables

are among x1, . . . , xk determines a morphism |A|k → |A|: a variable xi is the i-th

projection, while a term f(t1, . . . , tn) is the composition of fA with the morphisms

determined by t1, . . . , tn. A subalgebra ofA is a Σ-algebra B with a mono B � A
such that the operations in A restrict to operations in B. We write B ≤ A when

B is a subalgebra of A.

If C and D are categories with finite products and F : C → D a functor which

preserves finite products then a Σ-algebraA in C is mapped by F to a Σ-algebra

F (A) in D, where |F (A)| = F (|A|) and fF (A) = F (fA). The mapping preserves

valid equations in A, and also reflects them if F is faithful.

A (first-order) formula over Σ is a formula φ in first-order logic with equality

and terms over Σ. If A is a Σ-algebra in C, where C is either Set or Asm, then

we may interpret such a φ as a statement about A: the terms are interpreted

according to A, while the logic is interpreted either in the standard set-theoretic

way, as given by Tarski, or using the realizability interpretation from Section 2.1.
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We write A |=C φ when φ is valid when so interpreted. We refer to interpreta-

tions in Set as “classical” and those in Asm as “effective”. More generally the

adjectives “classical” and “effective” are used to distinguish between the two set-

tings. For example, a “classical algebra” is an algebra in Set, while an “effective

algebra” is one in Asm. Similarly, a (classical) space is “classically complete” if

the formula expressing completeness is valid in Set, and an (effective) space is

“effectively complete” if the same formula is valid in Asm. Note however that

the exact interpretation of “effective” depends on the choice of the PCA A and

sub-PCA Aeff.

3.1 Subalgebras generated by subassemblies

Suppose A is classical Σ-algebra, and consider a subset C ⊆ |A| of the carrier.

Then there exists the smallest subalgebra I ≤ A such that C ⊆ |I|, namely the

intersection of all subalgebras of A that contain C. We say that I is generated

by C and denote it by 〈C〉A.
Now let A be an effective Σ-algebra and C � |A| a subassembly of |A|.

There exists the smallest effective subalgebra 〈C〉A ≤ A containing C as a

subassembly. One way of proving this is to work in the internal language of the

realizability topos RT(A,Aeff), where 〈C〉A is the intersection of all subalgebras

of A that contain the assembly C, just like in Set. A special case is the initial

subalgebra I = 〈∅〉A which is generated by the empty subassembly. It is always

modest, even if A is not. Specifically, the underlying set of I is

I = {tA | t is a closed Σ-term}

and the realizability relation is given by

n �I x ⇐⇒ for some closed Σ-term t, ν(n) = t and tA = x .

The initial algebra is effectively enumerated by the morphism e : N → {�}+ I

defined by

e(n) =

{
tA if ν(n) = t is a closed term

� otherwise.

The special value � is needed because there may be no closed terms.

3.2 Algebras characterized by their universal properties

When a classical algebra is characterized up to isomorphism by a universal prop-

erty, we may use the property to identify the corresponding effective algebra. It

turns out that we usually get the generally accepted “correct” computability

structure:
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– The natural numbers N are the initial commutative semiring with unit. In

Asm this is the modest set N = (N,�N) where n �N n for each n ∈ N.

– The initial commutative ring with unit in Set are the integers Z, while in

Asm it is the modest set Z = (Z,�Z) where, for each m,n ∈ N and k ∈ Z,

〈m,n〉 �Z k when k = m− n.

– The field of fractions over the integers in Set are the rationals Q. In Asm

it is the modest set Q = (Q,�Q) where, for all k,m, n ∈ N and q ∈ Q,

〈k,m, n〉 �Q q when q = (k −m)/n.

– The reals R are the Cauchy-complete archimedean ordered field.3 The coun-

terpart in assemblies is the modest set R = (R,�R) where a �R x when

a ∈ A represents a fast Cauchy sequence4 of rational numbers converging

to x, and R = {x ∈ R | ∃ a∈A . a �R x}. Depending on the choice of A

the set R could consist just of the computable reals, or all reals, or all reals

computable with respect to an oracle, etc.

Unfortunately, such universal characterizations are not always available or prac-

tical. Apart from first-order formulas over a signature Σ we shall also consider

more general first-order formulas which additionally refer to the natural num-

bers N, the integers Z, and the rationals Q. We call them extended formulas over

the signature Σ. When they are interpreted in Set, the symbols N, Z, Q receive

their usual meaning, whereas in Asm we interpret them as the corresponding as-

semblies N, Z, and Q, as described above. We do not allow an extended formula

to refer directly to the real numbers because Proposition 1 below fails for for-

mulas that refer to the reals. An extended formula over Σ which is also negative

is called extended negative formula over Σ.

3.3 Transfer of algebras between sets and assemblies

An effective Σ-algebra A becomes a classical Σ-algebra when the effective struc-

ture is removed. More precisely, there is a functor Γ : Asm → Set which forgets

the effective structure: it maps an assembly S = (S,�S) to its underlying set

ΓS = S and a morphism f : S → T to the underlying map Γf = f : S → T .

Because Γ preserves finite limits, and finite products in particular, it maps a

Σ-algebra A in Asm to the Σ-algebra ΓA in Set.

Proposition1. The Σ-algebra A in Asm satisfies the same extended negative

formulas as ΓA does in Set.

3 Strictly speaking, this is not a universal property, but it still fixes the reals up to
isomorphism both in Set and Asm.

4 A sequence (an)n is fast Cauchy if |am − an| ≤ 2−min(m,n) for all m,n ∈ N.
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Proof. The proof proceeds by induction on the structure of an extended negative

formulas over Σ. The base cases ⊥ and 	 are trivial. The remaining base case

is an equation t1 = t2, for which

A |=Asm t1 = t2 iff ΓA |=Set t1 = t2,

holds because Γ is faithful. For the induction step, suppose φ1 and φ2 are ex-

tended negative formulas over Σ. The realizability interpretation of implication

gives

A |=Asm φ1 ⇒ φ2 iff if A |=Asm φ1 then A |=Asm φ2.

By the induction hypotheses for φ1 and φ2 we obtain a further equivalence with

if ΓA |=Set φ1 then ΓA |=Set φ2

which is just the definition of ΓA |=Set φ1 ⇒ φ2. Negation and conjunction are

treated similarly. For a universal quantification ∀x∈S . φ(x), where φ(x) is an

extended negative formula over Σ and S = (S,�S) is one of |A|, N, Z or Q, we

have

A |=Asm ∀x∈S . φ(x) iff for all a ∈ S, A |=Asm φ(a).

By induction hypothesis this is equivalent to

for all a ∈ S, ΓA |=Set φ(a),

which is the definition of

ΓA |=Set ∀x∈ΓS . φ(x).

The proof is finished because Γ |A| = |ΓA|, ΓN = N, ΓZ = Z, and ΓQ = Q. ��

A ¬¬-dense subalgebra B ≤ A in Asm is a subalgebra for which the mono

|B| � |A| is ¬¬-dense.

Corollary 2. An effective Σ-algebra and a ¬¬-dense subalgebra satisfy the same

extended negative formulas over Σ.

Proof. Let A be an effective Σ-algebra and B ≤ A a ¬¬-dense subalgebra. Recall
that we may assume without loss of generality that |B| = |A| and that the mono

|B| � |A| is the identity map. The corollary follows from Proposition 1 and the

fact that ΓA = ΓB. ��

It is possible to equip every set S with an effective structure, albeit a com-

pletely trivial one: define the constant assembly ∇S = (S,�∇S) where r �S x

holds for all r ∈ A and x ∈ S. In other words, in ∇S every realizer realizes

every element. Every function f : S → T between sets S and T is realized as a
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map ∇f : ∇S → ∇T , for example by the realizer s k k. This gives us a full and

faithful embedding ∇ : Set → Asm.

The functor ∇ preserves limits, and finite products in particular. Therefore,

it maps a Σ-algebra A in Set to a Σ-algebra ∇A in Asm.

Proposition3. The Σ-algebra A in Set satisfies the same extended negative

formulas as ∇A does in Asm.

Proof. By Proposition 1 ∇A satisfies the same extended negative formulas as

Γ (∇A), but Γ (∇A) = A. ��

We mention that for any assembly S and set T the maps ΓS → T correspond

bijectively and naturally to the maps S → ∇T , which means that Γ is left adjoint

to ∇. In fact, it is well known that Γ and ∇ are part of a geometric inclusion

of toposes Set → RT(A,Aeff), and that Set is equivalent to the sheaves for the

¬¬-topology in RT(A,Aeff). This implies that Proposition 1, Corollary 2, and

Proposition 3 have their analogues in the realizability topos RT(A,Aeff).

4 Premetric spaces

A metric algebra is a Σ-algebra in the category of metric spaces and continuous

maps, i.e., its carrier is a metric space and the operations are continuous maps.

A metric algebra is complete if its carrier is a complete metric space. We face

two difficulties when we try to transfer metric algebras from sets to assemblies.

The first difficulty is that ∇ maps a metric d : S × S → R to the realized map

∇d : ∇S ×∇S → ∇R, which is not a metric anymore because its codomain ∇R

is not the object R of real numbers in Asm. The second difficulty is that ∇ need

not preserve continuity of operations.

To overcome the first difficulty we use a formulation of metric spaces which

does not directly refer to real numbers, is classically equivalent to the usual

metric spaces,5 and is constructively acceptable. Such a notion, namely premetric

spaces, was defined by Fred Richman [Richman 2008]. We use a slight variation:

Definition 4. A premetric space (X, d) is a set X with a ternary relation d ⊆
X×X×Q satisfying the following conditions, where we write d(x, y) ≤ q instead

of (x, y, q) ∈ d:

1. if q < 0 then not d(x, y) ≤ q,

2. d(x, y) ≤ 0 if, and only if, x = y,

3. if d(x, y) ≤ q then d(y, x) ≤ q,

5 We allow infinite distances but that is inessential.
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4. if d(x, y) ≤ q and d(y, z) ≤ r then d(x, z) ≤ q + r,

5. d(x, y) ≤ q if, and only if, d(x, y) ≤ r for all r > q.

Richman’s definition also requires that for all x, y ∈ X there is a rational q ≥ 0

such that d(x, y) ≤ q. We omit the requirement as it would prevent us from

proving Proposition 6 below, because the classical existence of such a q in Set

cannot be transfered to effective existence in Asm.

The strict version d(x, y) < q of the premetric relation is defined by

d(x, y) < q ⇐⇒ ∃ r∈Q . d(x, y) ≤ r ∧ r < q.

An open ball centred at x with radius r is defined as usual, BX(x, r) = {y ∈ X |
d(x, y) < q}.

Every metric space (M,d) is a premetric space (M,d′) with d′ = {(x, y, q) ∈
X × X × Q | d(x, y) ≤ q}. Classically, the converse holds if we allow infinite

distances6 because the metric d may be recovered from the premetric d′ as

d(x, y) = inf {q ∈ Q | d′(x, y) ≤ q}. Constructively however the infimum need

not exist.

Requirement 4 in the definition of premetric spaces corresponds to the trian-

gle inequality. We often use it to show that d(x, z) ≤ q + r because d(x, y) ≤ q

and d(y, z) ≤ r. In such cases we abuse notation and express the argument by

writing d(x, z) ≤ d(x, y) + d(y, z) ≤ q + r. This is how the familiar triangle in-

equality is used in the case of metric spaces. Of course, we need to keep in mind

the fact that there is no distance function d to speak of.

The basic theory of premetric spaces parallels that of metric spaces. The no-

tions of completeness, continuity, density, etc., are all easily expressed in terms

of the premetric. In fact, the whole theory is constructively valid (even without

choice), as was shown by Richman [Richman 2008]. Despite our allowing infinite

distances, Proposition 5 below still holds constructively, and is therefore valid

both in Set and Asm. We say that a map f : X → Y is locally uniformly continu-

ous if its domain can be written as a union of open balls such that f is uniformly

continuous on every one of them.

Proposition5. Let X ⊆ Y be a dense subset of a complete premetric space Y .

Every locally uniformly continuous f : X → Z to a complete premetric space Z

has a unique locally uniformly continuous extension f : Y → Z.

Proof. See [Richman 2008, Theorems 2.2 and 2.3]. ��
6 With Richman’s extra axiom the correspondence between metric and premetric
spaces is exact, classically. At any rate, every metric space (with infinite distances)
is topologically equivalent to one with a bounded metric.
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An easy consequence of the theorem is that any two completions of a premetric

space, i.e., isometric embeddings with dense image into a complete metric space,

are isometrically isomorphic.

Let us see how a premetric space (X, d) is transferred from Set to Asm by ∇.

The relation d ⊆ X×X×Q is mapped to a ¬¬-stable mono ∇d� ∇X×∇X×
∇Q. This is not quite what we want because in Asm the premetric structure on

∇X should be a relation on ∇X×∇X×Q. We restrict∇d to the desired domain

via the mono id∇X × id∇X × i, where i : Q � ∇Q is the morphism represented

by the identity on Q. As far as extended negative formulas are concerned, this

does not make a difference because i : Q � ∇Q is ¬¬-dense. We shall not bother

writing the inclusion i explicitly.

Proposition6. If (X, d) is a classical premetric space then (∇X,∇d) is an

effective premetric space. Furthermore, (X, d) and (∇X,∇d) satisfy the same

extended negative formulas.

Proof. The proposition follows from Proposition 3 because ∇d is a ¬¬-stable
mono and the axioms for premetric spaces are extended negative formulas. ��

A premetric space (X, d) is complete when there is an operator

limX : Cauchy(X) → X

that computes limits of Cauchy sequences. More precisely, let

Cauchy(X) = {a ∈ XN | ∀m,n∈N . d(am, an) ≤ 2−min(m,n)}.

The operator limX has to satisfy

∀ a∈Cauchy(X) . ∀n∈N . d(an, limX a) ≤ 2−n. (6)

Proposition7. If (X, d) is a classical complete premetric space then (∇X,∇d)
is an effective complete premetric space.

Proof. Suppose (X, d) is a complete premetric space in Set with a limit operator

limX . We need to show that (∇X,∇d) has a limit operator lim∇X in Asm for

which (6) is realized. Observe that (∇X)N ∼= ∇(XN) because every map N → X

is realized as a morphism N → ∇X , say by the realizer s k k. This implies that

Cauchy(∇X) ∼= ∇Cauchy(X). By harmlessly pretending that the isomorphism is

actually an equality, we obtain

∇ limX : Cauchy(∇X) → ∇X.

Because (6) is a negative formula satisfied by limX in Set, ∇ limX satisfies it in

Asm. Therefore, we may take lim∇X = ∇ limX . ��
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We now address the second difficulty, namely that ∇ need not preserve con-

tinuity of maps. More precisely, ∇ does not preserve pointwise continuity of

f : X → Y at x ∈ X because it is expressed by a formula which is not negative:

∀ k ∈N . ∃m∈N . ∀ y∈X . d(x, y) ≤ 2−m ⇒ d(f(x), f(y)) ≤ 2−k. (7)

To circumvent this problem, we consider instead sequentially continuous maps,

i.e., those that preserve limits of Cauchy sequences. Classically pointwise and

sequential continuity are equivalent, but constructively the latter is weaker than

the former.7

Lemma8. If f : X → Y is a sequentially continuous map between classical

complete premetric spaces then ∇f : ∇X → ∇Y is effectively sequentially con-

tinuous.

Proof. For ∇f : ∇X → ∇Y to be effectively sequentially continuous it has to

satisfy ∇f ◦ lim∇X = lim∇Y ◦∇f , which is equivalent to

Γ (∇f ◦ lim∇X) = Γ (lim∇Y ◦∇f)
because Γ is faithful. The equality holds because lim∇X = ∇ limX , lim∇Y =

∇ limY , and f is sequentially continuous:

Γ (∇f ◦ lim∇X) = Γ (∇(f ◦ limX)) = Γ (∇(limY ◦f)) = Γ (lim∇Y ◦∇f).
��

In the context of Σ-algebras Lemma 8 tells us that ∇ transfers a classical com-

plete premetric algebra A to an effective complete premetric algebra ∇A, with

the caveat that the operations of ∇A are only sequentially continuous.

4.1 Complete subalgebras

When A is a classical complete premetric Σ-algebra we may ask whether for

every subalgebra B ≤ A there exists a smallest complete subalgebra B ≤ A which

contains B. The answer is positive: because intersections of complete subalgebras

preserve completeness, B is the intersection of all complete subalgebras that

contain B. This rather uninformative description of B can be improved if we

require operations of B to be locally uniformly continuous.

Proposition9. Let A be a classical complete premetric Σ-algebra. The closure

|B| of the carrier of a subalgebra B ≤ A is the least complete subalgebra of A
containing B, provided the operations on B are locally uniformly continuous.

7 In Bishop’s constructive mathematics pointwise continuity is implied by sequential
continuity and Ishihara’s BD-N principle [Ishihara 1992]. However, our formulation
of metric spaces in terms of premetric is more general than the standard constructive
one, and the connection with BD-N does not apply.
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Proof. By Proposition 5 each fB : |B|n → |B| extends to an operation fB : |B|n →
|B|, hence |B| is a Σ-algebra which we denote by B. We still have to show that B
is a subalgebra of A, i.e., that fA restricted to |B|n is fB. Consider any x ∈ |B|.
There is a sequence (un)n in |B| such that limn un = x. Because fA and fB are

continuous it follows that

fA(x) = limn f
A(un) = limn f

B(un) = limn f
B(un) = fB(x).

��

We state the effective version of the previous proposition in terms of sequential

continuity so that it is applicable to our situation.

Proposition10. Let A be an effective Σ-algebra whose carrier is an effectively

complete premetric space and the operations are effectively sequentially continu-

ous. The effective closure |B| of the carrier of an effective subalgebra B ≤ A is the

least effectively complete subalgebra of A containing B, provided the operations

on B are effectively locally uniformly continuous.

Proof. We may reuse the proof of Proposition 9 because Proposition 5 is con-

structively valid. The only change is that we refer to sequential rather than

pointwise continuity of fA in the last sentence. ��

We remark that the complete subalgebra B generated by B is modest if B is

modest, even if A is not. The explicit description of B is as follows. Let C =

(C,�C) = Cauchy(|B|) be the assembly of fast Cauchy sequences in |B|, which
is modest because |B| is. Define the coincidence relation ∼ on C by

a ∼ b ⇐⇒ ∀n∈N . d(an, bn) ≤ 2−n+1.

Then |B| is the modest assembly whose underlying set is C/∼ and the realiz-

ability relation is

r �|B| [a]∼ ⇐⇒ r �C a.

Of course, in an actual implementation we are free to use any other representa-

tion, as long as it is effectively isomorphic to this one.

5 Main Theorems

Let A be a classical premetric Σ-algebra. In general there will be many effective

subalgebras B ≤ ∇A, each carving out a different piece of A with its own

effective structure. Our first theorem gives conditions which severely cut down

the number of possibilities.
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Theorem 11. Suppose A is a classical premetric Σ-algebra in which the initial

subalgebra 〈∅〉A is classically dense. Up to effective isomorphism, there is at most

one effectively complete subalgebra B ≤ ∇A on which the relation ∇d(x, y) < q

is semidecidable in x, y ∈ |B|, q ∈ Q.

Proof. We prove the theorem by showing that B, if it exists, is the effective com-

pletion of the initial subalgebra I = 〈∅〉∇A. Because any two metric completions

of |I| are unique up to isomorphism it follows that there is at most once such B,
up to isomorphism. As B is presumed to be effectively complete, we only need

to show that I is effectively dense in B.
The assumption that 〈∅〉A is dense in A is a classical statement, but we can

still express it in Asm as a statement about ∇〈∅〉A and ∇A:

|=Asm ∀ y∈∇|A| . ∀ q ∈Q . (q > 0 =⇒ ¬¬∃ y ∈∇〈∅〉A .∇d(x, y) ≤ q) . (8)

Notice how we translated the classical ∃ to ¬¬∃ in Asm. Because I is the initial

subalgebra of ∇A, it is contained in both ∇〈∅〉A and in B. In fact, the mono

|I| � |∇〈∅〉A| is ¬¬-dense because the underlying set of |I| is precisely the

carrier of 〈∅〉A.
From now on we argue in the internal language of Asm. Because I is ¬¬-dense

in ∇〈∅〉A, statement (8) is equivalent to

∀ y∈∇|A| . ∀ q ∈Q . (q > 0 =⇒ ¬¬∃ y ∈ |I| .∇d(x, y) < q) .

We restrict the outer quantifier to |B|,

∀ y ∈ |B| . ∀ q∈Q . (q > 0 =⇒ ¬¬∃ y ∈ |I| .∇d(x, y) < q) , (9)

and thereby make the relation ∇d(x, y) < q semidecidable. Recall from Sec-

tion 3.1 that the subalgebra I is effectively enumerated by a map e : N →
{�}+ |I|. The statement (9) is equivalent to

∀ y ∈ |B| . ∀ q∈Q . (q > 0 =⇒ ¬¬∃n∈N . e(n) �= � ∧∇d(e(n), y) < q) ,

Because the relation inside the existential quantifier is semidecidable, by

Markov’s principle we may erase the double negation in front of ∃. Then we

pass back to quantification over I to obtain effective density of I in B:

∀ y∈ |B| . ∀ q∈Q . (q > 0 =⇒ ∃x∈I .∇d(x, y) < q) .

This completes the proof. ��

When the initial subalgebra 〈∅〉A is not dense, Theorem 11 cannot be applied.

Quite often this can be fixed with a judicious addition of new constants and

operations. For example, the initial subring of the ring C[0, 1] of continuous
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real functions on the closed unit interval is the ring of integers (embedded as

constant functions), which is not dense. If we adjoin the identity function and

the constant function 1
2 as primitive constants, the initial subalgebra will be the

ring of polynomials whose coefficients are dyadic rationals,8 which is dense by

the (classical) Stone-Weierstraß theorem.

The next theorem complements Theorem 11 by giving conditions for exis-

tence of subalgebras.

Theorem 12. Let A be a classical complete premetric Σ-algebra. Suppose the

relation ∇d(x, y) < q is semidecidable on 〈∅〉∇A and the operations of 〈∅〉∇A
are effectively locally uniformly continuous. Then ∇A has an effective complete

subalgebra on which the relation ∇d(x, y) < q is semidecidable.

Proof. We know from the proof of Theorem 11 that the desired subalgebra must

be the completion I of I = 〈∅〉∇A. By Proposition 10, I is an effective subalgebra

of∇A. It remains to be shown that ∇d(x, y) < q is semidecidable on I. We argue

in the internal language of Asm. Consider any x, y ∈ I and q ∈ Q. There exist

fast Cauchy sequences (un)n, (vn)n ∈ Cauchy(I) such that x = limn un and

y = limn vn. A little thinking reveals that

∇d(x, y) < q ⇐⇒ ∃ s∈Q . ∃m∈N .∇d(um, vm) < q − 2−m+1,

which is semidecidable because it is a countable existential quantification of a

semidecidable statement. ��

6 Partial algebras

A partial Σ-algebra in a category C is given by a carrier object |A|, and for each

function symbol f with arity n, a partial morphism fA : |A|n ⇀ |A|, which is a

morphism fA : dom(fA) → |A| whose domain is a subobject dom(fA) � |A|n,
called the support of the operation. The operation fA is total if dom(fA) = |A|n.
We require that function symbols with arity 0, namely the constants, be total.

This is necessary if we want to avoid the bizarre phenomenon that the initial

subalgebra of a partial algebra is always the empty one. We adapt the results

established so far to partial algebras.

The first change is that the interpretation of a term t ∈ Term(Σ) with vari-

ables x1, . . . , xn is a partial morphism tA : |A|n⇀ |A|. We may still use the same

Gödel numbering for terms, as long as we keep in mind that some terms may

signify undefined values. In order to be able to make useful statements about the

partial algebra, we augment extended formulas over Σ with primitive formulas

t ↓ whose informal reading is “the term t is defined”. If t contains free variables

8 A dyadic rational is one of the form n/2k.
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x1, . . . , xn, then t ↓ denotes the mono dom(tA) � |A|n. In particular cases t ↓
might be expressible with other logical primitives, for example in the theory of

real numbers x−1 ↓ is equivalent to x �= 0.

A subalgebra B of a partial Σ-algebra A is a partial Σ-algebra with a mono

|B| � |A| such that the operations fB are restrictions of fA. In particular this

means that dom(fB) is the restriction of dom(fA) so that the following diagram

is a pullback:

dom(fB)
��

��

��

�� �� dom(fA)
��

��
|B|n �� �� |A|n

Functors Γ and ∇ preserve partial Σ-algebras because they preserve finite

limits. If A is a classical partial Σ-algebra then ∇A is an effective partial Σ-

algebra whose operations have ¬¬-stable supports because ∇ maps subsets to

¬¬-stable monos. Thus we simplify the treatment by considering only those

partial algebras in Asm whose operations have ¬¬-stable domains.

Proposition13. A partial Σ-algebra A in Asm satisfies the same extended neg-

ative formulas as ΓA does in Set.

Proof. Analogous to the proof of Proposition 1. The only change is the extra

base case t ↓, which goes through because we limit attention to partial algebras

with ¬¬-stable supports. ��

Corollary 14. An effective partial Σ-algebra and a ¬¬-dense subalgebra satisfy

the same extended negative formulas over Σ.

Proof. Analogous to the proof of Corollary 2. ��

Proposition15. A partial Σ-algebra A in Set satisfies the same extended neg-

ative formulas as ∇A does in Asm.

Proof. By Proposition 13 ∇A satisfies the same extended negative formulas as

Γ (∇A), but Γ (∇A) = A. ��

Every subset C ⊆ |A| of a classical partial Σ-algebra A is contained in the

smallest subalgebra 〈C〉A ≤ A, namely the intersection of all subalgebras that

contain it. Similarly, a subassembly C � A of an effective partial Σ-algebra A
is contained in the smallest subalgebra 〈C〉A ≤ A. We describe explicitly the

initial subalgebra I = 〈∅〉A. The carrier of I is the assembly I whose underlying

set is

I = {x ∈ |A| | for a closed Σ-term t, tA is defined and x = tA }
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with the realizability relation (recall that ν is a standard enumeration of Σ-

terms)

n �I x ⇐⇒ for a closed Σ-term t, tA is defined, ν(n) = t and tA = x.

An important difference with respect to total algebras is that I need not be

effectively enumerated because the predicate “tA is defined” may be arbitrarily

complicated. A sufficient condition for I to be effectively enumerable is that the

predicate

“n is Gödel code of a closed Σ-term t such that tA is defined”

denotes a semidecidable mono into N.

Next we turn attention to premetric notions for partial algebras. We argue

constructively so that all results apply to Set and Asm. In particular, we only rely

on sequential continuity of operations. Let A be a complete premetric partial Σ-

algebra, either in Set or Asm, by which we mean that |A| is a premetric space and

the operations fA : |A|k⇀ |A| are partial maps that are sequentially continuous

on their supports. Every subalgebra B ≤ A is contained in the smallest complete

subalgebra B ≤ A, namely the intersection of all complete subalgebras containing

it. Just as in the total case, we seek conditions which allow us to conclude that B
is the completion of B. The conditions should imply that each partial operation

fB has a continuous extension to dom(fA) ∩ |B|n.
Proposition16. Let X ⊆ Y be a dense subset of a complete premetric space Y

and U =
⋃

i∈I BY (xi, ri) a union of open balls in Y with centers xi ∈ X. Suppose

f : U ∩X → Z is a map into a complete premetric space Z which is uniformly

continuous on every BX(xi, ri). Then there is a unique extension f : U → Z

which is uniformly continuous on every BY (xi, ri).

Proof. Let us first define f at y ∈ U . There is i ∈ I such that y ∈ BY (xi, ri)

and a Cauchy sequence (un)n in X such that y = limun. For large enough n

we have un ∈ BX(xi, ri), so we may assume without loss of generality that

the whole sequence (un)n is in BX(xi, ri). Because (f(un))n is the image of a

Cauchy sequence by a uniformly continuous map, it is Cauchy and we may de-

fine f(y) = limn f(un). The value f(y) does not depend on the choice of (un)n.

Indeed, if (vn)n is another Cauchy sequence in X that converges to y then

limn f(vn) = limn f(un) because (vn)n is eventually in BX(xi, ri), and f is uni-

formly continuous on BX(xi, ri). It is not hard to verify that f so defined is

uniformly continuous on each BY (xi, ri). The map f is the only continuous ex-

tension of f because X is dense in Y . ��
This brings us to the main theorems for partial algebras. The proof of The-

orem 11 uses the fact that 〈∅〉A is effectively countable, so we need to add an

additional assumption in the partial case:
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Theorem 17. Suppose A is a classical partial premetric Σ-algebra in which

the initial subalgebra 〈∅〉A is classically dense and the initial effective subalge-

bra 〈∅〉∇A is effectively enumerable. Up to isomorphism, there is at most one

effectively complete subalgebra B ≤ ∇A on which the relation d(x, y) < q is

semidecidable.

Proof. The proof proceeds just like the proof of Theorem 11 where we use the

effective enumeration of 〈∅〉∇A in place of the enumeration e. ��

In the second main theorem we must add assumptions that secure applicabil-

ity of Proposition 16. We give sufficient conditions which require that supports

of operations are effectively open and that the operations are effectively locally

uniformly continuous. With this we cover the usual examples of partial alge-

bras and stay close to the way partial operations are actually implemented, see

Section 8.2 for further discussion.

Let A be a classical complete premetric partial Σ-algebra. We say that a

partial operation fA : |A|n ⇀ |A| is acceptable for B ≤ ∇A when there is an

effective sequence (x, r) : N → |B|n ×Q with ri > 0 such that

1. dom(fA) =
⋃

n∈NB|A|n(xn, rn), and

2. the statement

∀ i∈N . “fB is uniformly continuous on B|B|n(xi, ri)” (10)

is realized.

Concretely, the second condition amounts to the existence of a realizer which

accepts (realizers of) i, k ∈ N and computes a (realizer of) m ∈ N such that, for

all u, v ∈ |B|n, if ∇d|A|n(xi, u) < ri, ∇d|A|n(xi, v) < ri, and ∇d|A|n(u, v) ≤ 2−m

then ∇d|A|n(fB(u), fB(v)) ≤ 2−k.

Proposition18. Suppose A is a classical complete premetric partial Σ-algebra

and B ≤ ∇A such that the operations of A are acceptable for B and ∇d(x, y) < q

is semidecidable in x, y ∈ |B|, q ∈ Q. Then the effective completion of |B| is the

smallest effectively complete partial Σ-algebra containing B.

Proof. Let C � ∇A be the effective completion of |B|. We first show that each

f∇A : dom(f∇A) → |∇A| restricts to dom(f∇A) ∩ Cn → C. Let (x, r) : N →
|B|n×Q be the effective sequence witnessing the fact that fA is acceptable for B.
We claim that

|=Asm dom(f∇A) ∩Cn =
⋃

i∈N
BCn(xi, ri).
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Because dom(f∇A) = ∇dom(fA) = ∇⋃
i∈NB|A|n(xi, ri), this is equivalent to

having a realizer for

∀x∈Cn . (¬¬∃ i∈N .∇d(x, xi) < ri) ⇐⇒ (∃ i∈N .∇d(x, xi) < ri).

Because ∇d(x, y) < q is semidecidable on |B|, it is also semidecidable on its

completion C, by the same argument as the one in the proof of Theorem 12.

Hence the above equivalence holds by Markov’s principle.

It is our intention to apply the interpretation of Proposition 16 in Asm with

X = |B|n, Y = Cn, U = dom(f∇A)∩Cn =
⋃

i∈NBCn(ti, ri), Z = C, and f = fB.
For this we need to check several conditions. First, |B|n is effectively dense

in Cn because C is the effective completion of |B|. Second, above we verified

that dom(f∇A) ∩ Cn =
⋃

i∈NBCn(ti, ri) holds effectively. The last condition is

that (10) be realized, which it is because fB is acceptable. We may indeed apply

Proposition 16 to obtain an extension of fB to dom(f∇A) ∩ Cn → C that is

effectively uniformly continuous on each BCn(xi, ri). We now know that C is

the carrier of an effective complete Σ-algebra C, but we still have to show that

C is a subalgebra of ∇A. This is done like in the proof of Proposition 10. ��
The second main theorem for partial algebras reads as follows.

Theorem 19. Let A be a classical complete premetric partial Σ-algebra with

acceptable operations. If d(x, y) < q is semidecidable in x, y ∈ 〈∅〉∇A and q ∈ Q

then ∇A has an effectively complete subalgebra on which the relation d(x, y) < q

is semidecidable in x, y and q ∈ Q.

Proof. We know from the proof of Theorem 17 that the desired subalgebra must

be the completion of the carrier of I = 〈∅〉∇A. By Proposition 18 the operations

extend from |I| to its completion |I|. It remains to be shown that d(x, y) < q is

semidecidable in x, y ∈ |I| and q ∈ Q. The proof now proceeds as the proof of

Theorem 12. ��
We have considered only those partial operations whose supports are open

sets. This excludes relevant examples on real numbers, such as
√

and arcsin

which are defined on closed subsets [0,∞) and [−1, 1], respectively. However,

notice that their domains are (effective) retracts of open sets, which means that

we can easily extend them to open sets so that the second main theorem becomes

applicable.

7 Multi-sorted algebras

Our theorems are formulated for single-sorted algebras. They can be extended to

multi-sorted algebras with a considerable overhead in notation but no conceptual

insights. We briefly outline how the multi-sorted case works. A multi-sorted

signature Σ consists of:
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– a list of sort symbols S1, . . . , Sm,

– a list of function symbols f1, . . . , fk,

– each function symbol has a specified type Si1 × · · · × Sin → Sj .

Each variable is assigned a sort symbol, which we call the type of the variable.

Terms are built inductively as in the single-sorted case: variables are terms; if

f has type Si1 × · · · × Sin → Sj and t1, . . . , tn are terms of types Si1 , · · · , Sin ,
respectively, then f(t1, . . . , tn) is a term of type Sj .

A Σ-algebra A in a category C is given by carrier objects SA, one for each

sort symbol S, and morphisms fA with appropriate domains and codomains, one

for each function symbol f. A subalgebra B ≤ A is a Σ-algebra B with monos

SB � SA, one for each sort symbol S, such that the operations fA restrict to

operations fB.
A premetric Σ-algebra is a Σ-algebra in which the carriers are premetric

spaces and the operations are (sequentially) continuous maps. A premetric Σ-

algebra is complete when its carriers are complete premetric spaces.

The multi-sorted variant of Theorem 11 requires that for each sort symbol

S the carrier S〈∅〉∇A of the initial subalgebra 〈∅〉A ≤ A is classically dense and

concludes that there is at most one effectively complete subalgebra B ≤ ∇A
such that, for each sort symbol S, the relation ∇dS(x, y) < q is semidecidable in

x, y ∈ SB and q ∈ Q.

The multi-sorted variant of Theorem 12 requires that for each sort symbol

S the relation ∇dS(x, y) < q is semdecidable on the carrier S〈∅〉∇A , and that all

operations of 〈∅〉∇A are effectively locally uniformly continuous. The conclusion

is that∇A has an effective complete subalgebra B such that for each sort symbol

S the relation dS(x, y) < q is semidecidable in x, y ∈ SB and q ∈ Q.

We leave it to the reader to formulate the main theorems for the multi-sorted

partial case.

8 Applications

In this section we apply the results to several examples.

8.1 Discrete premetric spaces

The simplest kind of complete premetric algebras are the discrete ones. Let A
be a classical Σ-algebra and define the discrete premetric on |A| by

d(x, y) ≤ q ⇐⇒ (q < 1 =⇒ x = y),

which of course corresponds to the metric that takes on only values 0 and 1. The

discrete premetric is complete and every map with discrete codomain is uniformly
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continuous. Therefore, half of the conditions in Theorems 11 and 12 are trivially

satisfied. Furthermore, a discrete premetric is semidecidable on B ≤ ∇A if, and

only if, equality is semidecidable on B, because x = y ⇐⇒ d(x, y) < 1 and

d(x, y) < q ⇐⇒ (q > 1 ∨ x = y). Thus we obtain the following result.

Proposition20. Suppose A is a finitely generated classical Σ-algebra. Up to

isomorphism, there is at most one effective structure on A for which the op-

erations and the generators are effective, and equality is semidecidable. Fur-

thermore, if there is such an effective structure, it is isomorphic to the effective

subalgebra 〈{a1, . . . , an}〉∇A of ∇A generated by the generators a1, . . . , an for A.

Proof. More precisely, the first part of the theorem states that there is at most

one realizability relation �|A| on |A| such that the assembly A = (|A|,�|A|) has
semidecidable equality, the operations of A are realized as maps fA : An → A,

and the generators have realizers in Aeff.

We first consider the case when A is generated by the empty set, 〈∅〉A = A.

This means that 〈∅〉∇A is a ¬¬-dense subalgebra of ∇A. We equip A with the

discrete premetric, which turns ∇A and all of its subalgebras into effectively

complete premetric spaces. Because the smallest subalgebra 〈∅〉∇A is ¬¬-dense,
all of them are. Therefore, by Theorem 11, there is at most one ¬¬-dense sub-

algebra B ≤ ∇A with semidecidable equality. This proves the first part of the

theorem. To prove the second part, observe that as soon as there is a subalgebra

B ≤ ∇A with semidecidable equality, then 〈∅〉∇A has semidecidable equality as

well, because it is contained in B.
If A is generated by the elements a1, . . . , an ∈ |A|, we change the signature Σ

to Σ′ = Σ + {a1, . . . , an} where the arities of the newly added function symbols

are 0. If we interpret ai as the element ai, then A is a Σ′-algebra generated by

the empty set, which is the case we already considered. ��

In the context of type 1 effectivity Proposition 20 was first proved by Mal’cev,

see [Mal’cev 1961] and [Mal’cev 1971, Theorem 4.1.2]. He actually considered

two versions, one with general recursive functions and another with partial re-

cursive functions. Our result corresponds to the partial recursive case because

all partial recursive functions are representable in a PCA.

8.2 The real numbers

The real numbers (R, 0, 1,+,−,×,−1) form a classical ordered field, and a classi-

cal complete premetric space with the usual premetric d(x, y) ≤ q ⇐⇒ |x−y| ≤
q. The relation |x− y| < q is semidecidable, even decidable when x, y and q are

rationals. The initial algebra is the ring of rational numbers, which is dense in R

and is clearly effectively enumerable.
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In order to apply Theorem 19 we need to verify that the opeations are ac-

ceptable. Only acceptability of the inverse requires some thought. It is decidable

whether an open ball with rational radius and centred on a rational point con-

tains 0. So the sequence verifying that inverse is an acceptable operation can,

for example, be computed by effectively listing all pairs of rationals (tn, rn) such

that 0 < rn < |tn|. Second, the inverse is uniformly continuous on any open ball

not containing 0, and the modulus of uniform continuity on (tn, rn) can easily

be computed from n.

We may replace semidecidability of d(x, y) < q with semidecidability of the

strict order relation x < y because d(x, y) < q ⇐⇒ −q < x− y < q and

x < y ⇐⇒
∃ q, r∈Q . ∃ k∈N .

(
d(x, q) < 2−k ∧ d(y, r) < 2−k ∧ q + 2−k+2 < r

)
.

From the above observation we get the following result.

Proposition21. Up to isomorphism, there is exactly one effectively complete

effective subfield of the real numbers for which the strict linear order is is semide-

cidable.

Proof. By Theorems 17 and 19. ��
When the proposition is specialized to type 2 effectivity it gives

Hertling’s result [Hertling 1999] about type 2 representations of reals,

while the interpretation in type 1 effectivity corresponds to a result of

Moschovakis [Moschovakis 1965].

We note that the sequence witnessing the acceptability of a partial operation

often is related to practical computations of the operations. For example, the

computation of inverse on the reals starts by bounding the input x away from

zero. Once a lower bound for the distance from zero is found, an approximate

value of x−1 is computed and local uniform continuity (expressed as a local

Lipschitz coefficient) is used to compute an error bound for the approximation.

There are other interesting topological fields to consider, of which we mention

the p-adic numbers. For a prime p define the p-adic absolute value of a non-zero

x ∈ Q by |x|p = pm−n if x = apn/bpm and p does not divide ab. For zero, let

|0|p = 0. A p-adic premetric can now be defined by dp(x, y) ≤ q ⇐⇒ |x−y|p ≤ q.

The field of p-adic numbers is the metric completion of Q with respect to dp.

Similarly to the real case we have that, up to isomorphism, there is exactly

one effectively complete effective subfield of the p-adic numbers for which the

premetric is semidecidable.

8.3 Banach spaces

Let us apply our results to Banach spaces. First we look at the particular Banach

space X = Lp(R), where p > 1 is rational. In this case the signature Σ is
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multi-sorted since we have the sort X of vectors and the sort R of scalars. The

operations are those of a normed vector space over a field of scalars:

– on the vector space we have 0, + and −,

– on the scalars we have 0, 1, +, −, ×, and −1,

– there are two operations which map between the sorts, namely the norm

‖−‖p : X → R and scalar multiplication · : R×X → X .

With this signature the initial subalgebra IR ≤ R is dense because it contains

the rational numbers, whereas the initial subalgebra IX ≤ X is the trivial vector

space {0}, which is not dense in X . According to the advice from Section 5

we need to add something to the signature. It is well known that the rational

step functions are dense in Lp(R). To have them appear in IX , we adjoin to the

signature the constant c ∈ X , which is the function defined by

c(x) =

{
1 if x ∈ [0, 1]

0 otherwise,

and binary operations t : R ×X → X and s : R ×X → X for translation and

scaling, defined by

t(λ, f)(x) = f(x+ λ) and s(λ, f)(x) = f(λx).

Translations and scalings of c by rational amounts form a spanning set. The

initial subalgebra IX for the extended signature will contain the rational combi-

nations of the spanning set, and hence, IX will be dense in X .

In fact, IR and IX contain more than just the rational numbers and the

rational step functions. For example, IR contains norms ‖r‖p of rational step

functions r, which are algebraic numbers of the form

‖r‖p = (b1a
p
1 + · · ·+ bka

p
k)

1/p

where a1, . . . , ak, b1, . . . , bk are positive rationals that can be computed from (a

realizer of) r. Once such numbers appear in IR they can be used to scale and

translate step functions by non-rational amounts, which further enlarges IX , and

so on. Nevertheless, all the numbers so generated are algebraic. It is decidable

whether the inverse of an algebraic number is defined, hence IR is effectively

enumerable. The conditions of (the multi-sorted partial version of) Theorem 11

are therefore satisfied.

In order to apply (the multi-sorted partial version of) Theorem 12 we need

to verify that the operations are acceptable and that the relations ‖f − g‖p < q

and |u−v| < q are semidecidable in q ∈ Q, f, g ∈ IX , and u, v ∈ IR, respectively.

Acceptability of operations is not problematic, while for the second part it suffices
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to check that the relations ‖f‖p < 1 and |u| < 1 are semidecidable in f ∈ IX ,

u ∈ IR. Once again, because ‖f‖p and |u| are algebraic numbers computable from

(realizers of) the terms denoting f and u, these relations are even decidable.

If we are willing to adjoin a third sort to the signature, namely the natural

numbers N, there is another way of making X satisfy the conditions of the main

theorems: rather than trying to generate the desired dense subset by scalings

and translations of a basic step function, we may directly adjoin an operation

e : N → X which enumerates a spanning set. The initial subalgebra IX is dense

because it contains the rational linear combinations of the spanning set enu-

merated by e. Once again we have to think about effective enumerability of IR
and semidecidability of predicates ‖f‖p < 1 and |u| < 1, but as long as basic

information about e(n) is computable from n we should not expect any trouble.

The situation with Lp(R) is typical for Banach spaces that occur in practice.

In general, we will have to ensure density of the initial subalgebra by adding

something to the signature, and as long as the norms of the elements in the

initial algebra are computable reals, the initial subalgebra of R will be effectively

enumerable, and relations ‖f‖ < 1 and |u| < 1 will be semidecidable. It would

be interesting to work out the details for other separable spaces, such as Hilbert,

Sobolev, Frechet and Riesz spaces.

9 Conclusion

The relation d on a premetric space (X, d) induces a uniform structure on X

whose (basic) entourages areEq = {(x, y) ∈ X×X | d(x, y) ≤ q}, for rational q >
0. This suggests that one should look for a generalization to uniform spaces based

on a suitable constructive treatment of uniform spaces and their completions.

Another direction which might be worth investigating follows the work

of Blanck et al. [Blanck, Stoltenberg-Hansen, and Tucker 2008] who formulated

general results about stability of effective algebras in type 1 effectivity. Their

theorems do not translate into our settings easily, because they assume a struc-

ture which is not metric, but rather like that of sequential or limit spaces. Again,

to incorporate such results we would require a constructive theory of limit spaces

and their completions.
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