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Abstract: A summability theorem of Landau, which classically is a simple conse-
quence of the uniform boundedness theorem, is examined within Bishop-style con-
structive mathematics. It is shown that the original theorem is nonconstructive, and
that a natural weakening of the theorem is constructively equivalent to Ishihara’s prin-
ciple BD-N. The paper ends with a number of results that, while not as strong as
Landau’s theorem, nevertheless contain positive computational information related to
its conclusion.
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Edmund Landau (1877–1938) is known for many contributions to mathemat-

ics. In this paper we examine his summability theorem,

If p, q are conjugate exponents—numbers such that p, q > 1 and
1
p +

1
q = 1—and if a = (an)n�1 is a sequence in C such that

∑∞
n=1 anxn

converges for each x = (xn)n�1 in the Banach space lp, then a ∈ lq,

from the viewpoint of Bishop’s constructive mathematics (BISH)—that is,

mathematics developed with intuitionistic logic and a suitable set-theoretic

foundation such as the Aczel-Rathjen-Myhill CST [Aczel and Rathjen 2001,

Myhill 1975]. Here, lp denotes the vector space of all complex sequences x ≡
(xn)n≥1 that are p-summable, in the sense that the norm

‖x‖p ≡
( ∞∑

n=1

|xn|p
)1/p

exists; for more on (the generalisation of) these spaces, see Chapter 7 of

[Bishop and Bridges 1985].

The standard functional-analytic proof goes as follows. For each x = (xn)n�1

in lp and each k define

sk(x) =

k∑
n=1

anxn.
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Then

|sk(x)| �
(

k∑
n=1

|an|q
)1/q ( k∑

n=1

|xp|p
)1/p

�
(

k∑
n=1

|an|q
)1/q

‖x‖p ,

from which it follows that sk is a bounded linear functional on lp with norm

‖sk‖ =

(
k∑

n=1

|an|q
)1/q

.

Also, the sequence (sk(x))k�1 converges in C and so is bounded. Applying the

uniform boundedness theorem to the sequence (sk)k�1 , we now obtain M > 0

such that ‖sk‖ � M for each k. The partial sums of the series
∑∞

n=1 |an|q are

therefore bounded, so the series converges in R.

From a constructive viewpoint, there are two problems with this proof.

First, the uniform boundedness theorem in the form applied there is not the

constructive one. Secondly, boundedness of the partial sums of a series of

positive terms is not enough to ensure its convergence (see pages 60–64 of

[Bridges and Richman 1985]). In fact, a Brouwerian example shows that Lan-

dau’s summability theorem in its classical form is not constructively valid: under

its hypotheses we cannot even prove, in general, that an → 0 as n → ∞. To see

this, take a as a binary sequence with at most one term equal to 1, and consider

the case p = q = 2. The series
∑∞

n=1 anxn certainly converges for each x in l2.

But if an → 0 as n → ∞, we can find N such that an = 0 for all n > N ; by

testing a1, . . . , aN , we can decide whether an = 0 for all n or there exists n such

that an = 1. Thus the statement

For each sequence a of complex numbers, if
∑∞

n=1 anxn converges for all

x ∈ l2, then a ∈ l2

implies the essentially nonconstructive limited principle of omniscience,

LPO: For each binary sequence a, either an = 0 for all n or else there

exists n such that an = 1 .

At this stage, it remains a possibility that, under the hypotheses of Lan-

dau’s theorem, the series
∑∞

n=1 |an|q has bounded partial sums. To explore this

possibility, we need some background information from constructive functional

analysis.

A linear functional φ on a normed space X is said to be normed (or

normable) if its norm

‖φ‖ = sup {‖φ(x) : x ∈ X, ‖x‖ � 1‖}
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exists. Every linear functional on a finite-dimensional Banach space is normed;

but if every bounded linear functional on an infinite-dimensional Hilbert space

is normed, then we can prove LPO. The following is the constructive version of

the representation theorem for lp spaces ([Bishop and Bridges 1985], Chapter 7,

Theorem (3.25)).

Theorem 1. If p, q are conjugate exponents, then a bounded linear functional φ

on lp is normed if and only if there exists a (perforce unique) vector a ∈ lq such

that φ(x) =
∑∞

n=1 anxn for each x ∈ lp, in which case ‖φ‖ = ‖a‖q .
We shall also need the constructive uniform boundedness theorem:

Theorem 2. Let (Tn)n�1 be a sequence of bounded linear mappings from a Ba-

nach space X into a normed space Y , and (xn)n�1 a sequence of unit vectors in

X, such that ‖Tnxn‖ → ∞ as n → ∞. Then there exists x ∈ X such that the

sequence (‖Tnx‖)n�1 is unbounded.

Proof. See [Bridges and Vı̂ţă 2006] (Corollary 6.2.12) or [Royden 1985].

The next result follows from Theorem 7 of [Ishihara 1997]; we include the

proof here to clarify the role played by the uniform boundedness theorem in our

work.

Theorem 3. Let (Tn)n�1 be a sequence of bounded linear mappings of a sepa-

rable Banach space X into a normed space Y, converging pointwise to a linear

mapping T : X → Y. Then T is sequentially continuous.

Proof. Let (xn)n�1 be a sequence converging to 0 in X, and let ε > 0. By

Ishihara’s tricks [Ishihara 1997] (Lemma 2), either ‖Txn‖ < ε for all sufficiently

large n or else ‖Txn‖ > ε/2 for infinitely many n. It suffices to rule out the latter

alternative. To that end, we may suppose that ‖Txn‖ > ε/2 and ‖xn‖ < 1/n for

each n. Then yn = ‖xn‖−1
xn is a unit vector such that ‖Tyn‖ > nε/2. Since

Tnx → Tx for each x ∈ X, we can construct inductively a strictly increasing

sequence (nk)k�1 of positive integers such that ‖Tnk
yk‖ > kε/2 for each k.

Applying the uniform boundedness theorem, we obtain a unit vector y ∈ X such

that the sequence (‖Tnk
y‖)k�1 is unbounded. This is absurd, since Tnk

y → Ty

as k → ∞.

Corollary 4. Let p > 1, and let a be a sequence of complex numbers such that

f(x) =

∞∑
n=1

anxn (1)

converges for each x ∈ lp. Then f is a sequentially continuous linear functional

on lp.
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Proof. Noting that

fk(x) =

k∑
n=1

anxn

defines a normed, and a fortiori bounded, linear functional on X with

‖fk‖ =

(
k∑

n=1

|ak|q
)1/q

,

we apply Theorem 3 with X = lp.

Observe that the linear functional f in this corollary is continuous/bounded

if and only if the partial sums of the series
∑∞

i=1 |ai|q are bounded. Indeed, if f

has a bound c > 0 and k is any positive integer, then, assuming that ai �= 0 for

i � k, take

x =
(
a∗1 |a1|q−2 , . . . , a∗k |ak|q−2 , 0, 0, . . .

)
,

where ∗ denotes complex conjugation. We obtain

k∑
n=1

|an|q =

k∑
n=1

anxn = f(x)

� c ‖x‖p = c

(
k∑

n=1

∣∣∣a∗n |an|q−2
∣∣∣p
)1/p

= c

(
k∑

n=1

|an|p(q−1)

)1/p

= c

(
k∑

n=1

|an|q
)1/p

and therefore (
k∑

n=1

|an|q
)1/q

=

(
k∑

n=1

|an|q
)1−1/p

� c.

A simple approximation argument shows that this inequality holds even if we

remove the assumption that ai �= 0 for i � k. Conversely, if c is a positive number

such that cq is a bound for the partial sums of
∑∞

n=1 |an|q , then for each x ∈ l2
and each k we have

|f (x1, x2, . . . , xk, 0, 0, . . .)| =
∣∣∣∣∣

k∑
n=1

anxn

∣∣∣∣∣
�
(

k∑
n=1

|an|q
)1/q ( k∑

n=1

|xn|p
)1/p

� c ‖x‖p .
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Since (by Corollary 4) f is sequentially continuous and

x = lim
k→∞

(x1, x2, . . . , xk, 0, 0, . . .)

in lp, it follows that |f(x)| � c ‖x‖p. Thus our suggestion that, under the hy-

potheses of Landau’s theorem, the series
∑∞

n=1 |an|q has bounded partial sums

is equivalent to the corresponding linear functional, defined at (1), being con-

tinuous. This equivalence, taken with work of Ishihara [Ishihara 1992], suggests

that we bring into play the following notions.

We say that a subset S of N is pseudobounded if limn→∞ n−1sn = 0 for

each sequence (sn)n�1 in S. Following Ishihara [Ishihara 1992], we consider the

principle

BD-N Every inhabited, countable, pseudobounded subset of the set N+ of

positive integers is bounded,

which holds in the intuitionistic and recursive models of BISH, but, being in-

dependent of Heyting arithmetic [Lietz 2004], is not provable within BISH. In

[Ishihara 1992], Ishihara proved that the statement ‘Every sequentially continu-

ous linear mapping from a separable metric space into a metric space is pointwise

continuous’ is equivalent to BD-N.

Our next result (whose proof has, unsurprisingly, some similarities to that of

Lemma 20 in [Ishihara 2001]) belongs to constructive reverse mathematics, a rel-

atively new field in which theorems are classified according to their equivalence,

over some formal or (in this case) informal system for constructive mathematics,

to certain principles such as BD-N. For more on this topic, see [Ishihara 2006].

Theorem 5. The following statements are equivalent.

(i) There exist conjugate exponents p, q such that if a is any sequence of complex

numbers such that
∑∞

n=1 anxn converges for each x ∈ lp, then
∑∞

n=1 |an|q
has bounded partial sums.

(ii) BD-N.

(iii) For all conjugate exponents p and q, if a is any sequence of complex numbers

such that
∑∞

n=1 anxn converges for each x ∈ lp, then
∑∞

n=1 |an|q has bounded
partial sums.

Proof. The implication from BD-N to (iii) is a consequence of Corollary 4 and

the result of Ishihara mentioned before the statement of this proposition. The

implication from (iii) to (i) is trivial. So it remains to prove that (i) implies

BD-N. Assuming, then, that the conjugate exponents p, q have the property

described in (i). Let

S ≡ {s1, s2, . . .}
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be an inhabited, countable, pseudobounded subset of N. In order to prove that

S is bounded, we may, if necessary, replace sn by max{s1, . . . , sn}. Thus we may

assume that s1 � s2 � · · · . Setting

b1 ≡ q
√
s1, bn+1 ≡ q

√
sn+1 − sn,

we need only prove that
∑∞

n=1 bnxn converges for each x ∈ lp: for then the partial

sums of the series
∑∞

n=1 |bn|q are bounded, which implies the boundedness of the

set S. Accordingly, fix x ∈ lp and let (nk)k�1 be a strictly increasing sequence

of positive integers such that

∞∑
n=nk

|xn|p <

(
1

2k+1k

)p

(2)

for each k. Define

Ik ≡ {nk, nk + 1 , . . . , nk+1 − 1} .

Since S is pseudobounded, there exists κ such that snk+1
< k for all k � κ. For

k′ > k � κ we have∣∣∣∣∣
nk′−1∑
n=nk

bnxn

∣∣∣∣∣ �
k′∑
j=k

⎛
⎝∑

i∈Ij

|bixi|
⎞
⎠ �

k′∑
j=k

⎛
⎝

q

√∑
i∈Ij

|bi|q p

√∑
i∈Ij

|xi|p
⎞
⎠

�
k′∑
j=k

snj+1 − snj

2j+1j
�

k′∑
j=k

snj+1

j
2−j−1 �

k′∑
j=k

2−j−1 < 2−k.

It readily follows that the partial sums of
∑∞

n=1 bnxn form a Cauchy sequence,

and hence that the series converges in C. This completes the proof that (i)

implies (ii).

Perhaps the most significant aspect of Theorem 5 is this: Ishihara’s original

result relating BD-N and the passage from sequential to pointwise continuity

used a relatively strange space as the domain of the sequentially continuous

mapping; in contrast, and in view of Corollary 4 and the remarks following it,

Theorem 5 carries through this relation using one of the standard spaces in

functional analysis.

Our next result confirms that the use of the classical uniform boundedness

theorem in proving Landau’s theorem is not just a matter of convenience.

Proposition6. Statement (iii) of Theorem 5 is equivalent to the classical uni-

form boundedness theorem in the form
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UBTc If (Tn)n�1 is a sequence of bounded linear mappings of a Banach space

X into a Banach space Y such that

{Tnx : n � 1}

is bounded for each x ∈ X, then there exists c > 0 that is a bound for each

of the operators Tn.

Proof. Ishihara [Ishihara 2007] has shown that UBTc is equivalent to BD-N.

The result now follows from Theorem 5.

The question now arises: what can we say about Landau’s theorem without

assuming BD-N? The next three lemmas take some distance in the direction of

an answer.

Lemma7. Let p, q be conjugate exponents, let a be a sequence of complex num-

bers such that
∑∞

n=1 anxn converges for each x in lp, and let φ : N+ → N+ be a

strictly increasing mapping. Let (λk)k�1 be an increasing binary sequence such

that if λk = 1−λk−1, then there exists ν � k such that
∑ν

n=1 |an|q > φ(k). Then

either λk = 0 for all k or else there exists K such that λK = 1.

Proof. Let u be a unit vector in lq, set λ0 = 0, and define a sequence (fk)k�1

of normed linear functionals on lp as follows. For each positive integer k if λk =

λk−1, define

fk(x) = k

∞∑
n=1

unxn (x ∈ lp)

and note that ‖fk‖ = k. If λk = 1 − λk−1, then, choosing ν � k such that∑ν
n=1 |an|q > φ(k), define

fk(x) =
ν∑

n=1

anxn (x ∈ lp)

and note that ‖fk‖ > (φ(k))1/q . Clearly, ‖fk‖ → ∞ as k → ∞; so, by Theorem

2, there exists a unit vector x ∈ lp such that |fk(x)| → ∞ as k → ∞. Since∑∞
n=1 anxn converges, there exists K such that

|fk(x)| > 1 +

∣∣∣∣∣
k∑

n=1

anxn

∣∣∣∣∣ (k � K) . (3)

Suppose that λk = 1−λk−1 for some k > K. Then fk(x) =
∑ν

n=1 anxn for some

ν � k, which is absurd in view of (3). Hence λk = λK for all k � K, from which

the desired conclusion follows.
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Lemma8. Let p, q be conjugate exponents, let a be a sequence of complex num-

bers such that
∑∞

n=1 anxn converges for each x in lp, and let φ : N+ → N+ be a

strictly increasing mapping. Let (λk)k�1 be an increasing binary sequence, and

(nk)k�1 an increasing sequence of positive integers, such that if λk = 0, then∑nk

n=1 |an|q > φ(k) − 1. Then there exists K such that λK = 1.

Proof. Again let u be a unit vector in lp and set λ0 = 0. This time, for each x in

lp we define fk(x) =
∑nk

n=1 anxn if λk = 0, and fk(x) = k
∑∞

n=1 unxn if λk = 1.

This produces a sequence (fk)k�1 of normed linear functionals on lp such that

‖fk‖ → ∞ as k → ∞. Using Theorem 2, we produce a unit vector x in lp such

that |fk(x)| → ∞ as k → ∞. Since
∑∞

n=1 anxn converges, there exists K such

that

|fk(x)| > 1 +

∣∣∣∣∣
nk∑
n=1

anxn

∣∣∣∣∣ (k � K) .

If λK = 0, then fK(x) =
∑nK

n=1 anxn, which is absurd in view of our choice of

K. Hence λK = 1.

Lemma9. Let p, q be conjugate exponents, let a be a sequence of complex num-

bers such that
∑∞

n=1 anxn converges for each x in lp, and let φ : N+ → N+ be

a strictly increasing mapping. Then either
∑k

n=1 |an|q < φ(k) for all k or else

there exists k such that
∑k

n=1 |an|q > φ(k)− 1.

Proof. Construct an increasing binary sequence (λk)k�1 such that

λk = 0 ⇒ ∀j�k

(
j∑

n=1

|an|q < φ(j)

)
,

λk = 1− λk−1 ⇒
k∑

n=1

|an|q > φ(k) − 1.

Now apply Lemma 7.

Proposition10. Let p, q be conjugate exponents, let a be a sequence of complex

numbers such that
∑∞

n=1 anxn converges for each x in lp, and let φ : N+ → N+

be a strictly increasing mapping. Then there exists K such that
∑m

n=K+1 |an|q <
φ(m) for all m � K.

Proof. In view of the previous lemma, we may suppose that there exists n1

such that
∑n1

n=1 |an|q > φ(n1)− 1. Setting λ1 = 0 and applying Lemma 9 to the

sequence (0, 0, . . . , 0, an1+1, an1+2, . . .) , we see that either
∑m

n=n1+1 |an|q < φ(m)

for all m > n1 or else there exists n2 > n1 such that
∑n2

n=n1+1 |an|q > φ(n2)− 1.

In the first case we set λk = 1 and nk = n1 for all k � 2; in the second we

set λ2 = 0. Carrying on in this way, we construct an increasing binary sequence

(λk)k�1 and an increasing sequence (nk)k�1 of positive integers such that
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– if λk+1 = 0, then nk+1 > nk and
∑nk+1

n=nk+1 |an|q > φ(nk+1)− 1;

– if λk+1 = 1 − λk, then
∑m

n=nk+1 |an|q < φ(m) for all m > nk, and nj = nk

for all j � k.

Applying Lemma 8, we obtain the desired conclusion.

It follows, for example, that under the hypotheses of Landau’s theorem, for

each positive integer m there exists N such that

n∑
i=N

|ai|q < log(log(· · · (logn) · · · ))︸ ︷︷ ︸
m instances of “ log ”

for all n > N. This is a long way from showing that the partial sums of
∑∞

i=1 |ai|q
are bounded, but it is a step towards that aim (one that is constructively

unattainable, in view of Theorem 5).

We now have a constructive substitute for the convergence of an to 0 in

Landau’s theorem.

Proposition11. Let p, q be conjugate exponents, and let a be a sequence of

complex numbers such that the series
∑∞

n=1 anxn converges for each x in lp.

Then for each ε > 0 and each positive integer ν there exists k such that∑kν
n=(k−1)ν |an|q < ε.

Proof. Fix a unit vector u in lq. For each positive integer k, construct an in-

creasing binary sequence (λk)k�1 such that

λk = 0 ⇒ ∀j�k

⎛
⎝ jν∑

n=(j−1)ν

|an|q >
ε

2

⎞
⎠ ,

λk = 1− λk−1 ⇒
jν∑

n=(j−1)ν

|an|q < ε.

Applying Lemma 8 with φ(k) = 1 + kε
2 , we see that there exists N such that

λN = 1; whence
∑kν

n=(k−1)ν |an|q < ε for some k � N.

Corollary 12. Let p, q be conjugate exponents, and let a be a sequence of

complex numbers such that the series
∑∞

n=1 anxn converges for each x in lp.

Then there exists a sequence (nk)k�1 of positive integers such that for each k,

nk + k < nk+1 and
nk+k∑

n=nk+1

|an|q < 2−k.
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Proof. By Proposition 11, there exists n1 such that |an1 |q < 2−1. Having com-

puted nk with the desired properties, apply Proposition 11 to the sequence

(an)n>nk+k , to produce nk+1 > nk + k such that
nk+1+k+1∑
n=nk+1+1

|an|q < 2−k−1. This

completes the inductive construction of the sequence (nk)k�1 .

The conclusion of Corollary 12 holds for any binary sequence with at most

one term equal to 1, and so is not enough to yield constructively the result that,

under the hypotheses of that corollary and with p = q = 2, an → 0 as n → ∞.

We conclude the paper by proving a constructive version of Landau’s summa-

bility theorem that is classically equivalent to the classical version but has

stronger hypotheses and conclusion than Corollary 4. For this we recall the

constructive least-upper-bound principle:

In order that an inhabited set S of real numbers that is bounded above

have a supremum, it is necessary and sufficient that S be order located,

in the sense that for all α, β with α < β, either β is an upper bound for

S or else there exists x ∈ S such that x > α ([Bishop and Bridges 1985],

page 37, Proposition (4.3)).

Theorem 13. Let p, q be conjugate exponents, and let a be a sequence of complex

numbers such that
∑∞

n=1 anxn converges for each x in lp. Then the following are

equivalent.

(i) The series
∑∞

n=1 |an|q is convergent.

(ii) For all α, β with 0 < α < β, either
∑k

n=1 |an|q < β for all k or else there

exists k such that
∑k

n=1 |an|q > α.

Proof. It is clear that if
∑∞

n=1 |an|q converges, then (ii) holds. Conversely, as-

suming (ii), construct an increasing binary sequence (λk)k�1 and an increasing

sequence (nk)k�0 of positive integers with n0 = 0, such that

� if λk = 0, then nk > nk−1 and
∑nk

i=1 |ai|q > k, and

� if λk = 1, then nk = nk−1 and
∑j

i=1 |ai|q < k + 1 for all j.

To do so, first observe that either
∑j

i=1 |ai|q < 2 for all j or else there exists

n1 � 1 such that
∑n1

i=1 |ai|q > 1. In the first case set λ1 = n1 = 1; in the second,

set λ1 = 0. Now suppose we have found λk−1 and nk−1 with the applicable

properties. If λk−1 = 1, set λk = 1 and nk = nk−1. If λk−1 = 0, then by (ii),

either
∑j

i=1 |ai|q < k + 1 for all j, in which case we set λk = 1 and nk = nk−1;

or else there exists nk such that
∑nk

i=1 |ai|q > k. In the latter case, replacing
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nk by a sufficiently large positive integer, we may assume that nk > nk−1; we

then set λk = 0 to complete the inductive construction. Taking φ(k) = k + 1

in Lemma 8, we obtain K such that λK = 1. The partial sums of
∑∞

i=1 |ai|q
are therefore bounded above by K + 1. It follows from (ii) and the constructive

least-upper-bound principle that
∑∞

i=1 |ai|q converges in R.

In view of the constructive least-upper-bound principle, it is curious that

condition (ii) is used to prove that the partial sums of
∑∞

n=1 |an|2 are bounded

before it is again invoked to prove that their supremum exists.

For related work within the framework of Weihrauch’s theory of Type Two

Effectivity [Weihrauch 2000], see [Brattka 2005]. For connections between that

theory and Bishop-style constructive mathematics, see [Bauer 2005].

Acknowledgements

The authors are grateful to (i) the Royal Society of New Zealand, for supporting

Bridges, through Marsden Award UOC0502, on visits to Munich during which

this work was carried out, and (ii) the Alexander von Humboldt Stiftung for

supporting Berger by a Feodor Lynen Return Fellowship.

References

[Aczel and Rathjen 2001] Aczel, P., Rathjen, M.: “Notes on Constructive Set Theory”,
Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences (2001).

[Bauer 2005] Bauer, A.: “Realizability as the connection between computable and con-
structive mathematics”, Proceedings of CCA 2005, Kyoto, Japan, 25–29 August
2005; to appear.

[Bishop and Bridges 1985] Bishop, E. A., Bridges, D. S.: “Constructive Analysis”,
Grundlehren der Math. Wiss. 279, Springer-Verlag, Heidelberg (1985).

[Brattka 2005] Brattka, V.: “Computability on non-separable Banach spaces and Lan-
dau’s theorem”, in: From Sets and Types to Topology and Analysis (L. Crosilla and
P.M. Schuster, eds), 316–333, Oxford Logic Guides 48, Clarendon Press, Oxford
(2005).

[Bridges and Richman 1985] Bridges, D. S., Richman, F.: “Varieties of Constructive
Mathematics”, London Math. Soc. Lecture Notes 97, Cambridge Univ. Press,
Cambridge (1985).
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