
Verification of Structural Pattern Conformance Using

Logic Programming

Lunjin Lu, Dae-Kyoo Kim, Yuanlin Zhu and Sangsig Kim

(Oakland University, Rochester, Michigan, USA

L2Lu,kim2,yzhu2,skim2345@oakland.edu)

Abstract: This paper formalizes UML class diagrams and structural patterns as
mathematical objects and provides a precise notion of conformance of a structural
model specified as a class diagram to a structural pattern. We also present a confor-
mance verification method which represents a class diagram as a logic program and a
structural pattern as a query. The conformance of the class diagram to the structural
pattern is verified by computing all the answers to the query by the logic program and
checking the satisfaction of realization multiplicity constraints imposed by the pattern.

Key Words: Design pattern, logic programming, pattern conformance, Prolog, UML

Category: D.2.10, D.2.13

1 Introduction

Software development can greatly benefit from reusing existing artifacts includ-

ing architectural patterns, design patterns, design aspects, software components

and code. Design patterns have been an important research subject in the area

of software engineering, particularly in reuse-based software engineering since

their introduction in computer science [Cunningham and Beck 1986]. A design

pattern describes a proven solution based on the previous experience to a re-

curring design problem in a reusable form (e.g., see [Gamma et al. 1995]). By

reusing high quality solutions, design patterns help the development of systems

that are extensible, flexible and maintainable [Prechelt et al. 2002].

Evaluation of pattern conformance of designs is concerned with checking

valid realizations of a pattern in a design within the context of the applica-

tion being built. In general, realizing a pattern heavily relies on designer’s ex-

perience and knowledge of the pattern. Invalid realization of a pattern, how-

ever, could deteriorate rather than improve quality of design. Therefore, a ques-

tion that naturally arises is “how can one ensure validity of a pattern real-

ization?” The question can be partly addressed by pattern formalization ef-

forts (e.g., see [Eden 1999], [Guennec et al. 2000], [Kim 2004], [Lano et al. 1996],

[Lauder and Kent 1998], [Mapelsden et al. 2002], [Mikkonen 1998] and

[OMG 2003]) that facilitate pattern realization (instantiation). For example,

template-based approaches (e.g., [OMG 2003]) formalize patterns in terms of

parameters, and a pattern can be instantiated (realized) by stamping out the
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template. However, in many cases, instantiated pattern realizations require sig-

nificant modifications such as adding new elements and modifying or removing

some instantiated elements to accommodate application-specific requirements.

Since these activities may break pattern conformance and compromise the ben-

efits of using design patterns, pattern conformance must be checked.

There has been much work on identifying pattern instances at code level

[Albin-Amiot et al. 2001], [Antoniol et al. 1998], [Balanyi et al. 2003],

[Brown 1996], [Fabry & Mens 2004], [Heuzeroth et al. 2003], [Keller et al. 1999],

[Philippow et al. 2003], [Shull et al. 1996] where structural properties (e.g., op-

erations, attributes, relationships) of design patterns [Gamma et al. 1995] are

searched for in code. These works support the reverse engineering efforts at

the programming level so as to understand legacy systems and improve their

quality attributes. However, there is little work on validating pattern instances

at the model level which can greatly improve the quality of design and reduce

development cost by finding errors in early development phase. Based on our

study, we found that some of the programming-level work (e.g., [Brown 1996,

Keller et al. 1999, Philippow et al. 2003]) can be extended for detecting model-

level pattern instances. However, a significant limitation in this work is that a

pattern specification represents a typical instance of design pattern. This limits

its applicability because in most cases, a design pattern is realized in various

forms depending on the application domain, and thus it is very rare to find

exactly the same instance in different designs.

To address this issue, we formalize class diagrams [OMG 2003] and structural

patterns as mathematical objects and provide a precise notion of conformance

of a structural model specified as a class diagram to a structural pattern. We

then use logic programming to rigorously verify conformance of a structural

model to a structural pattern. We represent a structural pattern as a query and

a structural model as a logic program. By utilizing inference capability of the

logic programming language Prolog, we obtain an automated method that finds

the instances of the pattern in the model.

The main contributions of this work are a precise notion of structural pattern

conformance and the representation scheme in which a model is represented as

logic programs and a pattern as a query. The representation scheme facilitates

use of design patterns in software development as follows:

– The scheme can be used to find all instances of a pattern in a model by

executing the program for the query. Each answer to the query is an instance

of the pattern in the model. Thus, our approach does not simply tell if the

model satisfies the pattern, but also informs “how” the model satisfies the

pattern. Using a debugging technique [Shapiro 1982, Lu 2005], one can also

identify the cause of non-conformance if the query does not have any answer.

– The scheme can also be used to validate a designer’s assignment of pattern
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roles to model elements. During the development of a software model, the

designer may designate certain elements to play particular pattern roles.

The scheme can be used to validate this assignment by representing it as

an equality constraint and executing the constraint and the query with the

program. Furthermore, given a partial mapping of pattern roles and model

elements, the scheme can complete the mapping by logic inference.

The remainder of the paper is organized as follows. Section 2 formalizes class

diagrams and structural patterns as mathematical objects and provides a precise

notion of conformance. Section 3 presents how patterns and class diagrams can

be represented in Prolog using the Visitor pattern and a price calculation appli-

cation as examples. Section 4 gives an overview of related work, and Section 5

concludes the paper. This paper is an extended version of [Kim and Lu 2006].

2 Class Diagrams, Structural Patterns and Conformance

This section formalizes class diagrams and structural patterns as mathematical

objects and then defines the notion of a class diagram conforming to a structural

pattern.

2.1 Class diagrams

A class diagram consists of classifiers and relationships between these classifiers.

We consider two kinds of relationships in this work: subtyping 1 and association 2

relationships. Subtyping relationship between classifiers is required to form a

partial order. Each association has a name and a number of association ends. An

association end is characterized by the the classifier at the end of the association,

the position of the classifier in the association, its navigability and multiplicity.

The multiplicity is an interval over natural numbers N with an added element

many meaning unbounded. Extend ≤ over natural numbers by i ≤ many for all

i ∈ N and many ≤ many. Let Bound = {L..U | L,U ∈ N ∪ {many} ∧ L ≤ U}
denote the set of intervals. We use Boolean values in Bool = {true, false} to
denote navigability of an association end. Type denotes the set of types that

may be used in a class diagram including classifiers and primitive types.

We assume that the set of meta-classes MetaClass that may occur in a

class diagram is given. Elements in MetaClass are ordered by a partial order �
such that k1 � k2 indicates that a class k1 is a sub-meta-class k2. For instance,

a class can be refined to be a concrete, denoted concrete � class. The partial

1 A subtyping relationship occurs in a class diagram as either inheritance relationship
or an implementation relationship.

2 A dependency relationship is a special kind of association relationship.
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order 〈MetaClass,�〉 is an input to our method. For example, we may have

MetaClass =

{
concrete, abstract, class, interface, classifier,

association, dependency, usage

}

ordered by

�=
{ 〈abstract, class〉, 〈concrete, class〉, 〈class, classifier〉,
〈interface,classifier〉,〈usage,dependency〉, 〈dependency,association〉

}�

where r� is the reflexive and transitive closure of the relation r.

The following definition formalizes a class diagram as a mathematical object.

In this definition, a subtyping relationship is explicitly represented in a partial

order, whilst an association relationship is represented by its ends which are

treated as features of participating classifiers. Let Name be a denumerable set

of names for classifiers, relationships, attributes and operations.

Definition 1. A class diagram is a tuple D = 〈C,	,R,mclass, attr, oper, assoc〉
where

– C is a set of classifiers such that 〈C,	〉 is a partial order;

– R is a set of relationships;

– mclass : C ∪ R 
→ MetaClass is a function that gives the meta-class of a

classifier or a relationship;

– attr : C 
→ ℘(Name × Type) is a function such that attr(c) is a set of

attributes each of which is characterized by its name and type. An interface

does not have any attribute. We thus require mclass(c) = interface ⇒
attr(c) = ∅ where ⇒ is the classical logical implication operator;

– oper : C 
→ ℘(Name×Type� ×Type) is a function such that oper(c) is a

set of operations. Each operation is characterized by its name and types of

its arguments and the type of its return value;

– assoc : C 
→ ℘(Name × N × Bool × Bound) is a function that returns

a set of association ends of a classifier. Each association end is quadruple

〈r, pos, nv, bnd〉 where r is the name of the association, pos the position of

the classifier in the association, nv the navigability of the association end

and bnd the multiplicity of the association end.

The partial order 	 indicates subtyping relation between classifiers in a class

diagram. It is extended to include other types in an obvious manner. For in-

stance, integer 	 number and C 	 Object for any classifier C including Object.

Denote by Name(D) the set of the names of classifiers, attributes, operations

and relationships specified in D. Note that Name(D) does not include primitive

types or any classifier that is not specified in D.
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Example 1. We shall use as a running example an application that calculates

the total net price of a composite equipment from the net prices of its parts.

Figure 1 shows the class diagram.

1..*

addEquip()
removeEquip()

0..1

pricingVisitor

total:currency

visitCard(c:card)
visitChassis(c:chassis)

equipment

name:string

accept(v:pricingVisitor)
netPrice():currency

card

accept(v:pricingVisitor)

accept(v:pricingVisitor)

chassis

accept(v:pricingVisitor)

compositeEquipment

composedOf
1..*

<<uses>>

consistsOf

0..1
equipmentStructure

equipmentList:list

attach(e:equipment)
detach(e:equipment)
accept(v:pricingVisitor)

drives

1

1

client

netPrice:currency
required:boolean

Figure 1: A Class Diagram of a Price Calculation Application

The diagram describes equipment structures that consist of cards and chas-

sises where a chassis is a composite equipment of cards. A PricingVisitor object

visits each element in the equipment structure and gets its net price in order

to calculate the total net price of the equipment. Operations visitCard and vis-

itChassis are used to visit Card and Chassis objects. A visited element accepts

the visitor object and returns itself to the visitor. The visitor then calls the

netPrice operation to the element to get its net price.

The formal description of the application is

Da = 〈Ca,	a,Ra,mclassa, attra, opera, assoca〉
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where

Ca =

{
card, chassis, client, compositeEquipment,

equipment, equipmentStructure, pricingV isitor

}

	a =

{ 〈card, equipment〉, 〈compositeEquipment, equipment〉,
〈chasis, compositeEquipment〉

}�

Ra = {consistOf, composedOf, drives, uses}

mclassa =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

equipment 
→ abstract, card 
→ concrete,

pricingV isitor 
→ concrete, chassis 
→ concrete,

equipmentStructure 
→ concrete, client 
→ concrete,

compositeEquipment 
→ concrete, consistOf 
→ association,

composedOf 
→ association, drives 
→ association,

uses 
→ dependency

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

attra(equipment) ={〈name,String〉,〈netPrice,Current〉,〈required,Boolean〉}
...

opera(equipment) = {〈accept, PricingV isitor, void〉, 〈netPrice, ε, Currency〉}
...

assoca(equipment) =

{ 〈uses, 2, false, 1..1〉, 〈consistOf, 2, false, 1..many〉,
〈composedOf, 2, false, 1..many〉

}

...

Values of attra, opera and assoca for other classifiers are omitted.

2.2 Structural Patterns

In this work, pattern are specified using RBML [France et al. 2004, Kim 2004]

– a UML-based pattern specification language that specifies patterns as meta-

models. RBML is chosen because it precisely describes pattern properties and is

designed to support model-level use of design patterns as opposed to implemen-

tation level use. The roles defined in a pattern are played by model elements in

a conforming model. In particular, a Structural Pattern Specification (SPS) in

RBML captures a class diagram view of a pattern solution in terms of classifier

and relationship roles whose bases are Classifier and Relationship metaclasses in

the UML metamodel [Kim et al. 2003]. A classifier role is associated with a set

of feature roles that determines the characteristics of the classifier role and is

connected to other classifier roles by relationship roles.

A simplified SPS for the Visitor design pattern [Gamma et al. 1995] is shown

in Figure 2. The Visitor pattern provides a solution for handling crosscutting
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Association Role
|ObjStructElem

Dependency Role
Class Role

|ObjectStructure

Classifier Role
|ElementClass Role

|Visitor
|Elem 1..* |Obj 1..1|Accept(|vis:|Visitor) 1..1

|Operation() 1..*

1..*

{supplier}{client}
|VisitElemDep 1..*

|VisitElem(|elem:|Element) 1..*

1..*

Figure 2: A Partial SPS for the Visitor Pattern

operations in a structure of classes called elements by putting these operations

into separate classes called visitors and having the visitors visit the elements to

perform the operations on the elements.

The SPS defines three classifier roles Visitor, Element, and ObjectStructure

and two relationship rolesVisitElemDep andObjStrucElem roles. The base meta-

class of role is specified above role name. For example, the Visitor role has the

Class metaclass as its base, which constrains that only instances of the Class

metaclass can play the role. The multiplicity 1..* specified at the right upper

corner postulates that there must be at least one class playing the role. The Vis-

itor role has a behavioral feature role VisitElem() with a parameter role elem.

This further constrains instances that play the role to possess operations playing

the behavioral feature role. The roles are connected by two relationship roles, the

ObjStructElem association role and VisitElemDep dependency role. The Element

and ObjectStructure roles can be explained similarly.

Syntactically, an SPS is a class diagram plus information about realization

multiplicities of roles. The realization multiplicity of a role (shown near the role

name) constrains the number of elements in a conforming class diagram that can

play the role. It is different from object multiplicity of an association end which

constrains the number of objects.

Definition 2. A structural pattern is a tuple 〈D,μ〉 where D is a class diagram

and μ : Name(D) 
→ Bound is a function mapping a role to Name(D) to a

multiplicity interval.

Example 2. Let ε denote the empty sequence. The formal description of the Vis-

itor pattern is 〈Dp, μp〉 where

Dp = 〈Cp,	p,Rp,mclassp, attrp, operp, assocp〉
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where

Cp = {V isitor, Element,ObjectStructure}
	p = ∅
Rp = {V isitElemDep,ObjStructElem}

mclassp =

⎧⎨
⎩

V isitor 
→ concrete, Element 
→ classifier,

ObjectStructure 
→ concrete,

V isitElemDep 
→ dependency,ObjStructElem 
→ association

⎫⎬
⎭

attrp(Element) = attrp(V isitor) = attrp(ObjectStructure) = ∅
operp(Element) = {〈Accept, V isitor, void〉, 〈Operation, ε, void〉}

operp(ObjectStructure) = ∅
operp(V isitor) = {〈V isitElem,Element, void〉}

assocp(Element) =

{ 〈V isitElemDep, 2, false, 1..1〉,
〈ObjStructElem, 1, true, 1..many〉

}

assocp(ObjectStructure) = {〈ObjStructElem, 2, false, 1..1〉}
assocp(V isitor) = {〈V isitElemDep, 1, true, 1..1〉}

and

μp(V isitor) = μp(Element) = μp(ObjectStructure) = 1..many

μp(V isitElem) = μp(Operation) = 1..many

μp(Accept) = μp(V isitElemDep) = μp(ObjStructElem) = 1..many

2.3 Pattern Conformance

When an SPS pattern is used in an application, each role in the SPS must be

played by an element in the application. The model element in the application

does not usually have the same name as the role since the SPS is constructed

for a wide range of applications and hence adopts names of a generic nature

while the name of a model element should be more specific and meaningful to

the application at hand. Our notion of conformance is parametric on a mapping

ρ from the names of roles to the names of model elements, i.e., ρ(Role) = Elem

says that Elem plays the role Role. In addition to this name mapping, the

classifier in the application may add new attributes and/or replace the type of an

existing attribute by one of its subtype. Similarly, new operations can be added

to a classifier and the return type of an existing operation can be made smaller,

i.e., its return type can be made smaller and the type of any of its arguments
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can be made larger. The multiplicities of association ends can be made smaller.

During reusing process, classifiers in a class diagram can be merged, split or class

hierarchy can be changed. Pattern conformance requires that for each classifier

c2 in the pattern, there is a corresponding classifier c1 in the application such

that c1 possesses each and every feature of c2 in the original or a refined form.

The notion of conformance is based on that of a consistent role mapping

from roles in a pattern to elements in an application. Subtyping in an object-

oriented system allows a classifier to inherit all features of its super-classifiers.

Let D = 〈C,	,R,mclass, attr, oper, assoc〉. Then attr�(c) is defined as the set of

all attributes defined in c and all of its super-classifiers. oper�(c) and assoc�(c)

are defined similarly.

attr�(c) =
⋃
{attr(c′) | c 	 c′ ∧ c′ ∈ C}

oper�(c) =
⋃
{oper(c′) | c 	 c′ ∧ c′ ∈ C}

assoc�(c) =
⋃
{assoc(c′) | c 	 c′ ∧ c′ ∈ C}

Definition 3. Let Da = 〈C1,	1,R1,mclass1, attr1, oper1, assoc1〉 and Dp =

〈C2,	2,R2,mclass2, attr2, oper2, assoc2〉 be class diagrams. A function

ρ : Name(Dp) 
→ Name(Da) is a consistent role mapping from Dp and Da

provided that the following conditions both hold.

1. If (c1 ∈ C1) ∧ (c2 ∈ C2) ∧ (c1 = ρ(c2)) then

(a) mclass1(c1) � mclass2(c2);

(b) for each attribute 〈a2, T2〉 ∈ attr�2(c2), there is an attribute 〈a1, T1〉 ∈
attr�1(c1) such that a1 = ρ(a2) and T1 	1 ρ(T2);

3

(c) for each operation 〈o2, T a2, T r2〉 ∈ oper�2(c2), there is an operation

〈o1, T a1, T r1〉 ∈ oper�1(c1) such that o1 = ρ(o2), and Tr1 	1 ρ(Tr2)

and there is a sub-sequence Ta′1 of Ta1 such that ρ(Ta2(i)) 	1 Ta′1(i)
for all 1 ≤ i ≤ |Ta2|; and

(d) for each association end 〈r2, pos2, nv2, bnd2〉 ∈ assoc�2(c2), there is an

association end 〈r1, pos1, nv1, bnd1〉 ∈ assoc�1(c1) such that r1 = ρ(r2),

pos2 = pos1, nv2 = nv1 and bnd1 ⊆ bnd2 where bnd1 ⊆ bnd2 holds

whenever bnd1 is contained in bnd2; and

2. If (r1 ∈ R1) ∧ (r2 ∈ R2) ∧ (r1 = ρ(r2)) then

(a) mclass1(r1) � mclass2(r2); and

(b) for each classifier c2 ∈ C2 such that 〈r2, pos, , 〉 ∈ assoc�2(c2) for some

pos ∈ N , there is a classifier c1 ∈ C1 such that 〈r1, pos, , 〉 ∈ assoc�1(c1)

and c1 = ρ(c2) where stand for a don’t care value.

3 The function ρ is extended by ρ(T ) = T for any T �∈ Name(Dp).
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Some explanations are in order. A consistent role mapping ρ tells which elements

in Da play which roles in Dp. It ensures that each role in Dp is played by an

element in Da. It allows multiple model elements to play a single role but does

not allow a single model element to play multiple roles. This issue is resolved by

considering all consistent role mappings. The condition (1) says that a classifier

c1 in Da plays a classifier role c2 in Dp only if each feature of c2 is played by a

feature of c1. The condition (2) states that an association r1 in Da plays an asso-

ciation role r2 in Dp only if each participant of r2 is played by its corresponding

participant of r1.

Example 3. The following is a consistent role mapping from Dp in Example 2 to

Da in Example 1.

⎧⎪⎪⎨
⎪⎪⎩

Accept 
→ accept, V isitor 
→ pricingV isitor, V isitElemDep 
→ uses,

ObjectStructure 
→ equipmentStructure,ObjStructElem 
→ consistsOf,

Element 
→ chassis, V isitElement 
→ visitChassis,

Operation 
→ addEquip

⎫⎪⎪⎬
⎪⎪⎭

Given a class diagram Da and a structural pattern 〈Dp, μ〉, the set of all

consistent role mappings between Da and Dp is finite since Name(Da) and

Name(Dp) are both finite.

Definition 4. Let Da = 〈C1,	1,R1,mclass1, attr1, oper1, assoc1〉 and Dp =

〈C2,	2,R2,mclass2, attr2, oper2, assoc2〉 be class diagrams. Let

� ⊆ Name(Da)×Name(Dp) be defined by e�r iff e = ρ(r) for some consistent

role mapping ρ from Dp and Da. Then Da is said to conform to 〈Dp, μ〉 if
1. ‖{c1 | c1 � c2}‖ ∈ μ(c2) for each c2 ∈ C2 where ‖S‖ is the cardinality of a

set S.

2. If c1 � c2 and 〈a2, 〉 ∈ attr�2(c2) then ‖{a1 | a1 � a2∧〈a1, 〉 ∈ attr�1(c1)}‖ ∈
μ(a2).

3. If c1 � c2 and 〈o2, , 〉 ∈ oper�2(c2) then ‖{o1 | o1 � o2 ∧ 〈o1, , 〉 ∈
oper�1(c1)}‖ ∈ μ(o2).

4. If c1 � c2 and 〈r2, pos, , 〉 ∈ assoc�2(c2) then ‖{r1 | r1 � r2∧〈r1, pos, , 〉 ∈
assoc�1(c1)}‖ ∈ μ(r2).

The condition (1) says that the number of classifiers in Da playing a classifier

role c2 in Dp must be within the interval μ(c2). The conditions 2-4 states the

similar requirement on the number of features in a classifier in Da that plays a

classifier in Dp.

The relation � in the above definition can be calculated by computing all

consistent role mappings between Da and Dp and combining them as sets of
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bindings via set union. Once � is computed, verifying conditions 1-4 is simple.

Thus, verification of the conformance of Da to 〈Dp, μ〉 boils down to computing

consistent role mappings from Dp to Da which is the subject of the next section.

3 Computing Consistent Role Mappings

A prerequisite for any automated tool for reasoning about UML design models

is a representation scheme for model elements. A logic program is declarative in

that it describes what a problem is but not how it can be solved. Solutions to

the problem can be generated by a logic programming language system such as

Prolog. The domain of the problem is described as a collection of logic statements

and so is the problem. Logic inference capability of a logic programming language

such as Prolog can not only check if the problem is solvable, but also can find

all solutions to the problem. This capability is used to compute consistent role

mappings.

3.1 Class Diagrams as Logic Programs

This section presents a scheme for representing model elements of a UML class

diagram and its associated OCL constraints as Prolog statements.

3.1.1 Metamodel knowledge

The partial order 〈MetaClass,�〉 represents metamodel knowledge which is

common to a range of applications. They are represented as follows. Each element

k ∈ MetaClass corresponds to a predicate named k and 〈MetaClass,�〉 is
represented as a set of Prolog rules of the form k2(X):-k1(X) for each pair

consisting of k1 and k2 such that k1 � k2 and there is not any k′ such that k1 �
k′ � k2. The example partial order 〈MetaClass,�〉 in Section 2 is represented

by the following Prolog rules.

classifier(X) :- interface(X). classifier(X) :- class(X).

class(X) :- abstract_class(X). class(X) :- concrete_class(X).

association(X) :- dependency(X). dependency(X) :- usage(X).

The knowledge that the sub-typing relation is transitive is encoded by this

Prolog rule: is a(X,Y) :- is a(X,Z), is a(Z,Y). Since inheritance is non-cyclic, a

call to is a with its first argument being a ground term is guaranteed to terminate

universally. The translation from patterns to queries ensures that is a is always

called with its first argument ground. Sub-typing induces a rule for inherited

features:

has_feature(T,F) :- is_a(T,T1),has_feature(T1,F).
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The following rules realize the containment relation between pairs of object

multiplicity bounds.

bound_subset(bounds(L1,U1),bounds(L2,U2)) :-

bound_leq(L2,L1), bound_leq(U1,U2).

bound_leq(B1,B2) :-

B2 == many -> true; B1 \== many, B1 =< B2.

The predicate bound subset will only be used to check if a given pair of bounds

is contained in another given pair of bounds; it will not be used to generate the

containment relation between pairs of bounds.

The Prolog rules representing meta-model knowledge are completed with

Prolog facts that are specific to a model.

3.1.2 Sub-typing

A sub-typing relation 	 is represented by a predicate is a such that is a(T1,T2)

indicates that T1 is a sub-type of T2. The sub-typing relation 	a in Example 1

is represented as follows.

is_a(compositeEquipment,equipment).

is_a(chassis,compositeEquipment).

is_a(card,equipment).

3.1.3 Metaclassing

A meta-classing function mclass is translated to a set of Prolog facts. Each

binding of the form e 
→ k in mclass is translated into a fact k(e). For instance,

the meta-typing mclassa in Example 1 is represented by the following Prolog

facts.

abstract(equipment). association(consistOf).

concrete(card). association(drives).

concrete(pricingVisitor). association(composedOf).

concrete(chassis). dependency(uses).

concrete(equipmentStructure).

concrete(compositeEquipment).

concrete(client).

3.1.4 Features of type

A classifier is defined in terms of attributes, operations and association ends.

These are called features of the classifier. That a classifier has a feature is repre-

sented as a fact of the form has feature(CName, Info) where CName is the name

of the classifier and Info is a ground term describing the feature.
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3.1.5 Operations and Attributes

That a classifier has an operation is represented as a Prolog fact

has feature(CName, op(OpName, ArgTypes, RType)). CName is the name of

the classifier, OpName the name of the operation, ArgTypes the list of its ar-

gument types and RType the type of its returned value. For example, the only

operation defined in the chassis class in Figure 1 is represented by

has_feature(chassis,op(accept,[pricingVisitor],void))

and the operations defined in the equipment class are encoded as these Prolog

facts.

has_feature(equipment,op(accept,[pricingVisitor],void)).

has_feature(equipment,op(netPrice,[],void)).

Attributes are treated similarly. That a classifier has an attribute is repre-

sented as a Prolog fact of the form has feature(CName,attr(AttrName,AttrType))

where CName is the name of the classifier, AttrName the name of the attribute

and AttrType the type of the attribute. For instance, the attributes of the equip-

ment class are encoded as these Prolog facts.

has_feature(equipment,attr(name,string)).

has_feature(equipment,attr(netPrice,currency)).

has_feature(equipment,attr(required,boolean)).

3.1.6 Association Ends

An association is defined in terms of association ends that may be annotated

with object multiplicity and navigability constraints. An association is uniquely

identified with its ends. Thus, an association is represented by representing its

ends. In addition to its meta-class information, an association end of a classifier is

represented by a fact has feature(CName, assoc(AssocName, Pos, Navigability,

bounds(Lower,Upper))) where CName is the name of the classifier that partic-

ipates in the association at the end. Pos is the position of the classifier in the

association relationship. AssocName is the name of the association. Navigability

is either true or false, indicating whether the end is navigable. Lower is the lower

bound on the object multiplicity at the end and Upper the upper bound. For

instance, the association composedOf is represented by these two facts:

has_feature(equipment,

assoc(composedOf,2,false,bounds(1,many))).

has_feature(compositeEquipment,

assoc(composedOf,1,true,bounds(0,1))).
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The only dependency uses in Figure 1 is represented by these two facts.

has_feature(equipment,assoc(uses,1,true,bounds(1,1))).

has_feature(pricingVisitor,assoc(uses,2,false,bounds(1,1))).

3.2 Patterns as Queries

Our goal is to discover a mapping from pattern roles to model elements such that

when the roles are substituted by the model elements, the pattern is satisfied

by the model. For this purpose, we represent a design pattern as a query. The

representation uses the same predicates for representing UML models. Each role

is represented as a variable. Roles except association end roles are represented

as atoms in the same way as their corresponding model elements are represented

as facts. For instance, the three classifier roles in Figure 2 are represented as

class(Visitor), class(ObjectStructure) and classifier(Element) respectively. That

Visitor has an unary behavioral role VisitElem with an argument of type Element

is represented as has feature(Visitor,op(VisitElement,[Element],void)).

Each association end role is represented by two atoms. For instance, the

association end role Obj is represented by these two atoms

has_feature(ObjectStructure,assoc(ObjStructElem,2,false,ObjBnds)),

bound_subset(ObjBnds,bounds(1,1))

where ObjBnds is a variable not appearing elsewhere. The role Obj does not

appear in this representation since it is uniquely determined by the roles Object-

Structure and ObjStructElem. In fact, an association end needs not be named.

Observe that ObjBnds is the pair of object multiplicity bounds for the model ele-

ment that plays the Obj role and that bound subset(ObjBnds,bounds(1,1)) checks

if ObjBnds is contained in the pair of object multiplicity bounds for the Obj role.

Each pattern role is represented as one or two atoms. The conjunction of the

atoms obtained from all pattern roles forms a query. The query representing the

example pattern in Fig. 2 is

% sub-typing relation is empty

% meta-class information

classifier(Element),

concrete_class(Visitor),

concrete_class(ObjectStructure),

dependency(VisitElemDep),

association(ObjStructElem),

% features of Element

has_feature(Element,op(Accept,[Visitor],void)),

has_feature(Element,op(Operation,[],void)),
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has_feature(Element,assoc(VisitElemDep,1,true,SuplierBnds)),

bound_subset(SupplierBnds,bounds(1,1)),

% features of Visitor

has_feature(Visitor,op(VisitElement,[Element],void)),

has_feature(Visitor,assoc(VisitElemDep,2,false,ClientBnds)),

bound_subset(ClientBnds,bounds(1,1)),

has_feature(Element, assoc(ObjStructElem,1,true,ElemBnds)),

bound_subset(ElemBnds,bounds(1,many)),

% features of ObjectStructure

has_feature(ObjectStructure,assoc(ObjStructElem,2,false,ObjBnds)),

bound_subset(ObjBnds,bounds(1,1)).

3.3 Inference of Consistent Role Mappings

The logic program represents elements in a UML model and their relationships,

whilst the query represents roles in a pattern and their relationships. This facil-

itates the calculation of consistent role mappings because they can be found by

executing the program and query. The following theorem states that the set of

all consistent role mappings can be obtained by computing all computed answers

to the query with the program and projecting the computed answers to the set

of the variables that represent roles. In addition, the LD-resolution of the query

with the program will always terminate.

Theorem 1 Let P denotes the program, Q the query and V the set of variables

representing roles. Then

(a) The LD-resolution of P ∪ {← Q} universally terminates.

(b) A substitution θ is a computed answer to P ∪ {← Q} via LD-resolution if

and only if θ ↑ V is a consistent mapping where θ ↑ V is θ restricted to V .

Proof. Consider (a) first. All calls except those to bound subset/2 universally

terminates. Calls to interface/1, class/1 and classifier/1 obviously terminate uni-

versally since these predicates are not recursive. Calls to is a/2 universally ter-

minates since sub-typing relations is not cyclic. This together with the fact that

all the rules in the program representing the model do not have any function

symbol, implies that calls to has feature/2 universally terminates. Note that all

facts in the program representing the model are ground, and all variables in the

head of a rule also appear in the body of the rule. Therefore, the successful exe-

cution of a call to interface/1, class/1, classifier/1 and has feature/2 grounds all

its arguments. By construction, for each call bound subset(Bs1,Bs2) in Q, Bs2

is a ground term and Bs1 occurs in a call that precedes bound subset(Bs1,Bs2),

thus, both Bs1 and Bs2 are ground upon the selection of bound subset(Bs1,Bs2)
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by the LD-resolution, which implies that all computed answers to P ∪{← Q} are
ground substitutions. The set of variables Q consists of those variables represent-

ing roles and those variables representing pairs of bounds. Then the proof of (b)

follows directly from the soundness and the completeness of the LD-resolution

procedure [Lloyd 1987].

We have constructed a conformance verifier in Prolog that first computes all

consistent role mappings from the class diagram in the structural pattern to the

class diagram in the model and then checks if the conditions in Definition 4 hold.

Example 4. Let P be the program that represents the class diagram Da in Ex-

ample 1 and Q the query that represents the pattern Dp in Example 2. Let

X �Y = {X ∪Y | X ∈ X ∧Y ∈ Y}. Our conformance verifier first computes the

following set of consistent role mappings by executing P with the query Q.

{{Accept 
→ accept, V isitor 
→ pricingV isitor, V isitElemDep 
→ uses}}�⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{
ObjectStructure 
→ equipmentStructure,

ObjStructElem 
→ consistsOf

}
,

{
ObjectStructure 
→ compositeEquipment,

ObjStructElem 
→ composedOf

}
,{

ObjectStructure 
→ chassis, ObjStructElem 
→ composedOf
}

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Element 
→ chassis, V isitElement 
→ visitChassis,

Operation 
→ addEquip

}
,

{
Element 
→ chassis, V isitElement 
→ visitChassis,

Operation 
→ removeEquip

}
,

{
Element 
→ chassis, V isitElement 
→ visitChassis,

Operation 
→ netPrice

}
,

{Element 
→ card, V isitElement 
→ visitCard,Operation 
→ netPrice}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The conformance verifier then checks conditions 1-4 in Definition 4 and finds

that they all hold. Therefore, the class diagram conforms to the pattern.

4 Related Work

There has been much work on detecting pattern instances in code. Albin-Amiot

and Guéhéneuc [Albin-Amiot et al. 2001] propose a meta-modeling approach to

define and detect design patterns in Java code by structural matching. Bal-

anyi and Ference [Balanyi et al. 2003] use a XML-based language to represent

design patterns and detect pattern instances in C++ code. Fabry and Mens

[Fabry & Mens 2004] use logic meta programming to detect design patterns in

different languages (e.g., Java, Smalltalk). Heuzeroth et al. define design pat-

terns in a tuple of classes, methods, and attributes and use them to find pattern

instances in Java code using pattern-specific algorithms. These works support
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the reverse engineering efforts at the programming level for understanding legacy

systems and improving their quality attributes.

Kram̈er and Prechelt [Kraemer and Prechelt 1996] and Bergenti and Poggi

[Bergenti and Poggi 2000] propose Prolog-based approaches where design pat-

terns are represented as Prolog rules which are used to search pattern instances

in Prolog programs translated from application models. A limitation of these

approaches is that the pattern solution structures used to build the Prolog rules

are, in fact, a typical instance of the patterns, and it is rare to find such models

that have the same instance, which significantly limits their applicability.

Metric-based approaches are studied in [Antoniol et al. 1998],

[Shull et al. 1996]. Antoniol et. al. [Antoniol et al. 1998] use simple class-level

metrics (e.g., the number of attributes, the number of operations, the num-

ber of different types of relationships) as constraints to recover design patterns

in designs. Their approach is similar to the approaches based on minimal key

structures in that the structural constraints are expressed in metrics. More so-

phisticated metrics are used in Shull et al.’s work [Shull et al. 1996]. They define

a design pattern by metrics in three categories of object-oriented metrics, struc-

tural metrics, and procedural metrics and use them in six steps of a searching

algorithm. There is no tool support for their approach, and it is hard to see how

the algorithm can be automated.

Similar to our approach, Guennec et al. [Guennec et al. 2000] use roles (e.g.,

classifier roles, feature roles) to define patterns where roles are played by UML

model elements. In their work, a UML model is said to conform to a pattern if the

names of model elements match to the role names. Using their notion of pattern

conformance, it is hard to expect that the elements in a model have the same

name as the role name unless the designer is assumed to have knowledge of their

pattern specifications and intentionally uses the role names, which is not a valid

assumption. Their pattern specifications also have other important properties

such as role types and behaviors, but these properties are not considered in

the notion of pattern conformance. Our technique establishes a precise notion

of pattern conformance and enables rigorous evaluation of pattern conformance

without requiring designers to have knowledge of the pattern.

Potential of logic programming as a reasoning tool in software engineer-

ing has been recognized before [Abreu 2000, Alghathbar et al. 2005, Mens 2002,

Wang et al. 2004, Wuyts 1998, Zisman and Kozlenkov 2003]. To the best of our

knowledge, none of previous works address the issue of conformance of a UML

model to a given design pattern. Abreu reports a university information system

that describes classes, inheritance, attributes and the values used to populate

the classes as description logic formulae [Abreu 2000]. The description logic for-

mulae are used to generate more efficient and specific representations for actual

use. The emphasis of the work in [Abreu 2000] is to substitute description logic
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formulae for UML models. Our work focuses on formal reasoning about UML

models, in particular, conformance of UML models to design patterns.

Wang et. al use constraint logic programming for symbolic execution of re-

quirements described as live sequence charts [Wang et al. 2004]. Data variables

in live sequence charts are represented as logical variables while control vari-

ables in live sequence charts as constraints. A truly symbolic execution of live

sequence charts is realized by making use of two basic capabilities of a constraint

logic programming language: unification and constraint propagation. The work

in [Wang et al. 2004] allows software designer to play with his design whilst our

work verifies if his design conforms to a given design pattern and informs him

how it conforms to the design pattern.

Zisman and Kozlenkov represent elements in an UML metamodel as axioms

and those in an UML model as facts [Zisman and Kozlenkov 2003]. They use a

knowledge base engine based on abduction to discover and analyze structural

and behavioral inconsistencies within or between UML specifications. FlowUML

[Alghathbar et al. 2005] uses Horn clauses to specify information flow polices

that can be checked against flow information extracted from UML sequence

diagrams. These works are mainly concerned with checking consistency within

and between UML models. Our work goes beyond that by inferring how a UML

model conforms to a given design pattern.

Wuyts proposed a logic meta-programming language SOUL for representing

structural relationships in class-based object-oriented systems [Wuyts 1998]. A

declarative framework based on SOUL was constructed to reason about the

structure of Smalltalk programs. SOUL was also used by Mens et. al [Mens 2002]

to manage intentional source code views. A careful study of the representation

proposed in [Wuyts 1998] reveals that it does not permit inference of design

pattern instances in a UML model. For instance, that a class named c has a

method named m is represented as a fact method(c,m). Without information

about the types of the arguments and the returned value of the method, precise

matching between a method role and a method is not possible.

5 Conclusion

We have formalized class diagrams and structural patterns as mathematical ob-

jects and given a precise definition of a notion of structural pattern conformance.

We have also presented a rigorous technique for evaluating structural confor-

mance of UML class diagrams to a structural pattern specification using logic

programming. We have demonstrated how the technique can be used through the

Visitor pattern and a model of a price calculation application. The technique can

be also used to find instances of domain-specific patterns in a particular domain

(e.g., telecommunication, security). We are currently applying the technique to
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verify valid instances of access control patterns (e.g., RBAC, MAC, DAC) for

designs of access control systems in the security domain. The technique can be

also used in the area of pattern-based model refactoring [France et al. 2003] for

finding applicable design patterns for a given problem model. If the problem

model conforms to the problem specification of a pattern, the solution of the

pattern can be applied to the model.

In the subsequent work, we plan to develop tool support for the technique

to translate a pattern specification to a query and a UML model into a logic

program. We also plan to extend the technique to include checking semantic

conformance of behavioral properties. Examples of such properties are pre- and

post-conditions in behavioral features roles and the interactions among pattern

elements specified in Interaction Pattern Specifications in RBML.
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