Journal of Universal Computer Science, vol. 16, no. 17 (2010), 2293-2312
submitted: 15/2/10, accepted: 30/8/10, appeared: 1/9/10 © J.UCS

Checking the Conformance between Models
Based on Scenario Synchronization

Duc-Hanh Dang, Anh-Hoang Truong
(University of Engineering and Technology, VNUH, Vietnam
{hanhdd|hoangta}@vnu.edu.vn)

Martin Gogolla
(Department of Computer Science, University of Bremen, Germany
gogolla@informatik.uni-bremen.de)

Abstract: Narrowing the wide conceptual gap between problem and implementation
domains is considered a significant factor within software engineering. Currently, such
a relation is often obtained using mappings between metamodels for a structural se-
mantics. This paper proposes an approach based on the integration of Triple Graph
Grammars (TGGs) and the Object Constraint Language (OCL) in order to explain a
behavioral relation between models at different levels of abstraction. Triple rules in-
corporating OCL allow us to synchronize execution scenarios of a system at two levels.
In this way we obtain an integrated operational semantics of the models as well as the
possibility for conformance verification between them. We illustrate our approach with
a case study for the relation between use case and design models.

Key Words: Model-Driven Development, Model Transformation, Model Validation,
Graph Transformation, UML, OCL, Snapshot, Invariant, Pre- and Postcondition

Category: H.2.3, D.2.4, D.m

1 Introduction

In model-driven development a system of interest is viewed by various models at
different levels of abstraction. Models are defined in different modeling languages
such as UML [OMG 2007b] and DSMLs [Greenfield et al. 2004]. It is often very
difficult to maintain the consistency between them as well as to explain such a
relation for both structural and behavioral semantics. An evidence is the confor-
mance relation between a use case model as a specification and a design model as
a realization. This is a loose relationship because use cases are often presented
at a high level of abstraction by a loosely structured text [Cockburn 2000] or
UML use case diagrams [Rumbaugh et al. 2004].

Currently, the metamodeling approach allows us to define structural se-
mantics of models. Models from modeling languages like UML must con-
form to corresponding metamodels, i.e., their well-formedness needs to be en-
sured. Constraint languages for metamodels such as the Object Constraint Lan-
guage (OCL) [Warmer and Kleppe 1998] allow us to express better structural
semantics of models. In this context the relation between models can be obtained

2294 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

based on mappings between metamodels. On the mappings, transformation rules
are defined for a model transformation. This principle is the core of many trans-
formation tools and languages [Jouault et al. 2008, Amelunxen et al. 2006] as
well as the Object Management Group (OMG) standard for model transfor-
mation, Query/View/Transformation (QVT) [OMG 2007a]. The transformation
relationship is a good way to explain the structural relation between models.

Many approaches for a behavioral semantics of modeling languages have been
introduced in [Kleppe 2007, Greenfield et al. 2004, Harel and Rumpe 2004] such
as trace-based, translation-based, denotation-based, and execution-based seman-
tics. Such a semantics can also be obtained by semantics mappings as pointed
out in [Broy et al. 2007, Gogolla 2004]. The semantics can be represented by dif-
ferent formal methods such as graph transformation in [Hausmann et al. 2002],
Z in [Broy et al. 2007, Evans et al. 1999] for a full formal description for the
Unified Modeling Language (UML), and Alloy in [Kelsen and Ma 2008] for a
semantics of modeling languages.

This paper focuses on the relation of behavioral semantics between mod-
els. We aim to describe an integrated view on two modeling languages in or-
der to characterize the semantics relation between them. Models from mod-
eling languages within our approach are viewed as a set of execution sce-
narios of the system. We employ the incorporation of Triple Graph Gram-
mars (TGGs) [Schiirr 1995] and OCL [Dang and Gogolla 2009a] in order to syn-
chronize pairs of scenarios for describing a system execution. This approach al-
lows us to build valid pairs of scenarios as well as to detect invalid cases. In this
way we can check the conformance between the models.

We illustrate our approach with a case study explaining the relation
between a use case model and a design model. Use cases [OMG 2007b,
Rumbaugh et al. 2004, Cockburn 2000, Jacobson 1992] have achieved wide ac-
knowledgement for capturing and structuring software requirements. However,
to overcome the informality of use cases in order to integrate them better into
model-driven development is still a challenge. Our approach not only allows us
to check the conformance between use case and design models but also to de-
scribe operational semantics of use cases in particular and modeling languages in
general. We implement our approach based within the UML-based Specification
Environment (USE) tool [Gogolla et al. 2007], which supports full OCL.

The rest of this paper is organized as follows. Section 2 focuses on the relation
between a use case model and a design model in order to illustrate our approach.
Section 3 explains our model-driven approach: How TGGs incorporating OCL
can synchronize scenarios. This section also overviews our implementation in
USE. Section 4 formalizes our approach and presents an algorithm for checking
the conformance between models. Section 5 discusses related work. This paper
is closed with a summary.

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

2295

2 Running Example

We illustrate our approach by focusing on the relation between a use case model
and a design model. The models are the views of the system at different levels of
abstraction. The following case study discusses the challenge how to relate the
models to each other and to check the conformance between them.

2.1 Example Use Case

Figure 1 presents an example use case model. This use case model can also be
presented by a UML use case diagram as shown in Fig. 2. It describes (fragments
of) the service of a car rental system in a textual format. Let us start with the
use case Return Car. The textual description of this use case states the general
information including the actor, goal, trigger, and pre- and postconditions. The
basic and alternate flows and extensions of this use case show scenarios of using
this service.

Use Case: Return Car

Actor: Clerk

Goal: To process the case when
a car is returned.

Use Case: Process Payment
Actor: Clerk

Basic Flow:

1. System handles the payment.

Trigger: Customer wants to return |2. System prints the invoice.

a car.

Precondition: The rental Use Case: Process Credit Payment

exists and the car was delivered. |Actor: Clerk, Card Reader

Postcondition: The rental is Basic Flow:

closed and the car is available. 1. [Card Reader reads the credit

Basic Flow: card information.

1. Clerk requires to process 2. |System updates the rental for
a rental the payment. (steps 1-2 refine

2. System asks the customer id. step 1 of Process Payment)

3. Clerk enters the id. 3. System prints the invoice.

4. System displays the rental.

5. Clerk enters the mileage.
6. System updates the fee.
7. Include Process Payment.
8. System closes the rental.
Alternate Flows:
4.a. The rental is not found.
4al. System informs that
the rental does not exist.
4a2. Return to the step 3 of the
Basic Flow.
Extensions:
El. Late Return:
The extension point occurs at the
step 6 of the Basic Flow.

Use Case: Handle Late Return

Actor: Clerk

Basic Flow: (none)

Alternate Flows: (none)

Extension Flows:

EF1. Process Late Return:

This extension flow occurs at the

extension point Late Return in

the Return Car use case when the

customer returns a car late.

1. System updates the rental for
the return late case.

2. System rejoins at the
extension location.

Figure 1: Use case description in a textual template format

In the example use case model the include, extend, and generalization
relationships between use cases are illustrated. First, the Return Car use case
includes the Process Payment use case since Return Car refers to that use case

2296 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

<<extend>> Handle Late Return

O ——_ Extension Points _— Process Payment
Late Return <<include>> O
i / ;
Process Credit Payment
Card Reader

Figure 2: UML use case diagram for the example use case model

at the inclusion point, step (7) of the basic flow. This flow rejoins at step (8)
as soon as the corresponding scenario in that new use case is finished. Second,
the Return Car use case can be extended by the Handle Late Return use case.
Once the extension point, i.e., step (6) of the basic flow of the Return Car use
case, is defined, this flow transfers to the scenario of the new use case and rejoins
at the next step of the extension point. When the flow of a use case reaches a step
referenced by the extension point and the condition of the extension is satisfied,
the flow will transfer to the behavior sequence of the extension use case. When
the execution at the extension use case is complete, the flow rejoins the original
use case at the referenced point. Finally, we have a generalization relationship
between the Process Payment use case and the Process Credit Payment use
case. The latter inherits from the former one since the actions (1) and (2) in the
basic flow of the Process Credit Payment are a refinement of the action (1) in
the Process Payment use case.

We extend activity diagrams in order to present use cases. Figure 3 shows
the extended activity diagram for the Return Car use case. In extended activity
diagrams, use case snapshots, which include objects, links, and OCL conditions,
are denoted by rectangles. Here, we use concepts of the conceptual domain as
shown in Fig. 4 in order to present use case snapshots, i.e., the interaction state
of use case scenarios. System and actor actions, e.g., the actions (1) and (4) are
denoted by rounded rectangles. Use case actions, e.g., the action (5) are denoted
by the double-line rounded rectangles. A conditional action, e.g., the action (2)
is denoted by the dashed-line rounded rectangles. The extension point, e.g.,
the Return Late extension point of the action (4), is denoted by the six-sided

polygons.
2.2 Design Model Realizing the Example Use Case

The example use case can be realized by a design model. We might represent such
a design model as a combination of UML diagrams such as class, component, and

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2297
Actor System
cust:Customer
rental :Rental
7777777 id_Cust:StringCls
Reoui ‘ (cust, l_’engal) : Registl_’ation
asegutl::' fgféfm,fg dproc%SS ‘ [cust.id=id_Cust.string]
\T\yffff.ffff\ rental :Rental
post Retrieve information of | _
id_Cust:StringCls (1] the rental @/ E?gﬁ¥él|)a]£?ﬁ:§h
id Cust.string<> ||/~ "———7——=——™—)
I Tndofi hed(String)] |~ | rental-Rental <today.date]
car:Car
Supply information mileage_Car:RealCls
of the rental ® (rental,car):UsingCar
pre
t(Update information o Legend
post to finish the rental @ <Return Late> 9
() System/Actor Action
mileage_Car:RealCls post
[mileage_Car.real<> rental :Rental Use case Snapshot
oclUndefined(Real)] Process the payment C?II’.Car Car-RealCl "~ ") Conditional Action
for the rental mileage _tar-Reaitts —
(rental,car):UsingCar| | " Extension Point
[car.mileage=
mileage_Car.real] Use case Action
Figure 3: Graphical presentation of the Return Car use case
Class diagram ‘e E

RentalPayment

CreditPayment

Car Customer
id: 5tring id : 5tring
mileage : Real T 1
" UsingCar Registration
Car]|Model .
1 Rental
(Edrh el BookingCartadel start : Date
id ; 5tring N finish : Date 1
price : String 1 return @ Date
pickedUp : Boolean

071

credithumber : 5tring
amount : Real

Figure 4: Conceptual model in the case study

sequence diagrams. In order to establish a relation between the design model and

use case model, as proposed in [Dang 2007], we will view the design model as a set

of scenarios, i.e., a sequence of snapshots. Then, a scenario at the design level will

correspond to a scenario at the use case level. We will extend activity diagrams

in order to capture such an aspect of the design model. Figure 5 presents a design

model for the Return

Car use case.

Snapshots at the design level are used to specify pre- and postconditions in
action contracts and the branch conditions. Actions in a scenario at the design

level are organized in a hierarchy by action groups. This hierarchy originates from

2298 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

Boundary

System
Legend -
retCar:ReturningCar -> getRentallnfo()
() Action
r -7 s ot @ cust:Customer
__ __ __"Snapshot
getRentallnfo /getCustomeD— getRental \3
El Action Group o177
i <
prefpost| - ——— 7 ~prefpost
(EdgfféaéiaEé}A————~:i1l41 | cust:Customer
z - < | rental :Rental
}Id7C¥S§é§§glggClS i | | (cust,rental) :Registration
{[cust. id=id_Cust.string], | [rental .return=oclUndefined(Date)]
retCar:ReturningCar -> updateRentallnfo()
@ @ retLate:ReturnLate
(updateRentalinfo -+ getCurrDay 1l
1 Jelse]
post__---"""~ ; =
T - car:Car . {fental:Rental->updateRental
L "
[car-Car [~ pre dateCar) dateRet
|car:Car | EEoo - upaal r, getCar k—{updateReturn
[mi X J = —(8) |- 7) 6
[car:Car | 7\ pf’,SL' procPmt:ProcessPayment \\
Imileage_Car:RealCls - o 7 Vo
| [car.mileage=mi leage_Car.real]| 5[processPayment C\)—H@
- — 7T L R 9 (RN
777777777777777777 me ’ o _pre:
| rental :Rental

|rental :Rental |
| today:DateCls [v | today:DateCls |
| [today.date < rental._finish] |

77777777777777777777777777 post’
[rental :Rental T | rental:Rental
|car:Car || today:DateCls |
|(rental ,car) :UsingCarJ | [rental.return=today .date]|

Figure 5: Extended activity diagram for presenting design model scenarios

mappings between a sequence diagram and a corresponding extended activity
diagram: The interaction sequence between objects (by messages) is represented
by an action sequence. Each message sent to a lifeline in the sequence diagram
corresponds to an action or an action group which realizes the object operation
invoked by this message. The action group includes actions and may include

other action groups. An action group always links to an object node at the
corresponding lifetime line.

2.3 Relation between Use Case and Design Models

We now describe informally the relation between use case and design models.
The most intuitive correspondence between these models is that a system action
at the use case level is refined by a collaboration at the design level. Other cor-
respondences can be explored by mapping system scenarios at the use case and
design levels (in a synchronization execution) with each other: A step in a sys-
tem scenario at the use case level may define the next step in the corresponding
scenario at the design level, and vice verse, a step at the design level may define

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2299

the next step at the use case level.

Specifically, we need to relate action effects for scenarios at the use case and
design levels to each other. Effects for use case scenarios include (1) to assign
input values to variables, (2) to transfer to the next action, and (3) to transfer to
the next action from effects of the design model. Effects at the design level include
(1) to assign input values to variables and to transfer to the next operation, (2)
to transfer to the next action of the current operation, and (3) to transfer to the
next operation corresponding to the current use case action.

3 Model-Driven Approach

Our approach is based on model-driven techniques including metamodeling and
the integration of TGGs and OCL. We focus on the following questions: (i) How
can we precisely present models as sets of execution scenarios of the system;
(ii) How can scenarios at different levels of abstraction be synchronized for each
system execution so that the conformance between the models can be checked?

3.1 Background

Triple graph grammars (TGGs) have been first proposed in [Schiirr 1995] as a
means to ease the description of complex transformations between two languages
(i.e. metamodels). TGGs are built on the notion of graph grammars. A graph
grammar consists of a set of rules, each having graphs in their left and right hand
sides (LHS and RHS), plus an initial graph (i.e. the transformed model). The
application of a rule to a graph means to find in the host graph an occurrence of
the LHS (a match morphism). Then, once such occurrence is found, it is replaced
by the RHS. In this way model transformation based on graph transformation
is carried out in an operational style.

TGGs offer a declarative and bidirectional description of model transfor-
mation. TGGs include rules working on triples graphs. These consist of two
graphs called source and target, related through a correspondence graph. These
three graphs can be considered by any graph model, from standard unattributed
graphs (V; E;s,t : E — V) to more complex attributed graphs.

Definition 1. (Triple Graphs). Three graphs SG, CG, and T'G, called source,
correspondence, and target graph, together with two graph morphisms sG :
CG — SG and tG : CG — TG form a triple graph TrG = (SG &£ ¢G 8 1G).

In the definition of triple graphs we may use TrG|, (for x = s, ¢, t) to refer
to the z component of TrG. In the following we define triple graph morphisms
as a triple of graph morphisms that preserve the correspondence functions sG
and tG.

2300 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

Definition 2. (Triple Graph Morphisms). A triple graph morphism f =
(fs, fes ft) : TrG — TrH is made of three graph morphisms f, : TrG|, — TrH]|,
(with = s,¢,t) such that fs|y 0 sG = sH o f.|y and fi|yv o tG = tH o f.|y ,
where f.|y is morphism f, restricted to nodes.

Triple rules allow us to derive new triple rules for forward and backward
transformation, and model integration.

Definition 3. (Derived Triple Rules). Each triple rule tr = L — R derives
forward, backward, and integration rules as follows:

(SR cL—5 TL) SLet cLUSTR) (SR LS TR)

idl cl t l sl Cl idl idl Cl idl

(SR« CR—2TR) (SREB-CR—5TR) (SR<®-CR—">TR)
forward rule trF backward rule trB integration rule trl

where id is the identify function. In each derived rule there is a part of the rule
in which the LHS coincides with the RHS.

(a) Triple rule PrimaryAttribute2Column (b) Forward rule (c) Integration rule
precondition: c.name = t.name precondition: c.name = t.name precondition: c.name = t.name
c:Class t:.Table c:Class t:Table c.Class t:Table
{ m1:.C2T %%W‘ name m1:C2T name name m1:C2T name
atAttrs |, cl:Cols |+ at:Attrs cl:Cols i+ at:Attrs cl:Cols
++ . . .
a:Attribute PK:PKEY|... | [aAttribute " PK:PKEY ||| - AtrBULe " pk:Pkey
isPrimary = true | ++ . co:Column]|| [isPrimary = true ﬁﬂ‘ . co:Column||| [isPrimary = true ﬂﬂ‘ . co:Column
name m2.AZCo‘ b name m2:A2Co !—tt name m2.AZCo‘L_tt
Py type type type
type:Type| .+ | [name type:Type name type:Type name
[tp:PrimitiveType] | - [tp:PrimitiveType| " tp:PrimitiveType|
[name | | [name | name
postcondition: a.name = co.name and postcondition: a.name = co.name and postcondition: a.name = co.name and
tp.name = co.type and a.isPrimary tp.name = co.type and a.isPrimary tp.name = co.type and a.isPrimary

Figure 6: Example for triple rules and derived ones

Figure 6 depicts a triple rule and derived triple rules for a simplified trans-
formation between class diagrams and relational schemas. A triple rule can be
viewed considering the three rows in the description. The middle row displays
the triple rule in a compact format: Newly created nodes and links are marked
by ‘++’. The top and bottom rows display OCL pre- and postconditions of the
rule. OCL conditions help triple rules increase their expressiveness. Here, the
PrimaryAttribute2Column rule allows us to insert a primary attribute for a
given class, thus creating a corresponding primary key column in the connected
table of the database model. The forward rule derived from this rule creates a
new column as a primary key. The column corresponds to the primary attribute
of the given class. Finally, the integration rule creates a correspondence between
the primary attribute and the primary key column.

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2301

3.2 Overview of the Approach

We focus on the relation between use case and design models as depicted in
Fig. 7 in order to illustrate our approach. On the left side, the use case model
allows us to capture system executions as sequences of use case snapshots. Use
case snapshots are denoted by ovals. On the right side, sequences of snapshots
reflecting corresponding system execution at the design level are presented. The
snapshot sequence at each level can be controlled by a graph transformation sys-
tem. These transformation systems are synchronized using TGGs incorporating
OCL. The usage of this approach is characterized by the following main steps.

Graph Transformation Synchronization ‘ Graph Transformation
System UC \ System DM
controller | TGGs and OCL| i controller
v v
= ‘

Collaboration 1 -
Collaboration N
SYS1.1

Collaboration 2

: o ||

)e,,',,,,,n@pfm,gz,,,,,,,)
sequences of
M snapshots

ES

execution T execution
UC Events | DM Events

lon |
(scenarios) | (scenarios)
Use Case Model (UC)}/‘K Information Domain N Design Model (DM) ‘

Figure 7: Illustration for the overview of the approach.

1. Metamodels for models at two levels of abstraction need to be defined. In
this case metamodels for use case and design models are defined.

2. Normally, a metamodel can be extended by graph transformation rules so
that we can define a dynamic model evolution as a simulation of system
evolution. Here, we will define triple rules incorporating OCL in order to
synchronize the evolution of models at the two levels based on the corre-
spondence between these metamodels. In our running example triple rules
are defined based on the designer’s definition of refinement between use case
and design models as explained in Subsect. 2.3.

3. Two models at levels of abstraction are built using modeling languages de-
fined in the step 1. They must be well-formed models, i.e., they conform to
the corresponding metamodel. We need to ensure the conformance between

2302 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

the models. In the running example, they are use case and design models
and presented as in Fig. 3 and Fig. 5, respectively.

4. In order to check the conformance between two models as defined in the step
3, we will execute the system by applying triple rules defined in the step 2.
Triple rules allow us to build a pair of scenarios at levels of abstraction for
each system execution. The execution finishes as the finishing rule is applied.
The models conform to each other only if every execution can be finished.

3.3 Well-Formed Models

We describe models in a modeling language based on the metamodeling ap-
proach. OCL conditions are used for restrictions on metamodels in order to
precisely present models.

Clazzifier

0.1 subject

ountied 6]

. . usel_aze
includingCase hid

k.

-

1wy 0.1

|Acti\tity | ActEdge |
« selectedEdge
outEdge

InclusionPaint

I I #
1 1.
| Extend |—| ExtensionPoint |
-

extenzionLocation ki

QclExpression | |ObjectN0de|

1 condExpr 1 1 "
source| target

- "

ObjectEdge

Figure 8: Use case metamodel

Use Case Metamodel. We conceptualize a new view of use cases and then
develop a use case metamodel. This metamodel is an extension of the UML
metamodel [OMG 2007b]. It includes concepts for UML use case and activity
diagrams mentioned in the group A and B as depicted in Fig. 8, respectively.

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2303

Other concepts are newly defined and highlighted by the bold lines. The concepts
corresponding to three kinds of actions in use case description as explained in
Subsect. 2.1 are presented in the group C. Use case snapshots, the heart of our
view of use case, are expressed using concepts presented in the group D.

sUperGroup

i subGCroup
BELGROODTS execution
-

UzeCaze

[Presicate]
postSnapshdt |presnapshe
o.1f of.

#: "

cond
0.

3 {snapshotPattern |

Figure 9: Metamodel for design model

Metamodel for Design Model. In order to present models capturing sce-
narios at the design level as explained in Subsect. 2.2, we also have to define new
concepts in addition to the Activity package of the UML metamodel. The new
concepts are utilized in order to express snapshots at the design level. They are
highlighted as shown in Fig. 9.

Invariants. We use OCL conditions as invariants in order to restrict meta-
models for use case and design models. It ensures that models are well-formed.
In other words, invariants are valid in a well-formed model. For example, a well-
formed use case needs to fulfill the following invariant, “When a use case is
extended by an extension point at an action, this action must be included in an
actiwity diagram refining this use case.” Note that possible invariants for use
case and design metamodels are presented in the appendix.

context ExtensionPoint inv oneAction:
self.extendedlLocation.activity.usecase = self.usecase

3.4 Triple Rules Relating Scenarios

Triple rules incorporating OCL for the so-called UC2DM transformation can be
defined based on transition situations in activity diagrams at the use case and

2304 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

design levels. At the use case level we have transitions for the next actor action,
the next system action, the next use case action, and the next action in the
extending use case. At the design level we have transitions for the next action
in the same action group, and the next action in a new action group.

! (1) Co-Evoluting Snapshots (2) |
I ? |
! [snapshotuc| [snapshotuc] [snapshotUC| [snapshotUC| i
1 pre . Actor /post !System Actor I pre' System /post !
luc / ! P / |
iModel ! et
! Require system to process) | ' [Retrieve information of| | |
! as a car is returned i i ‘\the rental) i
! [current execution stepl———{next execution step | [action mapping] !
N\ i
Boundary System Boundary System

Design

i ? retCar:Ret\(rningCar -> getRentallnfo() i
| Model getRentallnfo ——{ getCustomer) i

getRentallnfo

e

pre ./ *~. post '\ _pre/post
cust:Customer
id_Cust:StringCls
[cust.id=id Cust.string]

\ sn;pshotDM\ \ snapshotDM

Figure 10: Co-evolution steps of snapshots for an execution scenario

For example, Fig. 10 shows a co-evolution step of system snapshots at the use
case and design levels. The left side marked by (1) depicts the current actions at
the use case and design levels. Snapshots as the postcondition of these actions
are the current snapshots of a snapshot co-evolution for an execution scenario.
A co-evolution step of snapshots is carried out when the next actions, e.g., the
‘getCustomer’ action as shown in Fig. 10, are transferred to. Snapshots as the
postcondition of the next actions will be the current snapshots for the execution
scenario. The co-evolution step can be realized by a triple rule as shown in
Fig. 11.

For our case study, we have defined 11 triple rules incorporating OCL. Due
to the limited space of this paper, one graphical description is shown in Fig. 11,
and the remaining triple rules are displayed in the appendix.

3.5 Synchronize Scenarios

We employ derived triple rules for model integration [Dang and Gogolla 2009b)
in order to define pair of scenarios at the use case and design levels for a system

Triple rule [nextSysAct]
[ucAct postSnapshot.isvalid(] [currExec. next=oclundefined(ExecControl)]
[presnapshotUC.isValidi]

i| [dmAct. postSnapshot.isvalid)]
| [presnapshotDM isValidQ]

4‘ resnapshotUC SnapshatPattern presnapshatDM:SnapshotPattern
ortsnapshotUCSnapshotFattern currExecExecControl |——| dmActAction bostsnapshotDM:snapshotPattern

actuc.!\cwuy actDMACtivity

[
T
H+ ucEdge:ActEdge ++ dmEdge:ActFdge \++\
sysACtSvstemAction [hextExecExecControl} I nextDmActAction
++ ++
| TesAczAdCrosvsAuzAGGD |

< =oclUndefined(String)]

objHode:ObjectMade

[actGrp.opName < > oclUndefined(String)]
[nextDmact. name < = oclUncefined(String)]

Figure 11: Triple rule incorporating OCL for a co-evolution step of snapshots

execution. With derived triple rules incorporating OCL for model integration,
only object nodes in the correspondence part (the second column in Fig. 11)
are created. The left and right parts are used for matching rules. Therefore, the
derived triple rules allow us to select scenarios at the use case and design levels
and to synchronize them.

For example, we consider a possible pair of scenarios for a system execution
with the example use case and design models shown in Fig. 3 and Fig. 5. The
scenario at the use case level corresponding to this execution is the action se-
quence from the action (1) to action (5) as pictured in Fig. 3. The extension
point at the action (4) is not invoked in this scenario. The corresponding sce-
nario at the design level is the action sequence from the action (1) to the action
(9) as presented in Fig. 5.

3.6 Implementation

This section overviews our implementation in USE [Gogolla et al. 2007]. Fig-
ure 12 shows the process model of this implementation. The first step takes as
the input the script for scenarios at the use case and design levels. In the second
step these scenario scripts together with the USE script for the conceptual dia-
gram are taken as the input of the second step. The output of this step is the
USE file, which allows presenting scenarios at the use case and design levels.

The third step is the fist step in four steps for a co-evolution step of snap-
shots for scenarios at the use case and design levels. This step aims to select
the next triple rule application. Triple rules are chosen by OCL queries, which
are generated from the USE4TGG description [Dang and Gogolla 2009a]. The
chosen triple rule is applied at the fourth step of this process model.

When the chosen triple rule is applied, the current action is carried out. If
the current action is an actor action, it is performed by USE commands as the

2306 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

Define Scenario
Scripts

| Script for - |
! Conceptual |---------> Bu’ug‘;ﬁE ———————————— 3/ USE File |
' | Class Diagram Pt R '

"7~~~ Script for Design
Model Scenarios

I
generated from
i

- --"" [Object Model
Script for N
Use Case Scenarios| ~

Vv

~~fo OCL for Matching !
~~4Precondition Snapshots| !

Yy |

. | fffffffffffffff Select 1
Triple Rules A '
. —-Iriple Rule !
in USE4TGG - !
0 . I
geneé'ated from ’

I
generated from|

“~.] USE Commands
Performing Actions
"*~3/ USE Commands
Present [____|______ Co—Evoluting
Pair of Scenarios Scenarios

' [ocL for Matchingl.-*”
! Triple Rules

i generated from
USE Commands |~
Realizing Triple Rules +
USE Commands -
for Actor Actions

Figure 12: Process model in the USE for mapping scenarios

input of this process model. In case the current action is a system action at the
design level, this action is performed by a transformation operation, which are
generated from the script for design scenarios. At the final step the current state
of scenarios at the use case and design levels is presented.

4 Formalization of the Approach

We develop a formal framework for our approach based on the following concepts.

Snapshot pattern. A snapshot pattern sp = (V, L, A), where V is a set of
object variables (i.e., typed by classes), L C V x V is a set of links (i.e.,
instances of associations), A is a set of OCL conditions over variables in V.
Example. In Fig. 3 we can find a snapshot pattern as the postcondition of
the action (4). It includes 3 object variables {rental, car, mileage Car},
1 link (rental,car), and 1 OCL condition.

Action. An action a is a pair (pre, post) where pre, post are snapshot patterns.
Example. We have an action corresponding to the action (4) in Fig. 3 because
there is a pair of snapshot patterns as pre- and postconditions attached to
the action.

Scenario. A scenario is a sequence of actions: s = ay...a,(n > 1). Let s[i] be
the it" action in the sequence, i.e., s[i] = a;, and we call a € s if i - s[i] = a.

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2307

Example. We might find a scenario corresponding to the action sequence
(1)—(5) in Fig. 3.

Model. A model M is a set of scenarios with common initial action: Vs, s €
M - s[1] = §’[1]. The initial action is denoted by ax;.
Example. Fig. 3 and Fig. 5 represent models at the use case and design levels.

Execution state. An execution state of the system is a tuple (st, a”,a!), where
st is the current system state; a € sh,al € st are actions of scenarios
s € M" st € M! at two levels of abstraction M", M.

Example. Each side (1) or (2) in Fig. 10 represents an execution state.

Triple transformation. Let 7" be a set of triple rules, and S be a set of system
states. A triple transformation is a function to transit execution states of the

system:
(st',al, ab) if [(a?,at) — (ah,d)) by a rule r € T]A
[st — st’ by executing actions (a,ab)]A
tro(st,al,al) = eval(st, post(a’)) A eval(st, post(al))A
eval(st',pre(ak)) A eval(st', pre(ab))
L otherwise

where (st,al,a}), (st',ak, a}) are execution states of the system, eval is a

function to check a snapshot pattern at the current system state, i.e., its
OCL conditions are evaluated: eval : S x SP — Bool.

Example. When we apply the triple rule shown in Fig. 11 to the execution
state presented in the left side (1) of Fig. 10, we will obtain the next execution
state as presented in the right side (2) of Fig. 10.

The description in Sect. 3 allows us to develop an algorithm for checking the
conformance between models as follows.
Input: Two models M" and M! at the state s0;
T is a set of triple rules relating scenarios of M" and M".
Output: (1) A valid pair of scenarios is built and displayed;(2) Inform the
execution can not continue and display current steps to be fixed.
while true {
curState := s0;
curAct .= (a%,, al,);// initial actions
if trp(st, curAct|0], curAct[1]) <>1 {
(Stimps Afopps Q) = trr(curState, curAct[0], curAct[1]);
curState := stimp;
curAct := (al,, Q)i
telse if curAct is at the end of the corresponding scenarios {
display the valid pair of scenarios; return;

telse {

2308 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

inform the execution can not continue and
display current steps; return;}

5 Related Work

Triple Graph Grammars (TGGs) [Schiirr 1995] have been a promising approach
for explaining relationships between models, especially, bidirectional transfor-
mations. Several tools support model transformation based on TGGs such as
MOFLON [Amelunxen et al. 2006] and AToM3 [de Lara and Vangheluwe 2002].

Many approaches to model transformation have been introduced.
ATL [Jouault et al. 2008] and Kermeta [Muller et al. 2005] are well-known
systems supporting transformation languages. They aim to realize the
Query/View/Transformation (QVT) [OMG 2007a] standard for model transfor-
mation, which is proposed by the Object Management Group (OMG).

Many researches as surveyed in [Hurlbut 1997] have been attempted
to introduce rigor into use case descriptions. The works in [Whittle 2006,
Regnell et al. 1996] propose viewing use cases from the different levels of abstrac-
tion. Many works focus on defining a formal semantics of use cases. They are
strongly influenced by UML. The formal semantics of use cases in the works is of-
ten based on activity diagram or state charts. The works in [Smialek et al. 2007,
Durén et al. 2004] employ the metamodel approach in order to form a con-
ceptual frame for use case modeling. The work in [Whittle 2006] proposes use
case charts as an extension of activity diagram in order to define a trace-
based semantics of use cases. The works in [Sinha et al. 2007, Nebut et al. 2006,
Grieskamp et al. 2001] propose using state charts to specify use cases. Their aim
is to generate test cases from the use case specification.

The works in [Jurack et al. 2008, Hausmann et al. 2002] propose using graph
transformation to specify use cases, which are seen as activity diagrams. Those
works employ the technique analyzing a critical pair of rule sequences in order to
check the dependency between use case scenarios. Our work for design scenarios
is similar to that work. Unlike them we employ OCL conditions in order to
express action contracts. It is in line to the basic idea discussed by the work
in [Reinhartz-Berger and Sturm 2009).

Checking the conformance between models up to now has been
a hot issue. Different approaches have been proposed for it such as
the work in [Jouault et al. 2008, de Lara and Vangheluwe 2002]. The work
in [Kim and Shen 2008] proposes an approach using a divide-and-conquer strat-
egy in order to evaluate the structural conformance of a UML class diagram
to the solution of a design pattern. This paper introduces another approach to
explain the relation between behavior models.

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2309

This paper continues our proposal for the approach to use cases
in [Dang 2008, Dang 2007]. The core of this approach is viewing use cases as
a sequence of use case snapshots and using the integration of TGGs and OCL
to define this sequence. The integration of TGGs and OCL is proposed in our
previous work in [Dang and Gogolla 2009a, Gogolla et al. 2008].

6 Conclusion and Future Work

We have introduced a novel approach to explain the relation of behavioral seman-
tics between models at different levels of abstraction. Triple rules incorporating
OCL allow us to synchronize scenarios so as to build valid pairs of scenarios as
well as to detect invalid cases. In this way we can check the conformance be-
tween the models. Specifically, a formal framework together with an algorithm
for checking the conformance between models have been introduced. We imple-
ment the approach based within the USE tool.

We have illustrated our approach with a running example concerning the
relation between a use case model and a design model. Our approach not only
allows us to check the conformance between use case and design models but
also to describe operational semantics of use cases in particular and modeling
languages in general.

In future we explore the applicability of our framework with other case stud-
ies. Considering the parallelism or independence between use cases is also an
interesting issue. We will continue to study alternative triple rules for relating
use case and design models. Our general goal is a modeling language for use
cases, which allows us to generate test cases from use case descriptions. En-
hancing the USE-based tool for this approach will also be a focus of our future
work.

2310 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

References

[Amelunxen et al. 2006] Amelunxen, C., Konigs, A., Rotschke, T., Schirr, A.:
“MOFLON: A Standard-Compliant Metamodeling Framework with Graph Trans-
formations”; A. Rensink, J. Warmer, eds., Model Driven Architecture — Founda-
tions and Applications; volume 4066; 361-375; Springer Berlin, 2006.

[Broy et al. 2007] Broy, M., Crane, M., Dingel, J., Hartman, A., Rumpe, B., Selic,
B.: “2nd UML 2 Semantics Symposium: Formal Semantics for UML”; Models in
Software Engineering; volume 4364 of LNCS; 318-323; Springer Berlin, 2007.

[Cockburn 2000] Cockburn, A.: Writing Effective Use Cases; Addison-Wesley Profes-
sional, 2000; 1st edition.

[Dang 2007] Dang, D.-H.: “Validation of System Behavior Utilizing an Integrated Se-
mantics of Use Case and Design Models”; C. Pons, ed., Proceedings of the Doctoral
Symposium at the ACM/IEEE 10th International Conference on Model-Driven
Engineering Languages and Systems (MoDELS 2007); volume 262; 1-5; CEUR,
2007.

[Dang 2008] Dang, D.-H.: “Triple Graph Grammars and OCL for Validating System
Behavior”; H. Ehrig, R. Heckel, G. Rozenberg, G. Taentzer, eds., Graph Trans-
formations, 4th International Conference, ICGT 2008, Leicester, United Kingdom,
September 7-13, 2008. Proceedings; volume 5214 of LNCS; 481-483; Springer, 2008.

[Dang and Gogolla 2009a] Dang, D.-H., Gogolla, M.: “On Integrating OCL and Triple
Graph Grammars”; M. Chaudron, ed., Models in Software Engineering, Workshops
and Symposia at MODELS 2008, Toulouse, France, September 28 - October 3,
2008. Reports and Revised Selected Papers; volume 5421; 124-137; Springer, 2009.

[Dang and Gogolla 2009b] Dang, D.-H., Gogolla, M.: “Precise Model-Driven Transfor-
mation Based on Graphs and Metamodels”; D. V. Hung, P. Krishnan, eds., Sev-
enth IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2009, Hanoi, Vietnam, 23-27 November, 2009; 307-316; IEEE Computer So-
ciety Press, 2009.

[de Lara and Vangheluwe 2002] de Lara, J., Vangheluwe, H.: “AToM3: A Tool for
Multi-formalism and Meta-modelling”; Proceedings of the 5th International Con-
ference on Fundamental Approaches to Software Engineering; 174—-188; Springer-
Verlag, 2002.

[Durdn et al. 2004] Durédn, A., Berndrdez, B., Genero, M., Piattini, M.: “Empirically
Driven Use Case Metamodel Evolution”; T. Baar, A. Strohmeier, A. M. D. Mor-
eira, S. J. Mellor, eds., UML 2004 - The Unified Modelling Language: Modelling
Languages and Applications. 7th International Conference, Lisbon, Portugal, Oc-
tober 11-15, 2004. Proceedings; 1-11; Springer, LNCS 3273, 2004.

[Evans et al. 1999] Evans, A., France, R. B, Lano, K., Rumpe, B.: “The UML as a
Formal Modeling Notation”; J. Bézivin, P. Muller, eds., The Unified Modeling Lan-
guage. UMLO98: Beyond the Notation First International Workshop, Mulhouse,
France, June 3-4, 1998. Selected Papers; volume 1618 of LNCS; 336-348; Springer-
Verlag, 1999.

[Gogolla 2004] Gogolla, M.: “(An Example for) Metamodeling Syntax and Semantics
of Two Languages, their Transformation, and a Correctness Criterion”; J. Bezivin,
R. Heckel, eds., Proc. Dagstuhl Seminar on Language Engineering for Model-
Driven Software Development; http://www.dagstuhl.de/04101/, 2004.

[Gogolla et al. 2008] Gogolla, M., Biittner, F., Dang, D.-H.: “From Graph Transfor-
mation to OCL using USE”; A. Schiirr, M. Nagl, A. Ziindorf, eds., Applications
of Graph Transformations with Industrial Relevance, Third International Sympo-
sium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised Selected and
Invited; volume 5088 of LNCS; 585-586; Springer, 2008.

[Gogolla et al. 2007] Gogolla, M., Biittner, F., Richters, M.: “USE: A UML-Based
Specification Environment for Validating UML and OCL”; Science of Computer
Programming; (2007).

Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ... 2311

[Greenfield et al. 2004] Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools; Wiley,
2004; 1st edition.

[Grieskamp et al. 2001] Grieskamp, W., Lepper, M., Schulte, W., Tillmann, N.:
“Testable Use Cases in the Abstract State Machine Language”; 2nd Asia-Pacific
Conference on Quality Software (APAQS 2001), 10-11 December 2001, Hong Kong,
China, Proceedings; 167-172; IEEE Computer Society, 167-172, 2001.

[Harel and Rumpe 2004] Harel, D., Rumpe, B.: “Meaningful Modeling: What’s the
Semantics of ”Semantics”?”; Computer; 37 (2004), 10, 64-72.

[Hausmann et al. 2002] Hausmann, J. H., Heckel, R., Taentzer, G.: “Detection of Con-
flicting Functional Requirements in a Use Case-Driven Approach: A Static Analysis
Technique Based on Graph Transformation”; Proceedings of the 22rd International
Conference on Software Engineering, ICSE 2002, 19-25 May 2002, Orlando, Florida,
USA: ACM, 2002.

[Hurlbut 1997] Hurlbut, R. R.: “A Survey of Approaches for Describing and Formal-
izing Use Cases”; Technical Report XPT-TR-~97-03; Department of Computer Sci-
ence, Illinois Institute of Technology, USA (1997).

[Jacobson 1992] Jacobson, I.: Object-Oriented Software Engineering: A Use Case
Driven Approach; Addison-Wesley Professional, USA, 1992; 1st edition.

[Jouault et al. 2008] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: “ATL: A Model
Transformation Tool”; Science of Computer Programming; 72 (2008), 1-2, 31-39.

[Jurack et al. 2008] Jurack, S., Lambers, L., Mehner, K., Taentzer, G.: “Sufficient
Criteria for Consistent Behavior Modeling with Refined Activity Diagrams”;
K. Czarnecki, I. Ober, J. Bruel, A. Uhl, M. Vélter, eds., Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS 2008, Toulouse,
France, September 28 - October 3, 2008. Proceedings; volume 5301 of LNCS; 341—
355; Springer, 2008.

[Kelsen and Ma 2008] Kelsen, P., Ma, Q.: “A Lightweight Approach for Defining the
Formal Semantics of a Modeling Language”; Model Driven Engineering Languages
and Systems, 11th International Conference, MoDELS 2008, Toulouse, France,
September 28 - October 3, 2008. Proceedings; volume 5301; 690-704; Springer
Berlin, 2008.

[Kim and Shen 2008] Kim, D.-K., Shen, W.: “Evaluating pattern conformance of UML
models: a divide-and-conquer approach and case studies”; Software Quality Jour-
nal; 16 (2008), 3, 329-359.

[Kleppe 2007] Kleppe, A. G.: “A Language Description is More than a Metamodel”;
Fourth International Workshop on Software Language Engineering, 1 Oct 2007,
Nashville, USA; http://planet-mde.org/atem2007/, 2007.

[Muller et al. 2005] Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: “Weaving Executability
into Object-Oriented Meta-languages”; Model Driven Engineering Languages and
Systems; volume 3713; 264—-278; Springer Berlin, 2005.

[Nebut et al. 2006] Nebut, C., Fleurey, F., Traon, Y. L., Jezequel, J.: “Automatic Test
Generation: A Use Case Driven Approach”; Software Engineering, IEEE Transac-
tions on; 32 (2006), 3, 140-155.

[OMG 2007a] OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification, Final Adopted Specification ptc/07-07-07; OMG, 2007.

[OMG 2007b] OMG: OMG Unified Modeling Language (OMG UML), Superstructure,
V2.1.2; OMG, 2007.

[Regnell et al. 1996] Regnell, B., Andersson, M., Bergstrand, J.: “A Hierarchical Use
Case Model with Graphical Representation”; IEEE Symposium and Workshop
on Engineering of Computer Based Systems (ECBS’96), March 11-15, 1996,
Friedrichshafen, Germany; 270; IEEE Computer Society, 1996.

[Reinhartz-Berger and Sturm 2009] Reinhartz-Berger, 1., Sturm, A.: “Utilizing do-
main models for application design and validation”; Inf. Softw. Technol.; 51 (2009),
8, 1275-1289.

2312 Dang D.-H., Tuong A.-H., Gogolla M.: Checking the Conformance ...

[Rumbaugh et al. 2004] Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling
Language Reference Manual, 2nd Edition; Addison-Wesley Professional, 2004.
[Schiirr 1995] Schiirr, A.: “Specification of Graph Translators with Triple Graph Gram-
mars”; M. Schmidt, ed., Proceedings of the 20th International Workshop on Graph-
Theoretic Concepts in Computer Science; volume 903 of LNCS; 151-163; Springer-

Verlag, 1995.

[Sinha et al. 2007] Sinha, A., Paradkar, A., Williams, C.: “On Generating EFSM Mod-
els from Use Cases”; ICSEW ’07: Proceedings of the 29th International Conference
on Software Engineering Workshops; 97; IEEE Computer Society, 2007.

[Smialek et al. 2007] Smialek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A.,
Straszak, T.: “Complementary Use Case Scenario Representations Based on Do-
main Vocabularies”; G. Engels, B. Opdyke, D. C. Schmidt, F. Weil, eds., Model
Driven Engineering Languages and Systems; 544-558; Springer Berlin, LNCS 4735,
2007.

[Warmer and Kleppe 1998] Warmer, J. B., Kleppe, A. G.: The Object Constraint Lan-
guage: Precise Modeling With Uml; Addison-Wesley Professional, 1998; 1st edition.

[Whittle 2006] Whittle, J.: “Specifying Precise Use Cases with Use Case Charts”;
J. Bruel, ed., Satellite Events at the MoDELS 2005 Conference, MoDELS 2005
International Workshops, Doctoral Symposium, Educators Symposium, Montego
Bay, Jamaica, October 2-7, 2005, Revised Selected Papers; 290-301; Springer,
LNCS 3844, 2006.

Appendix

Due to the limited space of this paper, this part is referred to the long version
of this paper !.

! http://www.coltech.vnu.edu.vn/~hanhdd/publications/Dang2010JUCS_long.ps

