
Situation-Aware Community Computing Model for
Developing Dynamic Ubiquitous Computing Systems

Youna Jung
(LERSAIS, University of Pittsburgh, Pittsburgh, USA

yjung@pitt.edu)

Minsoo Kim
(LERSAIS, University of Pittsburgh, Pittsburgh, USA

minkim@pitt.edu)

Abstract: For many complex and dynamic ubiquitous services, context-aware cooperation can
be a solution. However, the way is not yet clear to make individual objects cooperate with each
other as situations change. In addition, in the present environment in which many smart agents
are already deployed, we are able to quickly develop ubiquitous services by utilizing existing
agents. In the case of urgent but unavailable services, such fast development is required but
there is no existing work to provide a path. To meet such requirements, in this paper, we thus
introduce community computing as a new paradigm in which ubiquitous services are provided
through context-aware cooperation among existing agents. To design such systems intuitively,
we propose an abstraction model, called the situation-aware community computing model
which includes the community situation model and the situation-aware cooperation model. In
addition, for fast and convenient system development, we propose a development process based
on the MDA (Model-Driven Architecture) approach [OMG, 03]. Following the development
steps of MDA, we propose three models each having different abstraction levels and the model
transformation process from the high-level model, CCM, to the source code. To make such
transformation semi-automatic, we develop a toolkit, called CDTK. By using CDTK, we are
able to implement a community computing system conveniently and systematically. To verify
the proposed work, we implemented two small systems based on motivated scenarios;
CHILDCARE and COEX-Mall. Through the simulated results of those systems, we examined
the possibility of community computing as a new development paradigm.

Keywords: Community Computing, Ubiquitous Computing System, Cooperation, Context-
Awareness, Multi-agent System Development, Model Driven Architecture
Categories: H.5.3, I.2.11, K.6.3

1 Introduction

Since ubiquitous computing was articulated by Mark Weiser in 1991 [Weiser, 91],
many researchers have attempted to realize the potential of a variety of ubiquitous
services. In the present study, we surveyed existing research and found the unique
characteristics of ubiquitous computing as follows [Weiser, 91][Kindberg, 02].

• Composition of highly heterogeneous computing objects
• Dynamic request for resources and services in a ubiquitous environment
• Dynamic interaction among heterogeneous computing objects

Journal of Universal Computer Science, vol. 16, no. 15 (2010), 2139-2174
submitted: 31/1/10, accepted: 28/7/10, appeared: 1/8/10 © J.UCS

• Frequent environmental changes due to mobility of users and computing
objects

First of all, a ubiquitous computing system is composed of highly heterogeneous
computing objects. As computing objects have mobility and their status changes
frequently, the environment of a ubiquitous system is continuously changing. In such
a dynamic environment, predictable or unpredictable ubiquitous services are
dynamically requested. Among all characteristics, we are especially concentrating on
the complexity and dynamics of ubiquitous services.

Since many ubiquitous services require various tasks, most of them can be
effectively provided through cooperation among heterogeneous computing objects
rather than through the ability of an individual one. As the required ubiquitous
services become larger and more complex, cooperation among ubiquitous objects
becomes increasingly more important. Accordingly, it is necessary to raise concerns
about the cooperation-based service providing scheme including the configuration of
cooperative organizations and cooperative behaviors among ubiquitous objects.

Another crucial issue of ubiquitous computing systems is context-awareness,
which is able to provide services properly while the computing environment is
dynamically changing. To support dynamic cooperation, therefore, cooperation
systems should possess context-awareness. Context-aware computing [Schilit, 94]
[Dey, 01] has emerged as a promising way to build intelligent and dynamic systems.
Several beneficial features such as dynamicity, adaptability and interoperability make
context-awareness become one of the essential requirements of recent systems. In
spite of such advantages coming from context-awareness, some researchers tackled
the problem of limitation of representation power; the context is weak for giving
comprehensive understanding of a phenomenon. In order to make up for the weakness,
this situation was introduced. In this paper, we therefore exploit the concept of
community situation to support dynamic cooperation.

Our ultimate goal is to design and develop a ubiquitous computing system which
dynamically provides diverse services, even highly complex or unpredictable services.
In order to achieve our purpose, we introduce the situation-aware community which
consists of existing objects. In this paper, community is a high-level abstract concept
for organizing, managing, operating, repairing groups of computing objects in
ubiquitous environments. By using the situation-aware community concept, we are
able to satisfy the requirements of ubiquitous computing as follows.

• Adaption to environmental changes
− Dynamic goal-driven community creation
− Dynamic binding of the community roles and computing objects

• Dynamic cooperation
− Dynamic injection of cooperation into objects
− Dynamic decision of cooperative behavior

• Proper separation of concerns
− Separation between group concerns and individual element concerns

• Scalability of the environment
− Dynamic merging of group organizations

To develop the ubiquitous systems providing the situation-aware community
services, in this paper, we propose community computing as a development paradigm
and introduce its abstraction model, the situation-aware community computing model.

2140 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

In addition, we propose a development process to implement community computing
systems fast and easily. In this process, we provide three models which represent a
system in different abstraction levels. For verification of the proposed work, we
implement two community computing systems by using the proposed models and the
development process.

This paper is organized into 7 chapters including the present chapter. In Chapter 2,
we show our motivation and requirements using two example scenarios. Chapter 3
provides background related to our requirements; ubiquitous system development
work including the middleware-based approach and multi-agent based approach,
cooperation system development work, and context-aware system development work.
By the comparison of our work with existing research from the viewpoint of
requirements, we emphasize our contribution. In the Chapter 4, we introduce
community computing as a new development paradigm for the ubiquitous systems
providing dynamic cooperative services. We first introduce basic terminology then
focus on community by specifying the levels of communities and the lifecycle of a
community. Furthermore, for systematic development, we propose the development
process based on the MDA approach from CCM to source codes. In Chapter 5, for
supporting dynamic cooperation among agents, we propose the situation-aware
community computing model which includes the community situation model and the
situation-aware cooperation model. Chapter 6 shows the simulation results of two
small systems implemented for motivational scenarios, CHILDCARE and COEX-
Mall. Finally, in Chapter 7, we conclude this paper by stating our contributions and
future work.

2 Motivation

As mentioned above, our goal is to develop ubiquitous computing systems that
dynamically provide complex and large-scale services, even unpredictable services.
Towards this end, we need to fulfill the following requirements; context-awareness,
cooperation, utilization of existing smart objects, model possession to design and
develop a system.

• Context-awareness - To offer the best services according to the changing
situation, first of all, context-awareness is required. By guaranteeing the
context-awareness, a system can provide the most proper service based on
the user’s condition through the most available and performable computing
object at the requested time. In order to do so, the contexts of users and
computing objects are also significant as well as ambient contexts such as
time or temperature.

• Cooperation - Cooperation is an efficient solution to provide services
requiring large and diverse tasks. By using cooperation, we can increase the
reusability of services more than by developing large-scale services.
Furthermore, the quality of services can be improved by hiring the best
objects for each task.

• Utilization of existing smart objects - If there are various smart objects in an
environment, it is a good idea to utilize them actively. Compared to
developing other services from scratch, it makes the process of service

2141Jung Y., Kim M.: Situation-Aware Community Computing Model ...

development easy and fast. Let’s assume that we attempt to develop
ubiquitous services for buildings or specific areas. In such a scenario, there
would be many heterogeneous smart devices, such as cell phones, PDAs,
notebooks, surveillance cameras, smart television, or smart sensors
performing their own tasks. If we use their various capabilities through
cooperation among them, we are able to save a lot of time and effort.

• Possession of a model to design and develop a system - In order to deal with
unpredictable services, we need the process of intuitive design and fast
development for services. If we have a model to help such a process, we can
quickly provide services, even if they have not been developed.

In order to achieve our goal, all these requirements should be satisfied. To
solidify our requirements, we show various scenarios as following section.

2.1 Motivation Example

To explain our motivation effectively, we describe two scenarios that show the
necessity for context-aware cooperation among smart objects in a ubiquitous
computing environment; CHILDCARE and COEX-Mall.

CHILDCARE. Let’s assume that we develop a ubiquitous computing system for
an apartment. This system consists of various smart objects such as personalized
smart devices; smart watches, smart phones like the iphone, or PDAs, smart home
devices; smart television, audio, or bed and apartment monitoring devices like
surveillance cameras, ambient sensors; temperature sensor or fire alarm sensor, and so
on. Each ubiquitous object provides its own services to residents. For example, people
can watch television shows or movies, listen to music, take phone calls, or check
messages from other residents or from the apartment office. Bill’s family lives in this
apartment. In the morning around 11am, Bill went to work and Amy, his wife, is
washing dishes while listening to the radio from the smart audio in the kitchen. Tom,
their five year old son, is playing with toys in the living room. After a while, Tom
sees his friend so he goes outside to play with the friend. However, Amy does not
realize he has left the house because of the sound of running water. To find his friend,
Tom goes too far from home and he is not safe now because the area where he is
standing is adjacent to a road. At that time, surveillance cameras keep watching him
and Tom’s watch knows the exact location of Tom. Furthermore, there is Susan who
lives next door to Tom but she cannot help Tom because she does not know this
situation and what they need to do.

• Cooperation – To bring him back to home, diverse tasks are required. For
example, we need to get the location of Tom, transmit his image and
location information to his mother, search the nearest person to Tom, and
ask someone for help. It is easy to make objects providing such services
cooperate with each other than to develop a complex service with all the
capabilities such as location acquisition, face recognition on a video stream,
and transmission of multimedia messages.

• Utilization of existing smart objects – Many existing objects already have
the required capabilities. For instance, many personal devices such as GPS
watches or smart phones can know the location. Surveillance cameras are
able to recognize faces by video processing. In addition, smart phones can
display information about Tom with his image. If we utilize those existing

2142 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

objects, we can reduce the time and cost to develop the service to bring a
child home.

• Possession of a model to design and develop a system – If such service is
unavailable, it should be developed and deployed as fast as possible. To
provide unpredictable services, we need a model to make the service
development convenient.

• Context-awareness – To provide the best service, participant objects and
their tasks are dynamically decided according to the environmental context
or objects’ context. For example, the closest surveillance camera to Tom is
in the CHILDCARE community to watch Tom. For the same reason, Susan
is selected as a guardian of Tom since she is in the location closest to him.
In addition, it is better to let Amy know Tom is out by a text message not a
voice alarm since she may be not able to hear any voice due to the sound of
running water. As you see, the contextual information such as the location
of Tom and the status of Amy is significant to provide services effectively.

COEX-Mall. COEX-Mall is a huge shopping mall with a multiplex cinema, an
amusement park, restaurants, and stores. To attract customers and offer several
convenient services, several robots exist in this mall. The robots have various
capabilities such as movement, alarm, face recognition, voice recognition, and
information searching. Based on those capabilities, they provide many services such
as the advertising service, the information display, the patrol service, and the terrorist
detection service. When a robot patrols its area, a woman asks it to find her missing
son.

• Context-awareness – Only robots and patrolmen who are on duty can help
to find a missing child. In addition, the context information of the child is
useful to find him such as his height, weight, image, and preference.

• Cooperation – To search for a child in a wide area, it is good to try to find
him in every area simultaneously. In order to do this, robots patrolling the
area need to cooperate with each other.

• Utilization of existing smart objects – If we use a robot with the capability
of searching a specific person, we can immediately provide a service for a
missing child. It is definitely more cost-effective than if we develop another
similar service from scratch.

• Possession of a model to design and develop a system – if we have an
abstract model to specify a service, we can quickly and easily deploy the
missing child service by modifying the existing terrorist detection service.

As you see in the two scenarios, we can dynamically provide large-scale services
which require diverse tasks including unprepared urgent services by satisfying four
requirements. In order to do so, we have surveyed a lot of previous work to meet such
requirements. In the next section, we describe related work then compare it to our
work in detail.

3 Related Work

As mentioned above, our goal is to develop a ubiquitous system that dynamically
provides useful services, even unpredictable and highly complex services. Looking

2143Jung Y., Kim M.: Situation-Aware Community Computing Model ...

forward, we need to find a way to fulfill four requirements in a ubiquitous system;
context-awareness, cooperation, utilization of deployed objects, and model
possession. First of all, we surveyed existing research on ubiquitous system
development and found an earlier work which simultaneously satisfies our all
requirements. However, we were not able to find anything that exactly met our
objectives. As a second step, we tried to find research on context-aware systems and
cooperation systems. However, there was nothing adequate for our needs since they
usually have a bias toward one requirement, either context-awareness or cooperation.
In this section, we introduce each element and declare our contribution by a
comparison with existing work.

3.1 Ubiquitous System Development

For the past few decades, many researchers have paid attention to the development of
ubiquitous systems. As a result, various approaches were proposed but we
concentrated on the most popular approaches; the middleware approach and the multi-
agent based approach. However, most existing work on these approaches does not
fully consider cooperation among distributed agents or components connected to
middleware. They only mention cooperation, and fail to provide a way to design and
enforce cooperation. In this section, we introduce some outstanding work in each
approach.

3.1.1 Middleware based Ubiquitous System Development

In the area of the ubiquitous system development, the objective of middleware
approaches is to offer an infrastructure to manage resources, sense context
information, and assist in the development and execution of ubiquitous applications.
Although most existing middleware does not support ad-hoc communications, an
important feature of ubiquitous computing environment [Ejigu, 08], this approach is
still a good way to combine distributed components and provide integrated services.
Hence, for middleware, we introduce Gaia in the Super Spaces project and PICO.

Super Spaces. In the Active Spaces Project [Roman, 00], an experimental
middleware infrastructure, called Gaia, was introduced to coordinate ubiquitous
software objects and heterogeneous networked devices contained in a physical space.
The major contribution was to present active spaces as a programmable environment
instead of a collection of individual and disconnected heterogeneous devices. In 2004,
an extended version, Super Space, was proposed to manage and orchestrate groups of
Active Spaces [Al-Muhtadi, 04]. However, they did not suggest an abstraction model
to conceptualize ubiquitous objects constructing the space or cooperative relationships
between objects in their space.

PICO. PICO (Pervasive Information Community Organization) [Kumar,
03][Sung, 02] is a middleware framework for dynamically creating mission-oriented
communities of autonomous ubiquitous software objects offering ubiquitous services.
In several agent cooperation models, organizational concepts have already been
introduced [Jennings, 03][Wooldridge, 02], but PICO has applied such concepts to
ubiquitous domains. In this project, a community was defined as a ubiquitous object
consisting of one or more agents working towards a common goal. In addition, they
introduce community computing as a framework for collaboration among agents.

2144 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Their fundamental concept satisfies requirements of ubiquitous computing, such as
proactive real-time collaborations for automated and continuous services provided in
a heterogeneous environment.

3.1.2 Multi-Agent based Ubiquitous System Development

The Multi-agent based approaches are frequently used to develop a ubiquitous system
because of agents’ features such as flexible and autonomous problem solving
behavior and the richness of interactions. This approach focuses on the way to seek
out necessary agents while meeting the requirements of a ubiquitous system. When
the requirements are given first, it starts to find a way to design and implement
necessary agents to offer the required services.

However, in the case of a ubiquitous system intending to provide services using
existing objects, participant agents in a system are already defined. In that case, it is
more important to consider how to meet the system requirements using existing
agents rather than what agents are required. Additionally, most multi-agent based
ubiquitous system development approaches do not deeply concentrate on cooperation.
To achieve our goal, however, cooperation is the most important aspect. Therefore,
we need to consider cooperation in more detail than others do. In this section, we
briefly introduce previous work relating to multi-agent based ubiquitous systems.

Gaia. Gaia [Wooldridge, 00][Jennings, 03] introduced a methodology for
analysis and design of a multi-agent system. In Gaia, a multi-agent system is regarded
as a collection of computational organizations consisting of various interacting roles.
Gaia allows an analyst to go systematically from requirement statements to design
through a process of developing increasingly detailed models of the system to be
constructed.

AALADIN. AALADIN [Ferber, 98] is a meta-model of a multi-agent system
based on organizational concepts. It allows for describing any kind of organization
using only the core concepts of groups, agents, and roles. In the extended version
[Ferber, 03], the model was improved into an AGR model (Agent/Group/Role
model). In this model, the dynamic aspect is added by specifying the creation of a
group, the entering and exiting mechanism of an agent within a group, and the role
acquisition mechanism.

BRAIN. BRAIN [Cabri, 03] is a framework for supporting the different phases of
the development of interaction in MASs by modeling the interactions between agents
based on the concept of roles and describing such roles using an XML-based notation
known as XRole. The authors implemented Rolesystem as an interaction
infrastructure of BRAIN, but they did not concern cooperation.

3.2 Cooperation System Development

As you see, the existing work in the area of ubiquitous system development handles
the cooperation issue in the naïve manner. However, cooperation has been a good way
to solve a problem requiring diverse resource and capabilities and perform a highly
resource-consuming and time-consuming task [Wooldridge, 99]. The ubiquitous
service is one of domains requiring such tasks. That is the reason that cooperation is
an essential aspect to achieve our goal.

2145Jung Y., Kim M.: Situation-Aware Community Computing Model ...

To support cooperation among computing objects in a ubiquitous computing
system, we surveyed the existing work for the development of cooperation systems,
such as CSCW (Computer-Supported Cooperative Work) [Wilson, 91]. In fact,
researchers have used cooperation, but there is a slight difference between existing
work in the meaning and style of cooperation. In this section, we investigate previous
work in terms of the cooperative group and cooperation style and we compared
similar research within our computing community from the perspective of
cooperation as shown in Table 1.

Team in Computer Supported Cooperative Work (CSCW). The major
objective of CSCW is to develop a groupware that effectively performs a common
task using information sharing among all users [Borghoff, 00]. Typically, a group in
CSCW is a small project-oriented team and a team is defined as a set of predefined
people. Team members are human users and their cooperative work is tightly coupled
by sharing information about team membership as well as the skills or roles of the
other members [Johansen, 98]. In the group protocol component, the ways to
cooperate and communicate are described. Typical groupware of CSCW are the video
conferencing system and the joint document editing system.

Organization in Multi-Agent System. To provide services requiring complex
interactions such as ubiquitous services, multi-agent systems are frequently developed
[Wooldridge, 00]. To cooperate with other agents, an organization is constructed and
each role of the organization is dynamically assigned to a member agent for
performing a cooperation protocol/procedure. Such cooperation procedure is able to
be predefined or dynamically determined depending on the agent’s intelligence but it
is usually fixed. In most multi-agent systems, the cooperation procedures are first
decided to provide the requested services and then agents that perform such
procedures are designed. For example, in Gaia methodology [Zambonelli, 03], the
cooperative procedure is predefined in the protocol description. Since the existing
multi-agent systems do not have any cooperation model, it is not easy to design or
modify the cooperation.

Community in PICO. PICO is a middleware framework for dynamically
creating mission-oriented communities of ubiquitous objects using the community
concept to represent the structure of cooperating organizations. However, it has no
cooperation model and leaves room in its framework. For example, there are no
explanations about how to create communities and members and manage them,
dynamically assign software objects, called delegent, into the real objects, and make
members cooperate with each other.

Community Computing in Digital Kyoto Project. This project introduced
community computing in 1998 in order to support the process of organizing diverse
and amorphous people who are willing to share knowledge and experiences [Ishida,
98]. The objective of their work was to make a city-scale support system to assist
humans in their everyday lives. In the Digital Kyoto project [Ishida, 02][Besselaar,
02], a community is a digitalized representation of real human communities. All
human members in a community share their preference and knowledge and reach
consensus. This project aims to support such a process in the aspects of hardware and
network because all decisions about cooperation are made by human users.

Community Computing in Microsoft. In 2005, Microsoft introduced its vision
of community computing [Blau, 05]. It defines community computing as an emerging

2146 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

technological environment where users sharing other’s computing capacity and user
id’s and objects are spread all over these devices. Microsoft insisted that system
engineering focus on managing massive connections among powerful devices in a
community computing environment [Microsoft, 05]. Looking ahead, one of the
Microsoft research groups is trying to systematically support its community
computing by developing various tools capable of making people interact with each
other when gathering and exchanging services. In its research, a community is group
of devices sharing information and capacity, concentrating on the systematical
support for communities to facilitate communications among humans. It seems that
they are.

Member Cooperation

 Type Selection Goal Process Style
Decision
Maker

CSCW Human Static

Video
conferencing,

Document
authoring

Static Tightly
coupled Human

Multiagent Agent Dynamic Unlimited Static /Dynamic
Tightly/
Loosely
coupled

Agent

PICO Agent Dynamic Unlimited Static /Dynamic
Tightly/
Loosely
coupled

Agent

Digital
Kyoto Human Dynamic communication

among humans Static /Dynamic Tightly
coupled Human

Microsoft Device Static
/Dynamic

communication
among humans

Static /
Dynamic

Tightly
coupled Human

Our
Community
Computing

Agent Dynamic Unlimited Static /Dynamic
Tightly/
Loosely
coupled

Agent

Table 1: Comparison of related work with our work in the viewpoint of cooperation

3.3 Context-Aware System Development

Context-awareness is one of the most critical issues in the ubiquitous computing
research area because most ubiquitous computing systems are required to have the
advantages of dynamism, adaptability and interoperability. In this section, we
introduce recent work related with the context aware system.

As the computing environment changes from distributed computing to mobile
computing, and again from mobile computing to a ubiquitous/pervasive computing
[Strang, 04], context-awareness plays a key role in designing and developing
applications. In the literature, the term ‘context’ has been defined in several ways.
Schilit referred context as where you are, who you are with, and what resources are
nearby [Schilit, 94]. Information about location and identification of people or objects
can be regarded as context information. These kinds of context information are very
useful for modern systems, but it is difficult to describe a situation based on location
and identification. Schmidt et al. pointed out the problem and argued there is more to

2147Jung Y., Kim M.: Situation-Aware Community Computing Model ...

context than location [Schmidt, 99]. They categorized context information into
several types and introduced a hierarchically organized context model. Dey et al.
[Dey, 01] pointed out the same problem in which these definitions are too specific and
consequently they proposed a more general definition: Context is any information that
can be used to characterize the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between a user and an application,
including the user and applications themselves. This definition makes it easier for an
application developer to enumerate the context for a given application scenario. The
system developer or designer may use any kind of information as context to express
situations.

In order to take advantage of context-awareness, several techniques such as
context modeling and context acquisition are required [Baldauf, 07]. In the literature,
a number of context frameworks, including these technologies, were proposed. In
particular, several works aim for context-awareness in ubiquitous computing systems.
Among them, we introduce a few outstanding works as follows.

Context ToolKit. Dey et al [Dey, 01][Salber, 99] have proposed the Context-
Toolkit, which provides a framework for the development and execution of sensor-
based context-aware applications and provides a number of reusable components. The
Context Tool-Kit supports rapid prototyping of certain types of context-aware
applications, but it is too general to engineer context for cooperation systems.

CoCA. Ejigu et al [Ejigu, 07] have proposed a collaborative context-aware
service platform, called CoCA, for pervasive environments. CoCA provides context
modeling method with relational databases and ontology. In particular, CoCA
proposes a fast context reasoning algorithm by pruning non-relevant context data (i.e.
reducing data set for reasoning). However, the collaboration concept for context-
awareness is too weak and hence it is hard to apply to cooperation systems.

AMUSE. AMUSE [Takahashi, 05] proposed by Takahashi et al. is an agent-
based middleware for context-aware ubiquitous services. The main target of this work
is to maintain consistency of resource context data and multiple context coordination
in pervasive environments. To do this, AMUSE introduces the concept of
‘agentification’, which makes each resource an agent. Each agent possesses context
management ability and cooperation ability to resolve context conflict.

UbiCoMo. In 2009, Bortenschlager et al. [Bortenschlager, 09] proposed a
ubiquitous coordination model called UbiCoMo. It provides comprehensive concepts
for context-sensitive coordination of agents in ubiquitous environments. To do this,
UbiCoMo has a multi-layered architecture representing real world agents, ubiquitous
entities, and services. UbiCoMo shows efficiency and usability of its coordination
method by testing on MAS, but it is not concerned about cooperation, the main
feature of MAS.

In addition, there are many context-related works. However, it seems that
context-awareness for cooperation systems is still a challenging issue. In cooperation
systems, it is important to know context which related with a cooperative group or
inferred context from cooperating members rather than context of individuals.
However, there is no existing work dealing with cooperation factors, such as
participant members, the goal of cooperation, and the status of cooperation.

2148 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

3.4 Our Contribution

Although we surveyed many areas, we were not able to find previous research to
adequately satisfy our four requirements; context-awareness, cooperation, utilization
of existing objects, and model possession. In Table 2, we present an evaluation of
related research along with our work in terms of these four requirements.

 Context-

awareness Cooperation
Existing
objects

utilization

Model
possession

Super Space Ο Χ Ο Χ Middleware
PICO Χ Χ Ο Low
Gaia Χ Medium Χ Ο
AALADIN Χ Low Χ Ο

Ubiquitous

System Multi-agent
based

BRAIN Χ Medium Χ Ο
CSCW Χ Low Χ Χ
Digital Kyoto Χ Low Χ Χ
Microsoft Χ Low Χ Χ

Cooperation System

Multi-agent Ο Medium Χ Ο
Context
ToolKit

High Χ Χ Χ

CoCA High Χ Χ Χ
AMUSE High Χ Χ Χ

Context-aware System

UbiCoMo High Low Χ Χ
Our Community Computing Ο High Ο Ο

Table 2: Evaluation of our work and other related work in terms of our requirements

Gaia middleware in Super Space project has its own context model based on
predicates [Ranganathan, 03] to make applications context-aware, but it does not
consider cooperation. PICO middleware provides a description of devices, agents that
represent users or applications, and communities in there model. However, it is not
complete because many things are not specified such as the creation of community
and the cooperation process of the community. Authors have explained how to
provide pervasive services by using the communities of agents but have not presented
the way to design and enforce cooperation in a community. In addition, they have left
development of the context-awareness service to the future.

 The Gaia methodology has several models to develop a multi-agent system, but
context-awareness is not considered in those models. In Gaia’s models, cooperation
among agents is represented as a protocol, which consists of the protocol name, the
initiator and partner, input and output, and the description of the cooperation
procedure. There is no cooperation model and a developer must implement such
cooperation in the agent system according to the protocol description. In AALADIN,
the organizational concepts, such as groups and roles, were introduced but there is no
way to describe cooperation in a group. In the BRAIN framework, interactions
between roles can be described by events and actions of each role but cooperation
among roles is not present. Since these works aim to develop agents, they are far from
using existing agents.

2149Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Existing cooperation systems, such as Digital Kyoto, MS’s Community
Computing, and groupware in CSCW, aim to systematically support cooperation
among human users. They focus on how to help users communicate with each other
and perform common tasks without conflicts, rather than how to achieve a complex
goal by cooperation. Furthermore, they do not take context-awareness seriously. Since
the objectives of this work are to develop a new system, they do not utilize existing
objects.

In existing context-aware systems, cooperation is not considered so they do not
handle context related to cooperation. To represent context, they have formal models
but not to develop services or systems. UbiCoMo provides the coordination method
for services but it is not for developing services. In addition, it is out of its scope to
use deployed objects. In fact, there is no existing work in this area, which fulfills our
requirements.

As existing work is not suitable for achieving our goals, we previously proposed a
new development paradigm that we call community computing for ubiquitous
computing systems that meet our all of our requirements [Jung, 06]. In this early
version, a community computing system has an abstraction model for intuitive design
and the development process based on the MDA (Model-Driven Architecture)
approach for systematic implementation. In addition, existing agents in an
environment can be specified in the abstraction model and then used to achieve the
community goals. The context information about members and environment was also
represented in the model. However, context-awareness is only used for assigning
agents to roles and not for cooperation. In the early version, the cooperation procedure
was fixed and described like a pseudo code in the model without any cooperation
model. That means this model is not able to support dynamic cooperation.

To fully satisfy our requirements, we propose here an improved model, which has
the situation-aware cooperation model. To use the community’s situation, we first
propose the community situation model. This model provides the way to represent
and use the context of members and the community situation. The cooperation model,
employing the community situation model, allows members to cooperate with each
other according to the community situation. Members’ tasks are dynamically decided
depending on the change in the community’s situation. By using these two models,
we can finally guarantee the context-awareness and the dynamic cooperation in
ubiquitous computing systems. This paper’s contribution to community computing is
as follows:

• Guaranteeing the context-awareness in a ubiquitous computing system
− To represent the context information of agents, we use key-value pairs.

According to the agent’s context, many things are decided, such as the
community’s creation, proper member selection, and cooperation
procedure.

• Supporting dynamic cooperation among agents to provide complex and
large-scale services
− By using the situation-aware cooperation model, we can provide

dynamic services according to the community’s situation
• Developing a ubiquitous system by using agents that have already been

deployed

2150 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

− In our community computing, we propose a way to use existing smart
agents to quickly provide services, even unpredictable services. All
existing agents in an environment are represented as members in a
community computing system.

• Using an abstraction model to intuitively design a system and a
development process
− To design a system, we propose an abstraction model, named the

community computing model. Then, we develop a system according to
the MDA-based development process from the high-level model to
implementation.

4 Community Computing

In this paper, we propose community computing as a development paradigm for
ubiquitous computing systems where ubiquitous services are provided by cooperation
among existing agents. Community computing focuses on how to satisfy the
requirements of a ubiquitous system by cooperation among deployed agents, while
multi-agent based approaches focus on what agents are needed to satisfy the
requirements. In this chapter, we introduce our community computing in detail. We
define the terms and then concentrate on the community by specifying the level of
communities and the lifecycle of a community.

4.1 Terminology

For better understanding, we introduce in this section the terminology for community
computing.

• Ubiquitous Space – A ubiquitous space (U-Space) is a dynamically
connected and coordinated set of heterogeneous ubiquitous computing
objects. Its boundary is flexible and extendible due to the mobile objects. A
ubiquitous object, a smart object in a U-Space, is able to represent various
kinds of software and hardware devices and human users.

• Community Computing System – a kind of ubiquitous computing system
providing ubiquitous services through communities.

• Society – a metaphor for a community computing system, which is
constructed by members and communities.

• Community – a metaphor for a proactive organization comprised of
members cooperating with others to achieve particular goals. A community
has goals, necessary roles, and information about cooperation and role-
member binding. A community is able to have multiple goals and those
goals can be issued in parallel. To abstract the types of communities, we
describe community templates. A community instance is dynamically
created according to the associated community template in execution time.

• Role – a well-defined position in a community with an associated set of
expected behaviors [Ferber, 03]. A role represents a particular capability

2151Jung Y., Kim M.: Situation-Aware Community Computing Model ...

necessary to achieve community goals. The capability of a role is presented
by actions of the role.

• Cooperation – a cooperative interaction among members who take a
particular role in a community.

• Member – a metaphor for an agent who belongs to a community computing
system. In our community computing, the members are restricted to agents
having their own context, capability, and intelligence. If necessary, they can
play a role within a community and we call such agents community
members. Sometimes, they can take several roles in more than one
community simultaneously.

• Role-member Binding – In order to create a community instance, we need
to find the best members for each role. We call this process role-member
binding.

4.2 Community

Community is the most essential concept of our community computing. For better
understanding of the community concept, it is worth introducing the levels and the
life cycle of the communities.

4.2.1 Levels of the communities

The required ubiquitous services are able to have different levels of dynamics. Some
services need to be dynamically provided according to user’s requests, while others
need to be continuously offered such as public security services. Besides, some urgent
services have to be provided even though they have not been developed, requiring the
immediate creation of such services. According to the dynamics of services, we
distinguish the levels of communities as static, dynamic, and evolving as shown in
Table 3. According to the style of necessary services, a designer can decide the level
of a community to create.

Static Community. A static community is the simplest level of communities. In
this community, all members and their cooperation are predefined and not changed. A
static community is used to provide permanent services without replacing providers.
Here are examples of the static community.

• Community of temperature sensors in a building
• Community for residential security including door lock system, monitoring

cameras, alarm systems, and the server in the security company.
Dynamic Community. A dynamic community is a more advanced community.

In a dynamic community, members who take a community role are changed
according to the member’s context whenever an instance of community is created. A
community can require a role to be performed by the most recent one, the nearest one,
or the most preferred one. When a community instance is initiated, the role-member
binding is done and the corresponding members can vary depending on the member’s
context, such as the last execution time, location, or preference. In addition,
cooperation among members can be dynamically decided depending on the member’s
context or the community’s situation. A template of a dynamic community can be
reused and there will be various instances of it. A dynamic community satisfies the
expectation of the community computing partially from the viewpoint of the

2152 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

dynamism of members and the cooperation process. Still, the template is not
adaptable since the goal and roles of a community are predefined before an instance is
created like in static communities. Therefore, a more advanced and adaptive
community model is required. Here come the examples of the dynamic community.

• A community for finding a missing child, which consists of nearby
neighbors, policemen who are on duty, the child’s parents, surveillance
cameras, and so on. To find the child effectively, the closest member to the
child should be selected in the execution time and then that member
cooperates with the others in the best way they can.

• A dynamic community for residential security service, which includes door
lock systems, house monitoring cameras, alarm systems, the current
workers at the security company, and policemen in the vicinity. The
security company workers and the policemen will be decided dynamically.

Evolving Community. An evolving community is the most dynamic model of a
community. The template of an evolving community is created on demand depending
on the situation and the available agents. In addition, the existing template of an
evolving community can be adapted and a new template for a specific instance is
generated. We anticipate that the community’s templates for general service exist and
then a template for unexpected service can follow from the existing one by adapting
the template to the available agents and situation. In urgent cases, evolving
community services would be useful since they can solve the emergency problems
even though a system was not prepared for such services at the time of the request.
Here are some examples of evolving community.

• The community that handles a traffic accident may include various types of
members such as the car involved in the accident, the human user, the
emergency service of a hospital to care for the human users, a tow truck,
and the insurance company workers to negotiate the cost. Depending on the
severity of the accident, the required members will be different. In addition,
participating members will be dynamically decided according to the
location and time of the accident. Therefore, the required members and the
required tasks should be determined on the spot.

 Static

Community
Dynamic

Community
Evolving

Community
Community Type Definition Static Static On demand

- Role Static Static Dynamic & Adaptable
- Goal Static Static Dynamic
- Cooperation Static Dynamic Dynamic & Adaptable

Community Instance Creation Static Dynamic Dynamic
 -Participant member Static Dynamic Dynamic & Adaptable

Table 3: The levels of communities

4.2.2 Lifecycle of community

In our community computing, each community instance has its own lifecycle from
initiation to termination. The lifecycle consists of three stages and one optional stage
as shown in Figure 1.

2153Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Init iat ion Act ivat ion

Deact ivat ion Terminat ion
start

finish

: state : state transition
transition condition

• Initial member selection
• Distribution of cooperation

procedure to all members

• Confirmation of member selection
• Execution of cooperation

among members

• Save information about a
community instance

• Delete related information
• Release all members

• : Action in a state

Community Template is
created AND A community
instance is requested

Detecting a request
of reuse

(Detecting a termination
condition OR Achieving a
community goal) AND
Requested for reuse

(Detecting a termination
condition OR Achieving
a community goal) AND
Not requested for reuse

Detecting a goal

Figure 1: The lifecycle of a community instance

1) Initiation – When a member or a community recognizes a community goal, they
can initiate the creation of a community instance. Before the initiation of a
community instance, its community template needs to be created. In the initiation
stage, members are initially selected for each role and the cooperation process to
achieve a community goal is distributed to all members. For a static community,
members cannot be changed until the community is terminated. On the other
hand, for the dynamic community and evolving community, candidate members
are evaluated for be part of a community instance. After the selected candidate
accepts a community role, the cooperation process will be deployed to the
member. We can say that a community instance is created when the distribution
of the cooperation process to all members is completed.

2) Activation – After a community instance is created, it can be activated by
detecting a request for a community goal. The activation of a community
instance means that all members start to cooperate with each other to achieve
their goal. Usually, most communities are activated as soon as they are created.
Sometimes a community instance can be re-activated to reuse the instance. In
such cases, for a dynamic community, the member selection should be
performed again since the condition of members may have changed.

3) Deactivation (optional) – A community instance is deactivated when a
cooperation process needs to be paused for a while or if a community instance is
expected to be required again. In this state, information about the instance,
including selected members and the cooperation process, is saved. Then, this

2154 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

information will be reused when the community instance is required. Static
communities may prefer to be deactivated rather than terminated.

4) Termination – If a community instance needs to be terminated and the
community is not expected to reuse it, then the community instance is terminated.
The termination of an instance means that information about the instance is
deleted from the repository and the cooperation processes of all members are
deleted.

4.3 Development Process for Community Computing Systems

To develop a community computing system quickly and conveniently, we need a
systematic development process. To accomplish this, we employ the MDA approach.
MDA (Model-Driven Architecture) is one of the promising development approaches
for very huge and complex application systems. It starts by obtaining the requirement
analysis and builds the most high-level model for an application system. Then it
refines the model until the model directly specifies the system. In order to follow the
MDA approach, we propose three models, CCM, CIM-PI, and CIM-PS, each having
different abstraction levels and the model refining process from CCM to CIM-PS.

CCM (Community Computing Model), the most high-level abstraction model,
describes how a community computing system satisfies its requirements with
communities. For a more detailed specification, CCM is transformed to CIM-PI
(Platform Independent Community computing Implementation Model). CIM-PI
considers implementation of a system without concern for specific platforms. It
describes types of members in a system and refines the community description with
member types in detail. Concerning specific platforms, CIM-PI is transformed to
CIM-PS (Platform Specific Community computing Implementation Model), which
specifies how a system runs on a particular platform. By the model transformation
process from CCM to CIM-PS, some portions of the source code are automatically
generated but the remaining portions are manually filled by developers. Through the
proposed process, we are able to develop a community computing system quickly and
systematically. Furthermore, developers can guarantee consistency throughout the
entire development process by using a coherent metaphor, that is, community.

5 Situation-Aware Community Computing Model

To design and develop a community computing system, we need a well-defined
abstraction model. As we mentioned, however, existing models do not fulfill our need
to specify communities and dynamic cooperation in detail. Therefore, in the early
stage, we proposed an abstraction model for community computing systems, called
the simple community computing model [Jung, 06].

This model supports dynamic role-member binding but cooperation is still static.
It uses members‘ contexts to dynamically assign users to community roles. However,
cooperation among members is predefined as pseudo codes and it cannot be changed.
It means that the simple model did not support dynamic cooperation. Furthermore, all
members should know other members’s tasks as well as their assigned tasks to
cooperate with each other during cooperation. In case of the huge and complex

2155Jung Y., Kim M.: Situation-Aware Community Computing Model ...

cooperation, it is not easy to design such cooperation and it can be a burden for
members to know entire cooperation procedure.

In this paper, we therefore propose the situation-aware cooperation model for
intuitive design and dynamic execution of cooperation. Using the cooperation model,
we propose an improved model, the situation-aware community computing model.
Before we describe this model in detail, it is worthy to introduce previous work
related to situation and the community situation model.

5.1 Situation Related Work

Context has been broadly researched in various areas of computer engineering. As
computing environment has been evolving from distributed computing to mobile
computing, and then to ubiquitous/pervasive environment, context has become critical
for designing and developing emerging applications [Strang, 04].

Recently, research on context focusing on representing or reasoning dynamic
world itself beyond context. As an effort to do so, some researcher have been
concentrating on situation. In the early stage, the concept of situation was introduced
for situation calculus and used to implement dynamic systems [McCarthy, 69]
[Levesque, 97]. Recently, however, situation has been used in pervative computing
systems. Yau et al. [Yau, 06] defined situation as an expression of device-action
record and/or a set of context information relevant to a system over a period of time.
In this work, situation was used to trigger further devices‘ actions. His definition
provides more comprehensive understanding of situation by: (i) incorporating the
concept of context; (ii) referring to the purpose of situation as a trigger for further
actions. That is, it shows the relationship between context and situation, and provides
a direction for situation-aware computing. In this paper, we share his viewpoint on
situation in ubiquitous computing systems and use the concept of community situation
to trigger cooperative tasks of member.

5.2 Community Situation Model

To use community situation, we define the community situation as follows.
Definition (Community Situation). Community situation is a state which needs
cooperation among members for resolving problems within a community by
capturing the members‘ contexts.
Diverse information can be used to characterize community situation.

Aggregation of members‘ contexts, relational context between members, and
configurable and environmental context information are used to define community
situation. The member context is a set of knowledge built by capturing information
about members within a community. Each context, basically, is represented by name
and value pair, for example ‘time, 3p.m.’ and ‘location, 3rd floor’. Since context
modeling and representing issues are not a major contribution of this paper, we
assume that a system can match semantic distance between context information of
individuals (i.e. 3 p.m. and 15:00) by using ontology, semantic matcher, and other
related technologies. The aggregation of member context is a Boolean constraint
expression which aggregates between member context using three logical connectives
(i.e. ∧, ∨ and –) and six standard (binary) comparison operators (i.e. =, ≠, <, >, ≤, and
≥). The relational context is (first-order) ontological relationbetween two individuals,

2156 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

for example "Ma is father of Mb" and "Mb is son of Ma". The configurable and
environmental context is a set of properties about the community itself, for example
number of members or community-dependent public knowledge which is shared
among members.

5.3 Situation-Aware Cooperation Model

Before we propose the community situation-based cooperation model, we briefly
introduce existing cooperation models [Cockburn, 96], [Brazier, 97], [Hua, 03],
[Perez, 04], [Guo, 06]. In most cooperation models, cooperation is described as a
predefined static program called as recipe, plan, or skill. Therefore, it is hard to make
their cooperation dynamic. In addition, the means for designing cooperation itself was
not discussed while the means of realizing cooperation are introduced. Therefore, we
arrived at a decision that a new cooperation model is needed for intuitive design of
dynamic cooperation.

In this paper, we propose the situation-aware cooperation model for community
computing. The idea is that cooperation is dynamically executed by recognizing
changes of community situations. If a community's situation is changed, then tasks
that each member should perform are determined accordingly. Let S = {s0, s1…, sn | s0
=start situation, sn =goal situation} be a set of situations. We note that the numbering
of situation does not mean a sequence of situation. Changes of situation vary from one
to another and it sorely depends on member context. On a given situation si(0<i<n), each
member performs actions specified in the si as per their assigned roles. The result of
member actions and changes of member context will transit the community situation
to sj, and then members perform actions according to the tasks specified in sj. The
community goals are finally achieved through such transitions in community situation.

 This model assumes the awareness of community situation and members’ tasks
in certain community situation. Prior to defining our cooperation model, we introduce
several promises for it.

Assumptions. The situation-aware cooperation model is founded on the
following promises.

• Awareness of the community situations – All members in a community
should be aware of community situation

• Awareness of tasks of each member in a given community situation – All
members should know that which tasks need to perform at a certain community
situation

• Ability of multiple tasks execution of a member – In a community situation,
a member can perform more than one task in sequential order

• Independent situation change of completion in a previous situation –
Although tasks are not completely finished in a previous situation, the situation
can be changed into next situation

• Completion of cooperation – Community situations are dynamically
changed, but are capable of reaching a situation of community termination
Each cooperation consists of cooperation blocks. A cooperation block describes

one piece of entire cooperation in a certain community situation with the definition of
the community situation and tasks of roles in the situation. The BNF definition of the
situation-aware cooperation model is shown in Figure 2.

2157Jung Y., Kim M.: Situation-Aware Community Computing Model ...

<Community Situaton> ::=<Situaiton_Name> <Context_Expresseion>1+
<Situation_name> ::=<identifier>
<Context_Expression> ::= <Context> | <Aggregated_Context> | <Relational_Context>
<Context> ::= (<Context_Name> = <Value>)
<Aggregated_Context>::=<Conjunctive_Context>|<Disjuctive_Context>|<Negative_Context>
<Conjunctive_Context> ::= <Context> AND <Context>
<Disjunctive_Context> ::= <Context> OR <Context>
<Negative_Context> ::= NOT <Context>
<Relatioinal_Context> :: <Context> <Relation> <Context>
<Relation> ::= <String>

(a) Definition of member context and community situation

<Situation_Aware_Cooperation_Model>
::= Community <Community_Type_Name> { <Community_Goals_Description> }

<Community_Type_Name>::=<Identifier>,
<Community_Goals_Description>::= Goals <Goal_Description>1+
<Goal_Description>::= <Goal_Name>(<Participant_Roles>) { <Community_Coopertion> }
<Goal_Name>::=<Identifier>, <Participant_Roles>::=<Role_Name>1+, <Role_Name>::=<Identifier>
<Community_Cooperation>::=<Cooperation_Block>1+
<Cooperation_Block>::=<Community_Situation _Name> => <Role_Task>1+
<Role_Task>::=<Role_Name> : { <Role_Action_Name> {(<Parameter>0+)}opt }1+ ;
<Community_Situation_Name >::=<Identifier>, <Role_Name>::=<Identifier>
<Role_Action_Name>::=<Identifier>, <Parameter>::=<String>

(b) Situation-aware cooperation model

Figure 2: BNF definition of the situation-aware cooperation model

When a member performs their own actions in a certain community situation,
conflicts can occur. In the view of a member, actions that are launched in current
situation can conflict with actions that the member already executed when the
member plays another role for different community or when actions in previous
situation is not finished yet. In the view of a community, an action of a member can
conflict with actions of other members. For both cases, the conflicts should be
resolved for achieving community goals.

First of all, we assumed that the tasks of a member in a certain community
situation are executed sequentially by one thread, and thus we do not need to worry
about conflicts on a thread. Conflicts happen when a member tries to execute
conflicting own actions or when more than two members try to execute conflicting
actions simultaneously. To handle such conflicts, we classify conflicting actions into
two categories, namely, mutually exclusive conflict and time dependent conflict. In the
case of the mutually exclusive conflict, when a conflict occurs, then one action among
conflicting actions should be terminated. In case of the time dependent conflict, one
action among conflicting actions should be executed first, with execution of another
action to follow. For handling conflicts in runtime, a community manager and each
member have an action-conflicts list about conflicts. In the list, the types of conflicts

2158 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

are represented. At this time, conflicts between same actions can be included in the
list. For example, assume that a member performs action a2 in community situation
S1. After a few seconds, the situation is changed to S2, although a2 is not finished.
After that, the situation would be changed again to S3, and the member should
perform a2 again in a situation S3. However, a2, which was executed in the previous
situation S1, would still be operating.

5.4 Situation-Aware Community Computing System Development

In order to make up the drawback of the simple community computing model, we
proposed the situation-aware cooperation model and improve the previous model by
employing the cooperation model. To develop dynamic community computing
systems, in this section, we introduce the family of the situation-aware community
computing models including CCM, CIM-PI, and CIM-PS (See 4.3 if you want to
know each model). By the model transformation from CCM to CIM-PS as shown in
Figure 3, we can develop a community computing system systematically.

In CCM, cooperation of a community is represented by community situations and
roles’ tasks in each situation. In CIM-PI, each community situation is defined and
role-member binding is described. Cooperation process is more detailed with
members’ actual actions. Furthermore, to manage memberships and resolve conflicts
among members‘ actions, community policy is added, which includes member casting
policy, member’s secession policy, and action conflicts list. Member casting policy
represents a criterion of member selection such as distant dependent casting or
response-time dependent casting. Member secession policy specifies that how to
handle members‘ secession. For example, when a member disappears, then the
corresponding cooperation can be initialized with a new member, continue with a new
member, or be terminated. In member type description of CIM-PI, all member types
and their hierarchyare defined. A member type is specified by member‘s attributes,
actions, cast condition, contexts, and policies. When a member simultaneously plays
more than one role, conflicts among tasks which required from different communities
may happen. To resolve such conflicts, we define an action conflict list in member
policy. In addition, we may need to know a priority of community creation if two or
more community instances are required at the same time. To deal with such problems,
we define the precedence of communities and exclusive communities in society
policy.

CIM-PS is generated by combining CIM-PI with platform-specific information
such as attribute acquisition, action mapping, and member configuration. In attribute
acquisition, we describe the source of member attributes, for example, sensors or
output of member action. In action mapping description, we describe that how to
execute a member’s actions. If a system utilizes existing agents, a developer should
make a connection between members‘ actions in model and real actions of deployed
agents. In member configuration, a member’s components are additionally described
such as its sensor drivers, operating systems, and communication channels. We show
the definition of CIM-PS and an example based on COEX-Mall scenario in Appendix
A and B.

2159Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Roles

Community Template

Society

Goal

Society Member Type
M ember Type

Roles

Community Template

Society

Situat ion-aware
Cooperat ion

Goal

M ember Type

Role-MemberType
Mapping

Community Situat ion

Community Policy

At t ributes

Act ions

At t ributes

Act ions

Cast

High-level
Community Situat ion

At tributes

Act ions

Member Context

Member Policy

Society Policy

Roles

Community Template

Society

Situat ion-aware
Cooperat ion

Goal

M ember Type

Role-MemberType
Mapping

Community Situat ion

Community Policy

At t ributes

Act ions

Member Context

Member Policy

Society Policy

Community Creat ion

At t ribute Acquisit ion

Member Configuration

Funct ion Discovery

Situat ion-aware CCM Situat ion-aware CIM-PI Situat ion-aware CIM-PS

Figure 3: Development process of situation-aware community computing systems by
model transformation from CCM to CIM-PS

5.5 Case Study

To examine the proposed model, we introduce two case studies. Let’s remind the
COEX-Mall scenario in section 2.1 Motivation Examples. As we described, several
robots exist in the mall. These robots have various capabilities and each robot offers
own services such as guide service or information display at ordinary time. When a
community goal arises, robots compose a community instance to achieve the goal. In
this section, we present two community’s cooperation.

5.5.1 Level-1 Cooperation

When COEX-Mall is opened, an instance of Patrol_COEX community is initiated by
casting all robots and guides who are on duty. After the initiation, community
situation is entered to the start situation of cooperation, PATROL_RANGE_ASSIGN, as a
patrol manager commands to start patrol service. The community instance is activated,
as soon as it enters the start situation. In PATROL_RANGE_ASSIGN situation, all
members perform Area_Assign(COEX) to negotiate patrolling areas. When the
assignment is done, PATROL_BEGIN context is made by a patrol manager and then all
robots and guides perform patrolling service. If a robot or a guide cannot patrol any
more due to heavy workload or a sudden interruption, they are able to request

2160 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

reassignment. At this time, the robot can issue PATROL_RANGE_ASSIGN_REQ context
and then the situation can be changed again to PATROL_RANGE_ASSIGN situation. If a
manager issues PATROL_END context, the community situation is changed to
PATROL_END and all members finish their tasks. If the community instance enters to
the finish situation, all members are released and the instance is terminated. In Figure
4, we show the situation-aware cooperation for Patrol_COEX community.

PATROL_RANGE_
ASSIGN

Patrol_Robot:
Area_Assign(COEX);

Guide:
Area_Assign(COEX);

Patrol_Manager:
Area_Assign(COEX);

Goal
Recognition

(Patrol_COEX)
Goal

Achievement

PATROL_BEGIN PATROL_END

Patrol_Robot:
 Patrol(area);
Guide:
 Patrol(area);
Patrol_Manager:
 Patrol_Management();

Patrol_Robot:
 End_Patrol();
Guide:
 End_Patrol();
Patrol_Manager:
 End_Patrol_Management();

= (Patrol_Manager.PATROL_
BEGIN) OR � (Patrol_Robot.
PATROL_RANGE_ASSIGN_
REQ)

= � Patrol_Manager.PATROL_
BEGIN

=� Patrol_Manager.PATROL_
END

Figure 4: Situation-aware cooperation for Patrol_COEX community

5.5.2 Level-2 Cooperation

When a robot is on patrol as a member of Patrol_COEX community, a mother who lose
her son ask to find the missing child. To immediately provide such service, the robot
issues TAKE_REQUEST_FIND_PERSON context, and then an instance of corresponding
community, Find_Person, is initiated and then activated by entering the start situation,
FIND_PERSON_REQUEST. In this situation, all robots share the profile of missing
child and then issue FIND_PERSON context. Accordingly, the situation is changed to
FIND_PERSON and all members search the child while patrolling. At this time, each
robot takes at least two community roles; one role is for Patrol_COEX community and
another is for Find_Person community. If there is any member who find the child,
PERSON_FOUNDED context is issued and then the community goal is successfully
achieved. In the PERSON_FOUNDED situation, all members finish their tasks and then
the community is terminated. However, if they fail to find the child for a period of
time, they issue PERSON_NOT_FOUNDED. In this situation, a guide reports the present
situation to policemen and then a community instance is terminated. In Figure 5, we
show the situation-aware cooperation of Find_Person community.

2161Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Figure 5: Situation-aware cooperation for Find_Person community

6 Implementation

Since community computing is a development paradigm for ubiquitous computing
systems, it is important to examine our work by implementing a system. To help the
proposed development process in semi-automatic manner, we implement a
developing toolkit, called CDTK. By using CDTK, we conviniently developed two
community computing systems based on motivation scenarios presented in chapter 2.

6.1 Community Developing Tool-Kit: CDTK

For systematic and convenient development of community computing systems, we
implement Community Developing Tool-Kit (in short, CDTK) shown in Figure 6. To
develop CDTK, we use Eclipse platform in order to take the beneficial features of it
such as plug-in architecture, perspective views, and bundles. CDTK can give aid to
system designers as well as developers by providing intuitive interfaces for
community design. We should note that difference in community’s level does not lead
to a change in CDTK modules themselves. CDTK produces different codes
depending on design of communities, but model transformation process in CDTK is
same regardless of a community design. Furthermore, it is out of its scope to decide
and design the level of required community. Here are main functionalities of CDTK.

2162 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

• Project Management – A community computing system is managed as a
project in CDTK. A user can create a community computing project to design
a system, and then save and open it. In addition, a project can be directly
imported or exported from/to CCM or CIM-PI file.

• User Interface (UI) for system development – CDTK has a number of UI
components: tree, table, text editor, and etc. Entities in community computing
systems such as society, community, member, and resources are designed by
using such UIs. Such UI helps to reduce overall time for system development
as well as provide an efficient overview of system.

• Model Transformation – As described in Section 4.3, we proposed a
development process based on model transformation. CDTK supports the
model transformation from CCM to CIM-PI, from CIM-PI to CIM-PS, and
from CIM-PS to source codes. Each model is converted to more specific
model and then developers need to fill the rest part with newly required
information. Model transformation function maintains the consistency
between different models as well as reduces development time.

• (Semi) Automatic Runtime Code Generation – CDTK semi-automatically
generates run-time codes through the model transformation from CIM-PI to
source codes. In the present version, CDTK generates java codes for Jade1
platform. The code generation can be extended to other agent platforms such
as Cougaar2, Jack3, and AgentBuilder4 by developing generation module or
plug-in on CDTK. Currently, the rate of automatic code generation is around
60%.

6.2 Simulation Result

By using CDTK, we develop two community computing systems based on two
scenarios presented in section 2.1; CHILDCARE and COEX-Mall.

CHILDCARE. When Tom goes far, his smart watch requests for a community
instantiation to the society manager agent which maintains a system. Then, the society
manager creates a community manager to initiate an instance of CHILDCARE
community by selecting best members who take community roles. After the initiation,
the smart watch informs child’s location to family, and searches for the nearest person
who can help. While a neighbour goes to the child, the closest surveillance camera
sends the image of child to the selected neighbour and family. Finally, when the child
arrives at home, the community goal is achieved and then the community is
disorganized. In Figure 7, the simulation result of the CHILDCARE community
computing system is shown. The presented screenshot shows member casting process
to gather best members for each community role which defined in the corresponding
community template. As you can see, a community manger is communicating with
each member to comprise a community instance and achieve its goal.

1 http://jade.tilab.com
2 http://www.cougaar.org/
3 http://www.agent-software.com.au/
4 http://www.agentbuilder.com/

2163Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Figure 6: CDTK, Community Developing Tool-Kit. A developer is developing

Find_Person community by using Society Tree and Script Editor.

COEX-Mall. To examine the proposed situation-aware community computing
model, we developed COEX-Mall system to offer patrolling service and missing child
care service. Situation-aware cooperation process for the Patrol_COEX community and
Find_Person community are already shown in Figure 4 and 5. In this system, ARGUS is
a patrol robot in COEX-Mall. For providing situation-aware services, we assume that
ARGUS is able to recognize changes of community situation and knows required tasks
in each community situation. Moreover, we assume that ARGUS performs required
actions in sequence only. Figure 8 shows the simulation result of COEX-Mall system in
which four ARGUSs cooperate with each other to find a missing child during
patrolling an assigned area in COEX-Mall.

2164 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Description
#1 Member registration
1. Child, family of the child, neighbors, and other objects should register with

GHODAMCITY' society.
2. To provide a service for protecting children, a 'CHILDCARE' community is designed
#2 Request for community creation
1. A child is in dangerous area.
2. Child’s smart watch senses danger and then requests to create an instance of 'CHILDCARE'

community to society manager
3. A society manager creates a community manager of 'CHILDCARE' community
#3 Initiation and activation of community instance
1. 'CHILDCARE' community manager initiate a 'CHILDCARE' community instance by

selecting best member for all community roles.
2. After initiation, community situation immediately enters to start situation, then the

community is activated and its cooperation begins.
#4 Termination of ‘CHILDCARE’ community instance
1. Susan, who takes a community role of neighbor 2, brings Tom to his mother.
2. By achieving a community goal, the community instance is terminated.

Screenshot

Figure 7: Simulation of CHILDCARE community computing system

2165Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Description
#1 COEX_Mall Society Creation
1. COEX_Mall system is started, and COEX-mall society is created.
2. All members in the system are registered with COEX-mall society.
#2 Initiation of an instance of ‘Patrol_COEX’ community
1. As ARGUS are turned on, it is requested to initiate a 'Patrol_COEX' community instance.
2. A society manager of the COEX-mall generates a community manager of 'Patrol_COEX'

community, then the manager selects all members for each role to initiate 'Patrol_ COEX'
community

3. By gathering all best members, an instance of 'Patrol_COEX' community is initiated
#3 Activation of ‘Patrol_COEX’ community instance.

As community situation enters to start situation, the instance is activaed and all ARGUS
and guides begin patrolling service

#4 Initiation of ‘Find_ Person’ community instance (Figure 8-(a))
While patrolling, an ARGUS receives a request for finding a missing child, so it requests
to initiate a community instance of 'Find_Person' community.

#5 Activation of an instance of ‘Find_ Person’ community
All ARGUS are involved in an instance of 'Find_Person', then they start to find the child.
(Figure 8-(b)) At this time, all ARGUS are taking at least two roles from 'Patrol_ COEX'
community and 'Find_Person' community

#6 Termination of ‘Find_ Person’ community instance.(Figure 8-(c))
When an ARGUS finds the missing child using its vision sensing, the 'Find_Person'
community instance is disorganized. By the way, 'Patrol_COEX' community instance
keeps running. (Figure 8-(d))

Screenshot

Figure 8: Simulation of COEX-Mall community computing system

2166 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

7 Conclusion

Our goal is to quickly and conveniently develop ubiquitous computing systems,
which dynamically provide useful services, even complex, large-scale, and
unpredictable services. To achieve our goal, we present four requirements that should
be satisfied in a ubiquitous system; context-awareness, cooperation, utilization of
existing objects, and possession of a model to design and develop a system. Since
existing work in various fields does not achieve these goals, in this paper, we propose
community computing as a new development paradigm for ubiquitous computing
systems where services are provided through cooperation among existing smart
agents.

Our community computing fulfills the four requirements successfully. In the
community computing models, a member’s context is represented and utilized when
role-member binding and cooperation are performed. By using communities among
agents, a system can support cooperation to provide services, which require diverse
and large-scale capabilities. In the simple community computing model, there is no
cooperation model, so cooperation is described as a pseudo code. However, in the
situation-aware model, we are able to guarantee dynamic cooperation as well as to
quickly and intuitively design cooperation by using the situation-aware cooperation
model. To define this cooperation model, we also propose the community situation
model and security policies to resolve conflicts. Furthermore, we can easily use
existing agents to develop ubiquitous services, since all of them can be represented as
members in the model. In addition, to make designing and developing community
computing systems convenient and fast, we propose two abstraction models, the
simple model and the situation-aware model, along with the development process
based on MDA approach. For systematic implementation of a community computing
system, we also develop a development toolkit, called CDTK. Using this toolkit, we
developed two small systems and presented the simulation results to verify the
feasibility of two community computing models; the simple model and the situation-
aware model.

Despite our progress, our proposal suggests several avenues for future work.
1) Study on evolving communities – The situation-aware community

computing model only can support the static community and the dynamic
community. Therefore, we need to find a way to develop evolving
communities and use them.

2) Improvement of the situation-aware cooperation model and the situation
model - This version of the model is based on strong assumptions so it
requires a model which can deal with situation-awareness and cooperation
simultaneously without strong assumptions.

3) The security of a community computing system – To use our community
computing in practice, security should be guaranteed. Research on security
should be required, such as authentication, access control, authorization,
privacy, and trust.

4) Various case studies – To expand the area of applications, we continuously
apply our research to various problem domains.

2167Jung Y., Kim M.: Situation-Aware Community Computing Model ...

References

[Al-Muhtadi, 04] Al-Muhtadi, J., Chetan, S., Ranganathan, A., Campbell, R. H.: Super Spaces:
A Middleware for Large-Scale Pervasive Computing Environments, Perware '04, IEEE Press,
Orlando, 198-202, 2004.

[Baldauf, 07] Baldauf, M,. Dustdar, S., Rosenberg, F.: A Survey on Context-aware Systems, Int.
Journal of Ad Hoc and Ubiquitous Computing, Vol. 2 No. 4, 263-277, 2007

[Besselaar, 02] Besselaar, P., Tanabe, M., Ishida, T.: Introduction: Digital Cities Research and
Open Issues, Lecture Notes in Computer Science Vol. 2362, Springer-Verlag, 1-9, 2002.

[Blau, 05] Blau, J.: Microsoft: Community computing is on the way; InfoWorld Magazine,
2005, http://www. infoworld.com/article/05/11/22/HNcommunitycomputing_1.html

[Borghoff, 00] Borghoff, U. M, Schlichter, J. H.: Computer-Supported Cooperative Work:
Introduction to Distributed Applications, Springer-Verlag Berlin, 2000.

[Bortenschlager, 09] Bortenschlager, M., Castelli, G., Rosi, A., Zambonelli, F.: A Context-
Sensitive Infrasturcture for Coordinating Agents in Ubiquitous Environments, Journal of
Multiagent and Grid Systems, Vol. 5 No. 1, 1-18, 2009

[Brazier, 97] Brazier, F. M. T., Jonker, l., et al.: Formalization of a cooperation model based on
joint intentions, Proc. of the Third International Workhop on Agent Theories, Architectures and
Languages(ATAL’96), Lecture Notes in Artificial Intelligence, Vol. 1193, 141-155, 1997.

[Cabri, 03] Cabri, G., Leonardi, L., Zambonelli, F.: A Framework for Flexible Role-based
Interactions in Multi-agent System, Proc. Conf. on Cooperative Information Systems (CoopIS),
Italy 2003.

[Cockburn, 96] Cockburn, D., Jennings, N. R.: ARCHON: A Distributed Artificial Intelligence
System for Industrial Applications, Foundation of Distributed Artificial Intelligence, Wiley,
319-344, 1996.

[Dey, 01] Dey, A.K.: Understanding and Using Context, Personal and Ubiquitous Computing -
Special Issue on Situated Interaction and Ubiquitous Computing, Vol. 5, No. 1, 4-7, 2001.

[Ejigu, 07] Ejigu, D., Scuturici, M., Brunie, L.: CoCA: A Collaborative Context-Aware Service
Platform for Pervasive Computing, In Proc. Third Int. Conf. Information Technology: New
Generations (ITNG’07), 297-302, Las Vegas, USA, April 2007.

[Ejigu, 08] Ejigu, D., Scuturici, M, Brunie, L.: Hybrid Approach to Collaborative Context-
Aware Service Platform for Pervasive Computing, Journal of Computers, Vol. 3, No. 1, 40-50,
2008

[Ferber, 98] Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of
organization in multi-agent systems, Proc. 3rd Int. Conf. on Multi-agent Systems (ICMAS’98),
1998.

[Ferber, 03] Ferber, J., Gutknecht, O., Michel, F.: From Agents to Organizations: An
Organizational View of Multi-agent Systems, Proc. AOSE 2003, Australia 2003.

[Guo, 06] Guo, H, Gao, J., et al.: Recipe, Policy and Self-Organizing: A Hybrid Collaboration
Approach for Agent-based Cooperative Design, Proc. of the 10th Int. Conf. on Computer
Supported Cooperative Work in Design, 2006

2168 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

[Hua, 03] Hua, C, Gao, J., et al.: AGDRSCOM: A complicated Dynamic Real-time Strong
Cooperation System Model, Proc. of the Second Int. Conf. on Machine Learning and
Cybernetics, 318-323, 2003

[Ishida, 98] Ishida, T.: Community Computing and Support Systems, Lecture Notes in
Computer Science Vol. 1519, Springer-Verlag, 1998

[Ishida, 02] Ishida, T.: Digital city Kyoto, Communication of the ACM, Vol. 45, No. 7, 76-81,
2002.

[Jennings, 03] Jennings, N. R., et al.: Developing Multiagent Systems: The Gaia Methodology,
ACM Transactions on Software Engineering and Methodology, Vol. 12, No. 3, 317-370, 2003.

[Johansen, 98] Johansen, R.: Groupware: Computer Support for Business Teams, New York
1998

[Jung, 06] Jung, Y., Lee, J,. Kim, M.: Multi-agent based Community Computing System
Development, Proc. Int. Joint Conf. Autonomous Agents and Multiagents Systems
(AAMAS’06), 1329-1331, Hakodate, Japan, 2006

[Kindberg, 02] Kindberg, T., Fox, A.: System Software for Ubiquitous computing, IEEE
Pervasive computing, Vol. 1, No.1, 70-81, 2002.

[Kumar, 03] Kumar, M., Shirazi, B., Das, S. K., Singhal, M., Sung, B., Levine D.: Pervasive
Information Communities Organization PICO: A Middleware Framework for Pervasive
Computing, IEEE Pervasive Computing, July-September, 72-79 2003

[McCarthy, 69] McCarthy, J., Hayes, P. J.: Some Philosophical Problems from the Standpoint
of Artificial Intelligence, Machine Intelligence, Vol. 4, 463-502, 1969.

[Microsoft, 05] Microsoft community technologies research group, 2005,
http://research.microsoft.com/community/

[OMG, 03] Object Management Group, Model Driven Architecture (MDA) Guide 2003

[Perez, 04] Perez, M. S., Sanchez, A., et al.: Cooperation Model of a Multiagent Parallel File
System for Clusters, Proc. IEEE Int. Symp. Cluster Computing and the Grid, 595-601, 2004

[Reiter, 97] Reiter, R.: The situation Calculus Ontology, Electronic News Journal on Reasoning
about Actions and Changes, 1997, (http://www.ida.liu.se/ext/etai/rac/notes/1997/09/note.html)

[Roman, 00] Roman, M., Campbell, R. H.: GAIA: Enabling Active Spaces, Proc. 9th ACM
SIGOPS European Workshop, Kolding, Denmark, 229-234, 2000.

[Salber, 99] Salber, D., Dey, A.K., Abowd, G.D.: The Context Toolkit: Aiding the
Development of Context-enabled Applications, In Proc. SIGCHI Conf. Human Factors in
Computing Systems: the CHI is the Limit, 434-441, 1999.

[Schilit, 94] Schilit, B., Adams, N., Want, R.: Context-aware Computing Applications, In Proc.
Workshop on Mobile Computing Systems and Applications, 85-90, 1994.

[Schmidt, 99] Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to Context than Location,
Computers and Graphics, Vol. 23 No.6, 893-901, 1999

[Strang, 04] Strang, T., LinnhoffPopien, C.: A Context Modeling Survey, In Proc. Int.
Workshop on Advanced Context Modeling, Reasoning and Management, in conjunction with
UbiComp 2004, Nottingham, UK, September 2004

[Sung, 02] Sung, B., Shirazi, B., Kumar, M.: Pervasive Community Organization, Eurasia2002,
Tehran, November 2002.

2169Jung Y., Kim M.: Situation-Aware Community Computing Model ...

[Takahashi, 09] Takahashi, H., Suganuma, T., Shiratori, N.: AMUSE: An Agent-based
Middleware for Context-aware Ubiquitous Services, In Proc. Int. Conf. Parallel and Distributed
Systems (ICPADS'05), 743-749, Fukuoka, Japan, July 2005.

[Weiser, 91] Weiser, M.: The Computer for the Twenty-First Century, Scientific American,
1991.

[Wilson, 91] Wilson, P., et al.: Computer Supported Cooperative Work, Oxford, UK, Intellect
Books, 1991.

[Wooldridge, 00] Wooldridge, M., Jennings, N. R.: The Gaia Methodology for Agent-oriented
Analysis and Design, Autonomous Agents and Multi-Agent Systems, 285-312, 2000.

[Wooldridge, 02] Wooldridge, M.: An Introduction to Multiagent Systems, John Wiley & Sons,
2002.

[Wooldridge, 99] Wooldridge, M., Jennings, N. R.: The Cooperative Problem-Solving Process,
Journal of Logic computation, Oxford University Press, Vol. 9 No. 4, 563-592, 1999.

[Yau, 06] Yau, S.S, Liu, J.: Hierarchical Situation Modelling and Reasoning for Pervasive
Computing, Proc. Int. Workshop on Software Technologies for Future Embedded and
Ubiquitous Systems and Int. Workshop on Collaborative Computing, Integration, and
Assurance (SEUS-WCCIA’06), 5-10, 2006.

[Zambonelli, 00] Zambonelli, F., Jennings, N. R., Wooldridge, M.: Developing Multiagent
Systems: The Gaia methodology. ACM Transactions on Software Engineering and
Methodology (TOSEM), Vol. 12, No.3, 317-370, July 2003.

Appendix

A. BNF definition of situation-aware community computing model: CIM-PS

<Static_Community_Situation_based_Community_Computing_Model_Description>
::= Society <Society_Name> {<Community_Type_Description><Member_Type_Description>
<Society_Policy_Description> }

<Society_Name>::=<Identifier>

<Community_Type_Description>::= Community Template Description { <Community_Type>1+}
<Community_Type>::= Community <Community_Type_Name>{ <Role_Description>1+

<Role_Member_Binding><Community_Goals_Description><Community_Situations_Description>
<Community_Creation_Description><Community_Policy_Description><Ontology_Description>opt }

<Community_Type_Name>::=<Identifier>
<Role_Description>::= Role <Role_Name>: <Role_Cardinality> { <Attributes_Description>

<Actions_Description><Cast_Conditions_Description>}
<Role_Name>::= <Identifier>, <Role_Cardinality>::=<Min_Cardianality> ~ <Max_Cardinality>
<Min_Cardianality>::=<digit>1+ , <Max_Cardinality>::=<digit>1+
<Attributes_Description>::= Attribute : {<Attribute_Name>=

{<Attribute_Value>|<Attribute_Value_Type_Name>};}1+

<Attribute_Name>::=<Identifier>, <Attribute_Value_Type_Name> ::=<Identifier>
<Attribute_Value>::=<String>|<Range_Value>|<Selective_Value>
<Range_Value>::=(<MinValue>,<MaxValue>) , <MinValue>::=<digit> , <MaxValue>::=<digit>

2170 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

<Selective_Value>::= {<String> {|<String>}1+}
<Actions_Description>::= Action : {<Action_Description>}1+

<Action_Description>::=<Action_Name>(<Action_Parameters>opt);

<Action_Parameters>::=<Parameter>{,<Parameter>}0+ , <Parameter>::=<String>
<Cast_Conditions_Description>::=Cast :{<Attribute_Name>=<Attribute_Value>;}1+

<Role_Member_Binding>
::= Role-MemberType Mapping {{<Role_Name>:<Member_Type_Name>1+;}1+ }

<Community_Goals_Description>::= Goals <Goal_Description>1+
<Goal_Description>::= <Goal_Name>(<Participant_Roles>) {<Community_Coopertion>}
<Goal_Name>::=<Identifier>, <Participant_Roles>::=<Role_Name>1+, <Role_Name>::=<Identifier>
<Community_Cooperation>::=<Cooperation_Block>1+
<Cooperation_Block>::=<Community_Situation_Name> => <Role_Task>1+
<Role_Task>::=<Role_Name> : { <Action_Name> (<Parameter>0+); }1+
<Community_Situation_Name>::=<Identifier>
<Community_Situations_Description>
::=Community Situation {<Community_Situation_Description>1+}
<Community_Situation_Description>::= <Community_Situation_Name> =

{ {<Role_Situation> | <Community_Situation_Expression> }};
<Role_Situation>::=<Unary_Logical_Operator> opt <Role_Name>.<Member_Situation_Name>
<Unary_Logical_Operator>::=<NOT_Operator>, <NOT_Operator>::= NOT
<Member_Situation_Name>::=<Identifier>
<Community_Situation_Expression>

::={<Community_Situation_Item><Binary_Logical_Operator><Community_Situation_Item>}
<Community_Situation_Item>::= <Role_Situation> | <Community_Situation_Expression>
<Binary_Logical_Operator>::= AND | OR
<Community_Creation_Description>::=Community Creation{ <Community_Creation_by_Member>
 <Community_Creation_by_Community> }
<Community_Creation_by_Member>::=By Member:

{<Member_Type_Name><Member_Situation_Name> } opt
<Community_Creation_by_Community>::=By Community:

{<Community_Type_Name><Community_Situation_Name> } opt
<Community_Policy_Description>::= Community Policy { <Member_Casting_Policy_Description>

<Member_Secession_Policy_Description><Action_Conflict_in_Community> }
<Member_Casting_Policy_Description>::= Member Casting Policy { <Member_Casting_Policy>1+ }
<Member_Casting_Policy>::=<Role_Name>:<Casting_Policy>;
<Casting_Policy>::= distance_dependent | response_time_dependent
<Member_Secession_Policy_Description>

::= Member Secession Policy{<Member_Secession_Policy>1+ }
<Member_ Secession_Policy>::=<Role_Name>:< Secession_Policy>;
< Secession_Policy>::= continue with a new | initialize with a new | community fail
<Action_Conflict_in_Community>::=Action Conflicts List =

{<Mutual_Exclusive_Conflicts>|<Time_Dependent_Conflicts>}
<Mutual_Exclusive_Conflicts>::=MEC
(<Role_Name>.<Action_Name>,<Role_Name>.<Action_Name>)
<Time_Dependent_Conflicts>::=TDC (<Role_Name>.<Action_Name>,<Role_Name>.<Action_Name>)

2171Jung Y., Kim M.: Situation-Aware Community Computing Model ...

<Ontology_Description>::=<Ontology_Name>, <Ontology_Name>::=<Identifier>
Member_Type_Description>::= Member Type Description { <Member_Type>1+}
<Member_Type>::=Member <Member_Type_Name>{extends <Parent_Member_Type_Name>}opt

{ <Attributes_Description><Actions_Desciption>{<Cast_Conditions_Desciption>}opt

<Member_Contexts_Description><Member_Configuration><Attribute_Acquisition>
<Action_Mapping><Member_Policy_Description> }

<Parent_Member_Type_Name>::=<Identifier>
<Member_Contexts_Description>::=Member Context {<Member_Context_Description>1+}
<Member_Context_Description>::= <Member_Context_Name> :

{<Singular_Member_ Context >|< Member_ Context _Expression>};
<Singular_Member_ Context >::=<Unary_Logical_Operator> opt <Attribute_Name>=<Attribute_Value>
< Member_ Context _Expression>

::={< Member_ Context _Item><Binary_Logical_Operator>< Member_ Context _Item>}
< Member_ Context _Item>::=<Singular_Member_ Context > | < Member_ Context _Expression>
<Binary_Logical_Operator>::= AND | OR
<Member_Configuration>::= Member Configuration =

{ <Sensor_Driver_Name>0+<OS><Communication_Channel>0+ }
<Attribute_Acquisition>::= Attribute Acquisition

{<Attribute_Name> : {<Sensor_Name>|<Action_Name>} }
<Sensor_Name>::=<Identifier>
<Action_Mapping>::= Action Mapping {<Action_Name_in_Model>:<Action_Name_in_Member> }
<Action_Name_in_Model>::=<Identifier>, <Action_Name_in_Member>::=<Identifier>
<Member_Policy_Description>::= Member Policy { <Action_Conflict_in_Member> }
<Action_Conflict_in_Member>::=Exclusive Actions =

{<Mutual_Exclusive_Conflicts>|<Time_Dependent_Conflicts>}
<Society_Policy_Description>::= Society Policy

{ <Community_Precedence_Description><Exclusive_Community_Description>}
<Community_Precedence_Description>::= Community Precedence

 { High_Priority : <Community_Name>0+; Medium_Priority : <Community_Name>0+;
Low_Priority : <Community_Name>0+; }

<Exclusive_Community_Description>::= Exclusive Community
{ {(<Community_Name>,<Community_Name>)}0+ }

B. Example of situation-aware community computing model: CIM-PS

Society COEX_Mall {
Community Template Description {

Community Patrol_COEX{…………………}
Community Find_Person{

Role Patrol_Robot: 1 ~ 10 {
 Attribute:POWER={ON|OFF}; LOCATION={location_type}; MODE={ BUSY|ORDINARY};
 Action:Area_Assign();Patrol();
 Cast : POWER=ON; LOCATION= IN.COEX_Mall;}
 Role Patrol_Manager : 1~ 2{
 Attribute:STATUS={ON DUTY| OFF DUTY}; LOCATION={ location_type};

Action:Patrol_Management();
 Cast : STATUS=ON DUTY; LOCATION=IN.COEX_Mall;}

2172 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Role Guide : 1~ 5{ ... }…. }
Role-MemberType Mapping {
 Patrol_Robot:ARGUS; Guidian_of_Lost_Person:Human; Guide:Guide;Salesman:Human; }

Goals Find_a_lost_person(Patrol_Robot, Guidian_of_Lost_Person, Guide, Resident)
{FIND_PERSON_REQUEST=>
Patrol_Robot : Read_Personal_Profile(); Broadcast_Info(∀Patrol_Robot and ∀Guide and
∀Resident, “Find a person”, profile);;

FIND_PERSON=>
Patrol_Robot : Find_Person(profile);
Guide:Find_Person(profile); Salesman : Find_Person(profile);

PERSON_FOUNDED=>
Patrol_Robot and Guide and Salesman : Announce(∀Patrol_Robot and ∀Guide and
∀Resident, “Person is founded”, location);
Guide_To(founded person, information office);;

PERSON_NOT_FOUNDED=>
 Patrol_Robot and Guide and Resident : Announce(“Person isn’t founded”,∀Patrol_Robot);;

Guide: Report_Police(“ lost person”, profile);;}
Community Situation {

FIND_PERSON_REQUEST={ Patrol_Robot.TAKE_REQUEST_FIND_PERSON};
FIND_PERSON={Patrol_Robot.FIND_PERSON};
PERSON_FOUNDED={ Patrol_Robot.PERSON_FOUNDED OR Guide.PERSON_FOUNDED OR

Resident.PERSON_FOUNDED};
PERSON_NOT_FOUNDED={ Patrol_Robot.PERSON_NOT_FOUNDED AND Guide.PERSON_

 NOT_FOUNDED AND Resident.PERSON_NOT_FOUNDED };}
Community Creation {

By Member: ARGUS.TAKE_REQUEST_FIND_PERSON;
By Community: }

Community Policy {
Member Casting Policy {

Patrol_Robot: distance-dependent; Salesman:distance-dependent;
Guide: distance-dependent; }

Sudden Secession of Member {
Patrol _Robot: continue with a new; Salesman: continue with a new;
Guidian_of_Lost_Person: initialize with a new; Guide: continue with a new; }

Action Conflicts List={ MEC(Report_Police(“ lost person”, profile),Find_Person(profile)); }}
Ontology : Patrol_COEX_Ontology; } }

Member Type Description {
Member COEX_MallTIZEN {

 Attribute : LOCATION=IN.COEX_Mall; }
Member Animate Object extends COEX_MallTIZEN
{ ……...}
Member ARGUS extends Robot {

Attribute : MODEL=STRING;FIND_PERSON={YES|NO}; PERSON_FOUNDED={YES|NO};
TAKE_REQUEST_FIND_PERSON={YES|NO};

Actions Area_Assign(COEX_Mall, Patrol_Robot); Patrol(COEX_Mall); END_Patrol();
Read_Personal_Profile(); Broadcast_Info(∀Patrol_Robot and ∀Guide and ∀Resident,“Find a
person”, profile); Find_Person(profile); Announce(∀Patrol_Robot and ∀Guide and ∀Resident,
“Person is founded”, location);Guide_To(founded person, information office);Announce(“Person is
not founded”, ∀Patrol_Robot);
Member Situation {

TAKE_REQUEST_FIND_PERSON:TAKE_REQUEST_FIND_PERSON=YES;
FIND_PERSON:FIND_PERSON=YES; PERSON_FOUNDED:PERSON_FOUNDED=YES;

PERSON_NOT_FOUNDED:PERSON_NOT_FOUNDED=YES;}
Member Configuration={ Vision_Sonsor_v3; Samsung_Location_Sensor_v1;}

2173Jung Y., Kim M.: Situation-Aware Community Computing Model ...

Attribute Acquisition {TAKE_REQUEST_FIND_PERSON:Vision_Sonsor_v3;}
Action Mapping {

Area_Assign(COEX_Mall,Patrol_Robot):Set_patrol_range(location);
Patrol(COEX_Mall):CyberCap(patrol);END_Patrol_Service():CyberCap(patrolstop);
Read_Personal_Profile():Read_RFID(person_RFID);
Broadcast_Info(∀Patrol_Robot and ∀Guide and∀Resident, “Find a person”, profile):
BroadCasttowhom, msg); find_Person(profile):Search_Obj(Info);
Announce(∀Patrol_Robot and ∀Guide and ∀Resident, “Person is founded”, location):
Notify(towhom,msg);Guide_To(founded person, information office):GuideServie(who,where);
Announce(“Person is not founded”, ∀Patrol_Robot):Notify(msg,towhom);}

Member Policy {
Exclusive Actions={

MEC(Patrol(COEX_Mall),END_Patrol_Service()); } } } … }
Society Policy {

 Community Precedence {
 High_Priority: Find_Person;

Medium_Priority: Patrol_COEX, Sell_Product’
Low_Priority:;}

Exclusive Community = { } } }

2174 Jung Y., Kim M.: Situation-Aware Community Computing Model ...

