
Multi-Purpose Infrastructure for Delivering and
Supporting Mobile Context-Aware Applications

Juan Miguel López
(University of Lleida, Lleida, Spain

juanmi@diei.udl.cat)

Montserrat Sendín
(University of Lleida, Lleida, Spain

msendin@diei.udl.cat)

Abstract: The use of contextual information in mobile devices is receiving increasing attention
in mobile and ubiquitous computing research. An important requirement for mobile
development today is that devices should be able to interact with the context. In this paper we
present a series of contributions regarding previous work on context-awareness. In the first
place, we describe a client-server architecture that provides a mechanism for preparing target
non context-aware applications in order to be delivered as context-aware applications in a semi-
automatic way. Secondly, the framework used in the server to instantiate specific components
for context-awareness, the Implicit Plasticity Framework, provides independence from the
underlying mobile technology used in client device, as it is shown in the case studies presented.
Finally, proposed infrastructure deals with the interaction among different context constraints
provided by diverse sensors. All of these contributions are extensions to the infrastructure
based on the Dichotomic View of plasticity, which now offers multi-purpose support.

Keywords: context-awareness, mobile development, adaptation, multi-sensor context
Categories: C.2.4, D.1.m

1 Introduction

Mobile devices are changing users’ technological habits. Advances in mobile
technology are providing mobile users with the capacity to interact and perceive with
their surrounding world. A user with a mobile device can find that its standard
functionality can be extended with those applications and services provided by the
environment. These kinds of systems have to address more sophisticated techniques
to react to changes in the context in order to adequately adapt the system’s behaviour
and the User Interface (UI henceforth) appearance to the context of use. It is
necessary to provide multi-purpose tools that facilitate the development and delivery
of context-aware mobile systems, which be able to gather information from the
surrounding in order to provide better awareness of situational context.

This paper presents a software infrastructure to automatically adapt mobile
systems according to their context of use. This infrastructure provides a multi-sensor
support and is independent of mobile technology used on the device. Proposed
solution follows the Dichotomic View of plasticity approach [Sendín, 2007], where
infrastructure is based on a client-server architecture, providing a communication

Journal of Universal Computer Science, vol. 16, no. 15 (2010), 2081-2098
submitted: 31/1/10, accepted: 28/7/10, appeared: 1/8/10 © J.UCS

mechanism between mobile applications and the server along the execution.
According to this approach, there are two types of adaptations: implicit and explicit.
When the complexity involved in the adaptation process is too high to be handled on
the device, the client requests the server for an explicit plastic adaptation, which
implies a higher level of reasoning or reconfiguration of the UI. On the other hand, if
the adaptation complexity is low enough to be solved locally, the client tackles it,
providing an implicit plastic adaptation. Last kind of adaptations are carried out by
means of a specific Implicit Plasticity Engine1 (IPE henceforth) previously embedded
on the client application. In the case of components for context-awareness, simple
sensor adaptations can be done locally by the client. Server is required to solve
situations where multi-sensor context constraints enter into conflict.

The server allows originally non context-aware mobile applications to be
uploaded. Then, these applications are prepared for being aware to certain contextual
needs and can later be delivered to a client mobile device by request. Once running on
the client device, applications present a context-aware behaviour, providing
adaptations in an autonomous and dynamic way. To do that, the server makes use of a
multi-technology framework, which is easily be instantiated to a specific IPE –the
required component for context-awareness-, ready to be embedded on the original
application. This framework can be configured so that certain characteristic can be
specified manually, according to particular parameters and particularities for each
application, thus establishing a specific adaptation engine. Once the recently context-
aware application is installed on the device and starts to operate, in the presence of
multi-sensor conflict situations where different types of adaptations can be enforced,
involved contextual information is sent to the server, looking for an explicit plastic
adaptation. The server applies the necessary inferences in order to determine what
adaptation is the most convenient for each particular circumstance.

In this paper we present a series of contributions regarding the previous work on
context-awareness. In the first place, a mechanism for preparing target applications in
order to be delivered as context-aware applications in a semi-automatic way.
Secondly, the fact that the framework used in server to instantiate components for
context-awareness is independent from the mobile technology used in the client
device. This framework is called Implicit Plasticity Framework (IPF henceforth)
[Sendín, 2006]. Finally, proposed infrastructure deals with the interaction among
different context constraints. We are referring to the integration of diverse sensors for
a more enriched awareness. All these contributions have been implemented providing
extensions to the previous infrastructure based on the Dichotomic View of plasticity.

The paper is structured as follows. Next section discusses some related work.
Section 3 presents special considerations for designing components for context-
awareness, following the general software structure for IPEs. This section concludes
presenting a multi-sensor support based on the Dichotomic View of Plasticity. The
general architecture in the server and the generic framework to derive components for
context-awareness are presented next. Particularly, it is shown how it is applied in the
development of specific components for two case studies with different mobile
technologies. Conclusions and further work conclude the paper.

1 Client-side runtime adaptive component with the capacity to detect the context and reacting in order

to adapt the UI and the device operative to the contextual variations on the fly.

2082 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

2 Related Work

Context awareness in mobile environments has been a research area for a long time.
One of the initial works is [Schilit, 1995], where an architecture capable of supporting
context in mobile environments was proposed. It is based on the experience acquired
with the ParcTab prototype from Xerox PARC. On the other hand, [Dey, 2000]
defined seven basic requirements a context support infrastructure should fulfil, which
have been used by a large number of context aware systems developed since then.

Context awareness lies heavily on a series of concepts that have been developed
over time. Since the first context architectures appeared, there is an effort to
incorporate sensors and different technology providers to context, considering it as an
overall evolution of the whole system [Couto, 2005]. Besides, in order to make the
development of context aware systems easier, context middlewares are defined. Their
task is low coupling context aware applications from dependences with underlying
layers, relieving the programmer from the need to build a communication framework.
Moreover, in order to support possible context evolution, some existing middleware
explore the resource discovery concept (one of the requirements defined by [Dey,
2000]), such as Virtual Information Towers [Leonhardi, 1999] and Context Toolkit
[Dey, 2000], being this last one of the most relevant context infrastructures in the
field. There is also work in progress for developing run-time middleware that enables
the generation of UIs on portable devices based on sets of abstract models, and
adapting them to the context of use [Yaici, 2008].

Ubiquitous computing is characterized by heterogeneity of devices used to access
services; services that users expect to receive anytime and anywhere. Hence, mobile
services need to efficiently adapt to different contexts of use, so that mobile users can
exploit then. [Malandrino, 2009] provides a middleware for context-awareness with
an intermediary based architecture for content adaptation.

Another field where context has also been taken into account as a crucial factor
has been the personalization of UIs. To cite an example, [Sendín, 2009] presents a
system that offers dynamic support to real limitations or difficulties users can
encounter during the use of a mobile UI. Moreover, as the context of the mobile user
includes user culture and the influence of culture on mobile device use, models have
been proposed to represent the influence of mediating factors and determining factors
on actual mobile device use [van Biljon, 2008].

Support for context awareness has grown to include different types of mobile
environments. The use of mobile applications in the educational environments has led
to the necessity to lead with context awareness to improve their efficiency. [Gómez,
2009] provide a framework for the generation of instructional designs considering the
context, which can be used in both learning management systems and diverse mobile
devices. Moreover, mobile computing devices and a proximity model can be used to
organize collaborative activities according to the domain context and physical
proximity in educational environments [Zurita, 2007]. Numerous types of mobile
environments where context is a key issue to improve their basic operation, and in
which contextual information has also been proven useful could be enumerated.

The rest of the paper is destined to present our infrastructure for delivering and
supporting mobile context-aware applications. The two case studies presented serve to
prove its validity and flexibility to be applied in different mobile technologies.

2083Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

3 Implicit Plasticity Engine: General Guidelines to design
Components for Context-Awareness

As described in the introduction, the IPE is framed into a software infrastructure
based on client-server architecture, following the so-called Dichotomic View of
plasticity [Sendín, 2007]. This section starts presenting the general software structure
for IPEs, then explains special considerations to design components for context-
awareness, and finally concludes presenting our multi-sensor support.

3.1 Software Structure for the Implicit Plasticity Engine

The framework presented in this paper and the components for context-awareness
obtained from it guarantee the properties of transparency in adaptation and
reusability; a level of reusability that allows applying it to (1) different families of
systems; (2) different needs of context representation; and (3) different adaptation
mechanisms, looking for a multi-purpose use. One of the main points to reach
flexibility and reusability is that adaptive mechanisms and system core functionality
are handled orthogonally, allowing them to evolve individually. Managing
orthogonality needs to apply some kind of separation of concerns technology.

Based on these premises, the IPE follows a software architecture divided into three
layers. The logical layer contains the application core functionality. The context-
aware layer contains the control and modelling of the context constraints, the so-
called contextual model. This layer carries out the context detection and maintains
contextual information for further use. Finally, the intermediary layer is responsible
for adapting the UI or system behaviour according to the context. According to the
approach and guidelines defined in [Sendín, 2005], and as it has been discussed in
previous works [Sendín, 2006], [Sendín, 2007], [Sendín, 2009], we use Aspect-
Oriented Programming (AOP henceforth) as the separation of concerns technology
chosen to transparently integrate adaptation mechanisms for real time constraints in
the system operation. Thus, we model each context constraint as a program unit called
aspect, which is in charge of intercepting the operative of the core system to apply the
suitable adjustments to the UI, according to the current state of the context. This is the
reason why the intermediary layer is called aspectual layer. Provided added value is
that this layer acts as a transparent link between the other layers. It is this way because
dependences are produced exclusively from the aspectual layer towards the other two
ones. Consequently, the logical layer and the context-aware layer are completely
unaware of the existence of the aspectual layer. It implies that, in any case, neither
the application code nor the internal structure from the original system are affected,
thus fulfilling the transparency property.

3.2 Special Considerations for Context-Awareness

One of the possible applications of the software structure for the IPE outlined above is
to provide context-awareness to a certain application that does not present originally
these kinds of considerations. In this section, the particular characteristics of a
component for context-awareness based on the IPE software structure are presented.

First of all, it is worthy to say that components for context-awareness are
particularly characterized by a high level of orthogonality. It implies a low coupling

2084 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

in relation to the base application, factor that acts in favour of reusability to different
systems. The difference is significant in comparison to other kind of components also
designed following the structure for the IPE, such as user personalization components
[Sendín, 2009]. The reason is that the parameters to be considered in the adaptation
do not come from the user behaviour nor are captured from the execution of the
application, thus not being necessary to monitor the use of the interface. Instead,
parameters for adaptation come from the sensors connected to the application, which
keep feeding the application with the values being captured, in this case, from the
environment. In this section we describe the design corresponding to the context-
aware and the aspectual layers for these kinds of components.

Context-aware layer. The design for this layer responds to general design
principles for software engineering, looking for the maximum flexibility and
reusability. Thus, the design consists of different pieces of code, cohesive enough to
be reused in different systems. The main class is called ConstraintManager, which
controls and coordinates all the other classes in this layer. In particular, this class is
responsible for (1) acceding and communicating with the sensor, which is represented
by the Sensor class; and (2) managing the historical of changes in the context
constraint -represented by the ChangesHistorical class-, in order for them to be
conveniently registered. These two functionalities are attained encapsulating the
corresponding objects from both classes (Sensor and ChangesHistorical), as it is
depicted in Figure 2. Apart from these classes, there intervenes another class called
ScreenRegulator. This class encapsulates the code corresponding to the adaptation,
generally a call to a specific method from an API proprietary, in a class method
visible to the aspect. The invocation of this method by the aspect triggers the
adaptation in a platform-independent way, removing thus any technology dependence
in the aspectual layer.

Finally, it is convenient to point out that each system and particular contextual
need require a different configuration in the communication with the sensor.
Sometimes, it is enough controlling certain concrete pointcuts, but in other cases it is
necessary to establish certain regularity, distinguishing different levels of interactivity
with the sensor. In those cases where a high interactivity level with the sensor is
required, it is used a thread acting in background in order to accede the sensor in a
cyclic way. The class SimpleThread in Figure 2 represents and encapsulates this
thread. Apart from that, the structure and code for the aspect (explained next) also
changes in these cases, because it is necessary to monitor the continuous consultations
to the sensor. Keeping in mind that our goal is to offer a reusable framework, the so-
called IPF, it is necessary to isolate these differences in the aspectual layer. Details
about this are discussed in section 5.2, where the IPF is described.

Aspectual layer. In this layer a program unit aspect acts, which manages all the
actions in favour of adapting system’s behaviour according to a certain context
constraint. It is the ConstraintControl aspect in Figure 2. To be more precise, this
aspect is in charge of two main responsibilities: (1) coordinating the accesses to
sensors in order to capture values from the environment; and (2) putting to work the
functionalities and adaptations encapsulated in the context-aware layer in order to be
applied in the base application (logical layer), according to both, the values captured
and a set of parameters included in the aspect unit. These parameters are: (1) the
points in the execution of the application that have been established to check the

2085Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

sensor; and (2) the threshold to be taken into consideration in order to determine if a
certain variation in the sensor value is significant enough to apply an adaptation.
These two parameters are specific for each system, and they are expressed by means
of pointcut2 constructions. We are referring to the ActivateSensorConsultation() and
the ControlChanges() pointcuts in Figure 2 (the latter is in charge of keeping the
system updated by environment changes). Setting values for these parameters are part
of the actions that need to be done manually (in particular, by the IPE designer in the
IPE derivation step –the second- shown in figure 1), as part of the instantiation of the
framework to a specific system and contextual need. We are referring to the
completion of the code from the framework in order to obtain the concrete component
to be embedded in the target application.

The third pointcut, the so-called CloseHistorical(), is triggered when it is required
to send the historical of changes in sensor values to a server, in order to satisfy the
fifth requirement defined by [Dey, 2000], requesting for a explicit plastic adaptation.
By default, this functionality is done when the application finishes. However, sending
the historical to the server can be useful in other types of circumstances during
execution, i.e. when different context constraints interfere with each other. We are
referring to the multi-sensor problem presented in section 3.3. As it is discussed there,
we solve this problem carrying out a process of inference in server, once all the values
from sensors have been received. The server infers a solution for the sensor
interaction and returns it to the client-side, expressed as a set of proposals of
adaptation. As it has already been pointed out, this kind of support to multi-sensor
awareness is based on the Dichotomic View of plasticity [Sendín, 2007].

Finally, it is important to note that the more concise and simple the code from
aspect units is, the more flexible and reusable the software structure for IPEs is. This
is the reason why the operations related to adaptation are encapsulated in the context-
aware layer. Aspects only have to invoke the corresponding method. As a
consequence, the aspectual layer is relieved from this code, so fulfilling the function
of an intermediate link between the other two layers. The consequent simplification of
the aspectual layer also contributes to a major understanding of the framework.

This fact is especially remarkable for user personalization components. In order to
obtain this kind of components, it is necessary to establish a major number of hooks
and dependences among layers, so it is essential to encapsulate the adaptation
operation related in the context-aware layer. By the way, these components require a
deep knowledge from the base application code, which reduces considerably the level
of orthogonality. Despite of that, as in components for context-awareness,
dependences are produced exclusively from the aspectual layer to the two other
layers, so the target application is keept equally unaware of the existence of the
aspectual layer. In this sense, the framework works the same way with independence
of the purpose of the component.

2 Programming construction to establish those points in the program flow (for instance, a method call, an
access to a variable, a condition and so on, which are called joinpoints) to be interfered at runtime by and
aspect unit.

2086 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

3.3 Providing Multi-Sensor Support

It is well-known that providing automatic adaptation to a specific context constraint
helps improving user comfort while using a mobile system. However, in lots of
situations it is not enough considering a unique sensor to characterize real user
circumstances. The combination of multiple diverse sensors that individually capture
the environment may result in a total picture to better derive user particular needs.

Setting bounds to and parameterize primary context can be done with relative
ease. However, combination of two or more sensors and types of context introduces
not only new possibilities, but also some added difficulties. In fact, situations and data
from different sensors may relate, being thereby necessary to consider possible
relations among them in order to understand as much as possible the situation the user
is living while interacting with the environment. We are referring to multi-faceted
characterizations of a contextual situation. Considering each sensor independently
typically causes a different adaptation for each one, incurring sometimes on
incompatible or even contradictory actions. In these cases where diverse context
constraints enter into conflict, a more elaborated adaptation is required, looking for
decisions in favour of merging all the individual considerations, as a result of
substantial analysis and fusion of data from individual sensors.

Integration of diverse sensors was initially investigated in the Smart Badge, a
device inspired by the Active Badge, equipped with a large variety of sensors to
capture context beyond position [Smith, 1998]. This issue has also been considered in
[Golding, 1999] for an indoor location technique that does not require any
infrastructure. However, perhaps the most relevant work on multi-sensor context-
awareness is the one carried out by [Gellersen, 2002]. They have been involved in a
series of projects and reported experience from development of a number of device
prototypes explored in various applications to validate multi-sensor to awareness.
These include the Mediacup, a coffee cup with embedded awareness of its own state;
the TEA awareness module and the Smart-Its platform, both used for aware mobile
devices. Their research has provided new perspectives and insights into sensor fusion
for awareness and inference of generic situational context. They have shown that
integration of diverse sensors is a viable approach to obtain context representing real-
world situations. Their experience suggests that some degree of abstraction can be
implemented independently of specific applications. However, their work has not
been specifically focused on architectural issues. In this sense, there is a need of
future work to develop principles for the architectural design of multi-sensor context-
aware systems.

As far as we are concerned, because of the complexity involved in integration of
multiple diverse sensors, treatment of possible sensor interferences may not be
handled locally on the mobile device. This situation is mainly due to the difficulty to
include an inference engine in the target application. It would increase significantly
the size of the application and the computation resources needed for the execution.
Following the Dichotomic View of plasticity approach, all those situations not pre-
established on the IPE are delegated to the server. To be more precise, the client
requests the server for an explicit plastic adaptation, in this case focused on solving
sensor interaction situations. It is worthy to say that these situations can be managed
automatically –and in particular, by an aspect unit-, triggering the sending of the
sensor values for all the implied context types. Following artificial intelligence

2087Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

foundations, the server puts to work all the contextual parameters received and
supports decision making by means of an inference engine specially prepared to
derive some inferences about context constraint combination.

4 Infrastructure for Delivering and Supporting Mobile Context-
Aware Applications

Our main objective is to provide a system in which originally non context-aware
mobile applications are automatically prepared for context-awareness and then
delivered to the client device. Apart from that, this system also offers a multi-device
support along the execution of the applications. This section presents the system
architecture operating in the server and the generic framework for context-awareness;
the IPF. Particularly, it is shown how it applies in the development of specific
components for case studies, showing its validity for different mobile technologies.

4.1 System Architecture for the Server

The system has been developed following client-server architecture. The server side
has been developed using Java 2 Enterprise Edition technology, while the client side
can be any device that supports Java 2 Mobile Edition or .NET Compact Framework.
Figure 1 displays how the system works. Assuming that target application is already
uploaded in the system, together with its associated configuration file (depicted by the
step 1 in Figure 1), the IPE derivation tool proceeds to take it into consideration, in
order to instantiate the IPF (depicted by the step 2 in figure). In order to be more
precise, apart from performing the appropriate instantiation of the framework, that is,
the completion of the code from the framework as explained in section 3.2, in step 2
the IPE designer is also in charge of (1) making a proper AOP library selection and
(2) guaranteeing the proper platform-specific operation for each device. As a result, a
component for context-awareness, specific for particular needs of target application is
obtained (it consists in the block composed by the context-aware and aspectual
layers, which is depicted by the step 3 in Figure 1).

Then, the system compiles and weaves this component together with the original
code from the application initially uploaded (step 4 in Figure 1). The result is the
expected IPE, that is, the original application now with specific support for context-
awareness (step 5 in Figure 1). By this interlacing process, the IPE is obtained without
neglecting the property of transparency that lays the foundations of the framework. In
fact, any change is introduced, neither in the original source code nor in the internal
structure. Once the IPE has been generated, it is registered and made accessible in its
repository of applications, so that the client is able to download and install it in its
device (step 6 in Figure 1). It must be taken into account that the system does not
perform this process in a fully automatic way. The IPE designer conducts the
instantiation process, according to parameters and particularities established in the
configuration file.

2088 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

Figure 1: System architecture for the server

Since the application is delivered to the client, contextual information captured by
sensors, which is used to apply automatic adjustments to the device’s behaviour or the
UI appearance, is gathered along the use of the application. Client application only
communicates with the server in the cases that a possible conflict among different
adaptations is detected. In these cases, the client application sends a request to the
server with all the contextual information related to sensors involved in the
interference. The system delivers received information to the inference engine
together with the device profile of the client. The inference engine is a rule based
system able to decide which adaptation best fits the client device and current situation
according to the contextual information received, making inferences from existing
rules. Additionally, it allows IPE designers to create new rules. In this case the system
has made use of the Drools Expert rule engine. Once inferred which one among the
different possibilities is the most appropriate, a reply is sent to the client specifying
which adaptation or set of adaptations should be conducted.

2089Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

It must be noticed that aspect inclusion is independent from the underlying
technology used in the original code of the application. In this sense, the system
includes aspects for J2ME applications by using the AspectJ library, while for .NET
Compact Framework based applications PostSharp aspects library is used.

4.2 Implicit Plasticity Framework: a Generic Framework to obtain
Components for Context-Awareness

Context-aware layer. The differences introduced in the IPF, in comparison to the
IPE described in section 3.2, consist in the introduction of two abstract classes:
adaptatorAccodingConstraint and constraintDetector. The former declares the
applyAdaptation() method, to be implemented by the ScreenRegulator class in order
to apply a particular reaction in the device. The latter declares the
obtainSensorValue() method, to be implemented by the Sensor class in order to
accede a certain sensor embedded to the device and capture its current value. As both
functionalities vary from each technology and software platform, and consequently
require access to a certain proprietary API, specific for each case, they are declared as
abstract methods in an abstract class (or interface). As a result, the instantiation of the
IPF to a particular technology consists in the implementation of these two methods,
thus isolating these kinds of dependences from the rest of the code.

Aspectual layer. As mentioned in section 3.2, depending on the contextual
situation that characterizes the use of a certain application, as well as on the way it is
used, needs for adapting the system’s behaviour vary significantly. We distinguish up
to three levels of interactivity with sensors, thus establishing three different levels of
operation for checking for a new adaptation. Each level of operation corresponds to a
different design of the aspect unit. To manage this variety, the aspectual layer in the
IPF is designed as a hierarchy of aspects, providing three different sub-aspects. In
each case the most appropriate sub-aspect is instantiated. From left to right, they
appear from the least interactive with the sensor to the most interactive one. They are
the ConstraintControlByDemand aspect (punctual checking for new adaptations in
particular points in the execution -ActivateSensorConsultation() pointcut); the
ConstraintControlInteractive aspect (extends the checking points and introduces the
ControlChanges() pointcut for monitoring the values captured by the sensor); and the
ConstraintControlBackground aspect (activates a thread in background in order to
carry out a cycled sensor checking). The pointcut ActivateSensorConsultation() is
declared as an abstract pointcut, in order to be defined in each sub-aspect. However,
the CloseHistorical() pointcut definition is inherited directly from the aspect base.

2090 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

Figure 2: Generic component for context-awareness in the IPF

4.3 Application of the Framework to the Case Studies

Regarding the case studies presented in this subsection, it was aimed not only (1) to
prove the validity of the proposed framework for the different mobile technologies
employed in the case studies, but also (2) to explore the possibilities for sensing
environment in each software platform.

2091Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

4.3.1 Case Study 1: Brightness-aware J2ME Feeds Reader

The application in this case study is a mobile feeds reader application to download
and manage news and announces from a company. The aim is allowing the staff to
keep informed about all events in its worker’s department, not only during the office
stay, but also in different circumstances on the move and work journeys in which a
laptop can not be used. It is in these kinds of circumstances that mobile Internet
becomes a real help. This application has been developed in J2ME technology to
work in mobile devices based on the S60 5th Edition software platform, that is to say,
running under the Symbian operating system. In particular, it was installed and tested
in a Nokia N97 mobile phone with Symbian 9.4.

Because reading pieces of news requires gazing at the screen for a while, possibly
crossing different brightness conditions, it is likely to become not enough comfortable
to the user. We have instantiated the IPF to obtain a component for context-awareness
capable of making our feeds reader aware of the external brightness conditions,
aiming to automatically adapt the screen brightness to surrounding brightness level.

Instantiation of such a component consists of next simple steps:
1. Instantiation of the aspectual layer. Taking into account the contextual needs

for brightness adaptation, the sub-aspect most appropriate to be instantiated
is the ConstraintControlBackground one, whose particularity consists in
activating a thread, which is encapsulated on the SimpleThread class. The
parts of code from the aspect to be completed are the next ones:

 The joinpoints for the ActivateSensorConsultation() pointcut, which
intercept the commandAction method from the CommandListener
interface and the itemStateChanged method from the ItemStateListener
interface from the javax.microedition package on the MIDP profile.

 The ControlChanges() pointcut for monitoring the values captured for
the sensor and deciding whether an adaptation has to be done or not.
These parameters can be established in a configuration file.

As it is depicted in Figure 3 the aspect unit for our component is called
BrightnessControlBackground, and it conforms the aspectual layer.

2. Instantiation of the context-aware layer. It consists in the definition of two
methods that encapsulate two platform-specific operations:

• The applyAdaptation(int) method in ScreenRegulator class, which
consists in a call to the method setLights of the class DeviceControl in
the Nokia UI API, to alter the screen brightness.

• The obtainSensorValue() method in Sensor class to enable data
retrieval from the brightness sensor. It consists in a call to the getData
method from the SensorConnection interface for a synchronous mode,
and a call to the dataReceived method from the DataListener interface
for an asynchronous mode. The latter method will be called by the
SimpleThread class. Both, DataListener and SensorConnection
interfaces belong to the Mobile Sensor API.

As it can be observed in Figure 3, the main class in this layer is called
BrightnessManager.

2092 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

Figure 3: IPE for brightness-awareness in the Feeds Reader application.

4.3.2 Case Study 2: Sound and brightness aware .NET Compact Framework
Tutor System

The purpose of the application in this case study has been to provide a user interface
intended to help users with cognitive disabilities, elderly people and users who do not
usually make use of new technologies. This application is intended to provide support

2093Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

for performing common use tasks in mobile phones such as making a call or sending a
text message. These tasks are explained with text descriptions, images and videos
with didactic intention, allowing users to interact with the user interface in order to
repeat actions such as repeating playback of a video. This application has been
developed in C# using the .NET Compact Framework platform, so it works in mobile
devices running under the Windows Mobile OS. In particular, it was installed and
tested in a HTC Diamond Touch 2 mobile phone with Windows Mobile 6.

Taking the particularities of this case study into account, both sound and light
related adaptations have been considered as both of them can provide remarkable
benefits to end users. For instance, users with hearing impairments could benefit from
the ability of the application to adjust the volume. The rest of the subsection describes
the particularities for the instantiation of the IPF to obtain a sound component capable
of making the application aware of the external sound conditions on sonorous
environments. The component for brightness-awareness will be pretty the same as the
one described previously. The steps followed to instantiate the sound component have
been the same as for the Case Study 1:

1. Instantiation of the aspectual layer. Taking into account the contextual needs
aforementioned, the most appropriate sub-aspect to be instantiated is the
SoundControlInteractive one, whose particularity consists in establishing an
interactive, but not necessarily constant, control over the sensor, which in this
case is focused on the video reproduction periods of our Tutor System
application. In order to instantiate this aspect, it is necessary:

 Completing the joinpoints for the ActivateSensorConsultation() pointcut,
intercepting the play method from the player class which controls the
media player embedded in the application. In this case it is intended to
capture a data stream from the sound sensor, so this information is later
used to determine whether the volume of the video has to be adjusted to
the level of the surrounding sound.

 Completing the ControlChanges() pointcut for monitoring the values
captured for the sensor and establishing the making decision.

The aspect unit for this component is called SoundControlInteractive, and it
conforms the aspectual layer.

2. Instantiation of the context-aware layer. As in the Case Study 1, it consists in
the definition of the two following methods:

 The applyAdaptation() method in ScreenRegulator class. For adjusting
the sound, it makes a call to the waveOutSetVolume method of the coredll
library in the Waveform Audio API.

 The obtainSensorValue() method in Sensor class, which consists in a call
to the method AutoSetVolume of WaveIn class. It calculates ambient
sound by obtaining sound samples, storing them in a buffer and
calculating their RMS.

UML diagram for this component has not included in the paper for extension
reasons. It is pretty similar to the shown in Figure 3, replacing any reference to
brightness by sound in the names of classes and aspects. Apart form that, the names
of APIs also change, as this component is making use of particular packages for the
Windows Mobile, and more specifically of the HTC proprietary API.

2094 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

As this case study has two different possible adaptations regarding contextual
elements, the fact of making an adaptation based on one of the contextual elements
can interfere with adaptations performed with the other contextual element present.
An example of conflict between proposed adjustments is the case in which the client
is in an environment with a highly variable luminosity, i.e. on the train way. In case of
deriving two adaptation proposals for such environments, the system may decide to
give priority to the sound volume change adaptation instead of adjusting brightness,
based on the fact that the system detects that luminosity change intervals are so short
that it is not worthwhile to include this adjustment. To resolve such situations, as it
has been shown, the adapted application communicates with the server, which
proceeds to decide which adaptation deserves to be performed and which not. This
decision is made according to the rules implemented in the server by the IPE designer
that defines the procedures to follow in these interference scenarios.

Listing 1 displays a rule defined in the server using Drools. This rule decides
which adaptation must be performed just in case of interferences between possible
sound and brightness based adaptations are detected in the client. Prior to be used in
the rule, current and mean values for both sound and brightness are normalized using
the information provided in the device profile regarding the spectrum of values that
sensors on client’s device can cover. In this case, the rule decides which adaptation
must be performed based on the difference between the absolute values between
current and mean values for both sound and brightness.

package main

import main.AdaptationDataBean;
global main.AdaptationOutputBean outputBean;

rule decideAdaptations
 when
 data: AdaptationDataBean()
 then
 int ambientSound = Math.abs(data.getAmbientSoundMean() -

data.getCurrentAmbientSound());
 int brightness = Math.abs(data.getBrightnessMean() - data.getCurrentBrightness());
 if (ambientSound > brightness)
 outputBean.enableAmbientSound();
 else
 outputBean.enableBrightness();
end

Listing 1. A rule designed to solve brightness and sound interferences

5 Conclusions and Future Work

The main goal of this paper is to show the advances that developed framework
involves about providing adaptation mechanisms to context-awareness in mobile
applications. The most relevant issue can be claimed saying that it is a multi-purpose
oriented infrastructure, as it contemplates: (1) multi-sensor for a more enriched

2095Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

awareness of situational context; (2) multiple underlying mobile technologies; and (3)
multiple contextual needs, always concordant with the application main goal. It is
remarkable that the only pre-conditions for the target application in order to be
prepared as a context-aware application by the framework are two. On the one hand,
that the source code follows a object-oriented paradigm. On the other hand, for this
particular case, the source code must be implemented in a programming language
supported by the framework (both in the base language and in the corresponding AOP
library). Currently, the languages supported by the framework are Java and C#, and
the AOP libraries are AspectJ and PostSharp. Any application fulfilling these
restrictions can be prepared to present a context-aware behaviour.

Another remarkable advance developed system provides is a substantial
improvement regarding the automation. Apart from uploading source code and
downloading the application once it is ready for context-awareness, human being
intervenes only in two moments along the delivering process. One of them is to
specify the rules that would allow the server to decide what to do when adaptations to
be triggered in the client enter into conflict. This allows not only extending the bank
of rules existing, but also personalizing the treatment of specific situations. Human
being also intervenes in the framework instantiation process, as it is pointed out next.

The fact that the system provides independence from the underlying mobile
technology used in the client device in order to support context-awareness is another
remarkable advantage. The case studies demonstrated the validity of the system for
different mobile technologies as it has been tested in different mobile software
platforms, such as the S60 5th Edition and the .Net Compact Framework. There have
been a series of handicaps that have had to be overcome. For instance, the difference
in the support for AOP has been a major issue, as the different existing libraries and
weaving process did not work on exactly the same way for the different platforms
used. Additionally, the need of APIs provided by vendors in order to access to
information provided by sensors and adjust the UI needs a continuous updating and is
another major issue. These kinds of considerations irremediably need the human
supervision, task that is carried out by the IPE designer. However, once the
application is running, both implicit plastic and explicit plastic adaptations are
performed in a completely automatic way.

It is also noticeable that proposed infrastructure deals with the integration of
diverse context constraints. In this sense, applications can be prepared for sensing
multiple diverse sensors on the device. Additionally, a major support is also
considered in server in order to tackle sensor interferences. It is expected to gain
access to rich data from which useful context can be inferred with comparatively little
computation. It is worthy to say that the IPF component for context-awareness, such
as it has been described in paper, is also useful for the treatment of a more particular
context-awareness field. We are referring to sensors giving information of the device
state, such as network field intensity and battery charge sensor. Combination of
environmental and device state sensors can lead to a very interesting experimentation
in context-awareness for mobile applications. In this line, it is necessary to include
support for more vendor APIs related to gathering information for different kind of
sensors. As the aspectual layer works independently of these APIs, we could even
experience with sensors used for example in the field of wearable computing.

2096 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

These three main points described above make up significant advances developed
over the original Dichotomic View of Plasticity infrastructure as presented in [Sendín,
2009], and fulfils six of the seven requirements defined by [Dey, 2000], that is, all of
them except the one related to resources discovery. In particular, the context
interpretation requirement is related with the combination of diverse sensors. It is
remarkable that the original Dichotomic View of Plasticity infrastructure already
contemplated any kind of contextual need and adaptation mechanism to be
considered. We are referring to components for user personalization, dynamic
hardware adaptation and different components for context-awareness.

In near future it is foreseen to include support not only for more mobile
development technologies (i.e. Android, Symbian^2, Blackberry, Linux and
iPhoneOS). Another interesting challenge is to extend the framework for other kinds
of environments (not necessarily mobile), such as groupware development, where
context also makes up a major issue, thus extending the kinds of context supported by
the framework, as well as its multi-purpose goal. This objective adds in the
requirement of providing proper AOP support for each platform so the aspectual
layer behaves the same way in all of them.

Acknowledgements

This work has been partially funded by Spanish Ministry of Science and Innovation
through TIN2008-06228 and TIN2008-06596-C02-01 research projects. Authors
would like to thank Juan José Pardo, Rosa Maria Jiménez and Miquel Canfran for
their helpful suggestions.

References

[Couto, 2005] Couto, R., Endler, M. Evolutionary and efficient context management in
heterogeneous environments. Proceedings of the 3rd international workshop on Middleware for
pervasive and ad-hoc computing ISBN:1-59593-268-2

[Dey, 2000] Dey, A. K. Providing architectural support for building context-aware applications.
Thesis dissertation, College Computing, Georgia Institute of Technology, 2000. ISBN 0-493-
01246-X.

[Gellersen, 2002] Gellersen, H. W., Schmidt, A., & Beigl, M. (2002). Multi-sensor context-
awareness in mobile devices and smart artefacts. Mobile Networks and Applications, 7(3),
341–351.

[Golding, 1999]A. Golding and N. Lesh, Indoor navigation using a diverse set of cheap
wearable sensors, in: Proceedings of the IEEE International Symposium on Wearable
Computing (ISWC’99), San Francisco, CA (October 1999) pp. 29–36.

[Gómez 2009] Gómez, S., Huerva, D., Mejía, C., Baldiris, S., Fabregat, R. Designing Context-
Aware Adaptive Units of Learning Based on IMS-LD Standard, EAEEIE 2009 Conference.

[Leonhardi, 1999] Leonhardi, A., Kubach , U., Rothermel , K., Fritz, A. Virtual Information
Towers-A Metaphor for Intuitive, Location-Aware Information Access in a Mobile
Environment. Proceedings of the 3rd IEEE International Symposium on Wearable Computers
table of contents. ISBN:0-7695-0428-0

2097Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

[Malandrino 2009] Malandrino, D., Mazzoni, F., Riboni, D., Bettini, C., Colajanni, M.,
Scarano, V. MIMOSA: context-aware adaptation for ubiquitous web access. Personal and
Ubiquitous Computing (Article accepted for publication)

[Schilit, 1995] Schilit, W.N. A system architecture for context aware mobile computing. Thesis
disssertation, Columbia University, New York, USA, 1995. UMI Order Nº GAX 95-33659.

[Sendín, 2005] Sendín, M., Lorés, J. Towards the Design of a Client-Side Framework for
Plastic UIs using Aspects. Proceedings of the International Workshop on Plastic Services for
Mobile Devices (PSMD05), in conjunction to Interact 2005. 2005.

[Sendín, 2006] Sendín, M. Implicit Plasticity Framework: a Client-Side Generic Framework for
Context-Awareness. CEUR-Workshop Proceedings. ISSN: 1613-0073. Vol. 208. 2006

[Sendín, 2007] Sendín, M. Infraestructura Software de Soporte al Desarrollo de Interfaces de
Usuarios Plásticas bajo una Visión Dicotómica. PhD. Thesis, University of Lleida, 2007

[Sendín, 2009] Sendín, M., López, JM. Contributions of Dichotomic View of plasticity to
seamlessly embed accessibility and adaptivity support in user interfaces. Advances in
Engineering Software 40 (2009) 1261–1270

[Smith, 1998] M.T. Smith, SmartCards: Integrating for portable complexity, IEEE Computer
(August 1998) 110–112, 115

[van Biljon, 2008] van Biljon, J., Kotzé, P. Cultural Factors in a Mobile Phone Adoption and
Usage Model. Journal of Universal Computer Science, vol. vol. 14, no. 16 (2008), 2650-2679

[Yaici, 2008]Yaici, K. Kondoz, A. A model-based approach for the generation of adaptive user
interfaces on portable devices. IEEE International Symposium on Wireless Communication
Systems. 2008. ISWCS '08. On page(s): 164-167. ISBN: 978-1-4244-2488-7

[Zurita, 2007] Zurita, G., Antunes, P., Baloian, N., Baytelman, F. Mobile Sensemaking:
Exploring Proximity and Mobile Applications in the Classroom. Journal of Universal Computer
Science, vol. 13, no. 10 (2007), 1434-1448

2098 Lopez J.M., Sendin M.: Multi-Purpose Infrastructure ...

