
Multi-Device Context-Aware
RIAs Using a Model-Driven Approach

Marino Linaje, Juan Carlos Preciado, Fernando Sánchez-Figueroa
(Quercus Software Engineering Group, Universidad de Extremadura, Caceres, Spain

{mlinaje, jcpreciado, fernando}@unex.es)

Abstract: Model-Driven Development concepts are exhibiting as a good engineering solution
for the design of ubiquitous applications with multi-device user interfaces and other context-
aware capacities. The Web has become an ideal platform for the deployment of such
applications and therefore traditional Web development techniques are rapidly adopting Model-
Driven principles to cope with the adaptation issues imposed by context-awareness and
multichannel solutions. This discipline is being known as Model Driven Web Engineering.
However, at the same time that the use of the Web and the number of people with mobile
devices is growing, users are demanding more and better user experiences through the user
interface. Web vendors answered introducing Rich Internet Applications that take advantage of
the single-page paradigm and expand traditional Web features, providing richer content types,
richer controls, richer temporal behaviors, richer interactivity and richer communications.
While many recent devices support some type of RIA technology, RIAs extended features are
showing some limitations of Model Driven Web Engineering methodologies to cope with
multi-device context-awareness at the presentation level. This paper presents the combination
of two different methodologies, WebML and RUX-Method, both using MDD principles, to
obtain multi-device context-aware Rich Internet Applications using a Model-Driven approach.
While WebML provides context-awareness at the data and business logic levels, RUX-Method
deals with the presentation issues introduced by Rich Internet Applications.

Keywords: Multi-device Context-Aware, User Interfaces, Rich Internet Applications, Web
Engineering, Model-Driven Development
Categories: H.5.2, H.5.4, H.3.5, D.2.2

1 Introduction

The widespread diffusion of mobile devices with advanced capabilities and the great
progress in communication and network technologies are creating an ideal
environment for mobile applications. Users can access services and contents with any
media, at any time and from anywhere.

However, mobile devices in today’s market are very heterogeneous regarding
their input and display capacities and software platform configurations. This leads to a
complicated development process for applications having to face a wide and
increasing range of devices.

Once the Web has solved some problems such as reliability of data
communications, bandwidth consumption or cost efficiency, it has become an ideal
platform for deploying mobile applications. The use of the Web solves some of the
platform dependent issues mentioned above abstracting from technological concerns

Journal of Universal Computer Science, vol. 16, no. 15 (2010), 2038-2059
submitted: 31/1/10, accepted: 28/7/10, appeared: 1/8/10 © J.UCS

(e.g., Operating System). In this sense, we could say that it is time for Multi-device
Web applications.

However, users are demanding more and more systems that can sense their
physical environment, i.e., their context of use, and adapt their behavior accordingly.
This is usually known in the literature as context-awareness. A system is context-
aware when it uses the context to provide relevant information and/or services to the
user, where relevancy depends on the user task. Features for Context-Aware
Applications include presentation of information and services to a user; automatic
execution of a service; and tagging of context to information for later retrieval
[Abowd, 99]. Under this situation we could say that it is time for Multi-device
context-aware Web applications.

With no doubt, one of the main parts of the applications affected by all these
features is the User Interface (UI). Adapting the UI of an application to a different
context for different devices exploding all the device capabilities adds an extra effort
to developers, while improving the potential User eXperience (UX) that could be
achieved.

This extra effort depends on the way in which the UI is created. Currently there
exist two main approaches for the development of multi-device IUs: on the one hand,
those proposals where the UI specification is done for a concrete delivery context and,
on the other hand, the so-called Multiple or Plastic User Interfaces [Seffah, 03] where
the focus is on the transformation from abstract platform independent descriptions to
concrete user interfaces for various platforms.

The former can fully exploit the device capacities. However, it is not a good
solution for adaptation issues. The latter improves adaptation significantly; however,
they do not allow the creation of UIs able to fully exploit the device capabilities. A
mixed solution seems to be a good path to follow in order to obtain benefits from both
approaches. Obtaining this mixed solution for context-awareness, rather than being a
mere technological concern, represents a true design and modeling issue. And this is
where Model Driven Development (MDD) comes to the scene, playing a pivotal role
in the development of context-aware Web applications [Daniel, 09].

MDD refers to a development approach that is based on the use of models as a
primary artifact during the development lifecycle. MDD pursues a clear separation of
the business and application logic from the underlying execution platform
technologies so that changes in the underlying platform do not affect existing
applications and business logic can evolve independently from the technology. The
Web Engineering discipline has adopted MDD giving way to which is known as
Model Driven Web Engineering (MDWE) [Moreno, 07]. In this sense, we can give a
step forward and say that it is time for Model Driven Development of Multi-device
Context-Aware Web Applications.

However, the complexity of the tasks performed through Web applications is
continually increasing. Modern Web solutions resemble desktop applications,
enabling sophisticated user interactions, client-side processing, asynchronous
communications and multimedia. The so-called Web 2.0, which demand a high
degree of usability and powerful interactions, has definitively shown the limits of the
HTML/HTTP, giving way to a new wave of Web applications known as Rich Internet
Applications (RIAs).

2039Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

One of the key issues for the rapid growing of RIAs popularity is their powerful
presentation and interaction capabilities. In a typical RIA it is not necessary to switch
the perspective among different pages/subpages when browsing due to the UI
exploiting the single-page application paradigm, in which an interface container at a
higher level coordinates the presentation behavior without intermediate blank pages
that typically decrease the UX. The UI can be progressively downloaded, by loading
parts of the presentation logic and UI elements at run time on demand. Extended
interaction events (e.g., event listeners and handlers) and temporal behaviors (e.g.,
animations based on temporal relationships among interface components) can be
defined to further improve the UX. Due to the possibility of downloading dynamically
new behaviors, an application is not restricted to a fixed set of predefined standard UI
controls and containers. RIAs can dynamically customize existing widgets, adapting
them to specific usage contexts, e.g., to the rendering capacity of the display terminal
using graceful degradation techniques. Many recent mobiles, consoles and new Web-
enabled gadgets support at least one RIA technology (e.g., AJAX or Flash)

However, the good results achieved using MDD for traditional Web applications
development do not transfer automatically to RIAs. The work in [Preciado, 05]
showed that the methodologies coming from the Web, Multimedia and Hypermedia
fields do not fit completely the new RIA paradigm. This poses new challenges from
the point of view of context-awareness and multi-device, so we can affirm that it is
time for Model Driven Development of Multi-device context-aware User Interfaces
for Rich Internet Applications.

This is precisely the contribution of this paper, giving a further step towards
obtaining multi-device context-aware RIA UIs using MDD principles by combining
two different methodologies, the WebML extension presented in [Ceri, 07] and
RUX-Method [Linaje, 07]. While the work in [Ceri, 07] provides support for
modeling context-aware features at data and hypertext levels, RUX-Method adds new
adaptation possibilities at the presentation level. WebML and RUX-Method have
been presented before as a mean to model some of the RIA features. Notwithstanding,
this is the first time that RUX-Method specific features for context-awareness are
presented. Moreover, this is the first time that RUX-Method is combined with the
WebML extension for context-awareness (WebML-CA from now on). Although here
presented with WebML, RUX-Method can be used on top of other Web models as
stated in [Linaje, 07].

The rest of the paper is as follows: Section 2 introduces a motivating example
where some context-aware features arise. Section 3 briefly presents the extension of
WebML for context-awareness and also shows its limitations. Section 4 introduces
how RUX-Method faces WebML-CA limitations. In section 5 the combination of
both, WebML-CA and RUX-Method is used to solve the example shown in section 2.
Finally, sections 6 and 7 are devoted to related works and conclusions respectively.

2 Motivating Example

This section presents a simple RIA highlighting the necessity for adaptation to
different contexts from the UI perspective. The chosen case study, Next2Student
(N2S) (http://www.next2student.com), is an example of the new up-and-coming
applications with richer data and services and that is delivered in a more helpful

2040 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

presentation by means of a RIA UI. N2S is a running Web application at the
University of Extremadura that allows users (students and staff) to search, manage
and view houses for renting before the beginning of the academic year. In addition, it
allows users to discover available nearby services taking advantage of context-
awareness. It has been specially designed for foreign students that usually do not
know their way, nor which restaurants, museums, shops, public services, etcetera are
available to them.

Figure 1: N2S in a mobile phone

N2S is regularly examining the environment to react accordingly to its current
context. Next we describe different context-aware needs of N2S according to
[Abowd, 99]:

a) Device-aware presentation: N2S has been designed for offering the same
functionalities in different devices, adapting automatically the UI
particularities to the concrete terminal. It can be accessed with desktop
browsers (e.g., Google Chrome or Firefox), iPhone, Android as well as other
AJAX-enabled Web browsers (e.g., webkit-based ones).

b) Time-aware presentation properties: N2S changes automatically the color of
the fonts and vivacity of the UI according to the time when being accessed.

c) Location-aware services: N2S has a map where the services (banks,
faculties, etc.) that fit in the user preferences are displayed according to the
current position of the user device (Figure 1). These services are
selected/filtered “on the fly” changing the results list according to the
distance from the current position, preferences, and so on. E.g., the resulting
flats on the map can be filtered according to the user necessities (e.g.,
number of rooms, baths, etc.). The services are created in N2S also using the
time service information to show the services in a on/off mode (e.g., bus
stops have not service during the night from 00h to 07h, some drugstores are
24h opened meanwhile others are closed during the night).

2041Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

d) User-aware personalization: Users can e.g., choose the menu position and
the font-size. This information can be stored for the next N2S usage.

Next we show how WebML-CA faces this motivating example, highlighting its

advantages and limitations regarding the four features mentioned above.

3 Identifying the Modeling of Context-Aware practicalities in
WebML

WebML is a well-known Web methodology and freshly addresses the adaptability to
the context of use combining mainly two ideas: (i) rethinking the data model concepts
for representing the context state and (ii) introducing new capacities at business logic
level for managing the current/established application context state.

This section briefly points out the traditional WebML methodology and its
proposed extensions for dealing with context-aware concepts in Web applications.

3.1 WebML in brief

WebML is a visual conceptual language for the specification of data-intensive Web
applications. The application domain (i.e., data) is modeled using an extended Entity-
Relationship (E-R) schema. This data model is the basis of the data intensive
applications that can be designed using WebML. On top of the data model, WebML
allows specifying the business logic and the content/containers composition by means
of the hypertext model, whose key ingredients include siteviews, areas, pages, content
units, operation units and links.

Content units are the atomic pieces of publishable content (e.g., an index of
items); they offer alternative ways of arranging the content extracted dynamically
from the entities and relationships of the data model, and also permit the specification
of data entry forms for accepting user input. Units are the building blocks of pages,
which are the actual interface elements delivered to the users. Pages are typically built
by assembling several units of various kinds. Page and units are linked to form a
hypertext structure: links express the possibility of navigating from one point to
another one in the hypertext, and allow passing parameters among units, which is
required for the proper computation of the content of a page. WebML also allows
specifying operations implementing business logic; in particular, a set of operations
for data updates is predefined, whereby one can create/delete/modify the instances of
an entity, and create or delete the instances of a relationship. WebML can manage the
information regarding data stores types (e.g., session parameters) through its data
model. A recent extension includes new types of data stores [Bozzon, 06].

The WebML data schema also allows having a Web site that fit Web content to
user preferences and other profile information. Hence, for introducing the role-based
personalization the basic schema organizes the users into groups and groups into
modules where a module (e.g., a siteview, a page, a unit) contains the appropriate
information and/or services. A global parameter that identifies the active user in each
session allows offering the desired personalized information (e.g., it can be used for
content personalization, by means of recovering the name/surname of the active user

2042 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

in a simple way or for discriminating the “wish list” items that correspond to the
current user in a shopping cart application).

3.2 WebML for Context-Awareness

WebML has been used for managing context-awareness concepts [Ceri, 07], taking in
mind applications that can take advantage of contextual information regarding user
location, time of day, rendering capabilities in the target devices and user
activity/preferences.

WebML-CA deals with context-awareness issues extending the concepts implied
in the data modeling (for representing the context situation) and hypertext modeling
(for defining the logic of the application regarding the context changes). At data
design level the context model is defined by a concrete data sub-schema for
representing the information related to devices, user preferences, location, etc. At run-
time, the context environment is recovered and stored in that data sub-schema, which
is the image of metadata for supporting the personalization. This information flow is
controlled by the hypertext in charge of the context-aware capabilities of the
application. Briefly, the pages conceived for managing context-aware capabilities are
marked with a C label in the hypertext. The basic context-aware controller is placed in
the C page. Hence, a marked page has content refresh mechanisms and extended
operation units that manage (capturing and responding) the context of use and its
changes when such page is accessed by the active user. The C pages also act as
context-aware capabilities containers.

Like a puzzle, the set of pages that conforms the whole application (those marked
C or not) are connected in the hypertext using communication mechanisms and
operation chains. The actions to manage the updated context information can be
decomposed into operation chains that are performed at two levels: actions for
managing the data sub-schema related to the context model and actions for treating
the hypertext adaptability. For the second set of actions WebML-CA proposes three
kind of new (or reconceived) operation units: (i) units for managing the updated
context information (GetURL Parameter Unit and GetData Unit, where both extend
the original WebML Get Unit capacities for accessing session parameters), (ii) two
units for evaluating conditions (for If and Switch control flow concepts), and (iii)
those actions related to changes in the user interface due to the multichannel
environment of the user (Change Site View Unit for changing the current siteview to
another one that tails the rendering capacities and spatial positioning for the
presentation of contents in a specific device and the Change Style Unit that is used for
the adaptation of the presentation style appearance by means of a set of CSS files).

3.3 WebML–CA facing the motivating example

Next we show how WebML-CA addresses the context-aware issues that arise from
the motivating example. For each issue we also highlight the limitations of the
approach.

a) Device-aware presentation

Device-aware presentation implies to specify or adapt the UI for a device or set of
devices. WebML addresses this issue using its native concept of siteview that is used

2043Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

to design each device screen particularities. All the siteviews are defined over the
single data schema of the application.

In the motivating example, the modeler can design a single data-schema.
However, if N2S is going to be deployed in a PDA with a touch-screen and also in a
PC device the modeler needs to define two different hypertext models (one siteview
per device).

To deploy the same content and services in different devices in a multi-channel
way depends on a wide range of parameters and there is no single solution that fits all
situations. The problem in WebML is that it mixes in the hypertext model concepts
related to operations (business logic), content/container composition (acting also like
a pseudo presentation layer), managing of global/session parameters and so on.
WebML presentation is based on a set of templates (e.g., XHTML) associated in a 1:1
way with the hypertext model. This fact forces to have as many hypertexts as final
deployment devices.

An enhanced solution should be that the hypertext collects the business logic of
the application independently of the rendering particularities that each device
demands, modeling then those features at the presentation level (e.g., screen size,
interaction possibilities).

b) Time-aware presentation

In the motivating example time-aware implies UI changes based on the current time.
To solve it, WebML can manage a set of CSS files for presenting the UI features by
defining at data level the files that will be used at hypertext level. Hence, the WebML
solution, mainly based in the Change Style Unit, allows managing a set of
presentation properties dynamically (e.g., according to the current hour).

WebML hypertext model is quite abstract for different Web rendering
technologies using ad-hoc templates. However, CSSs introduced at the hypertext
model invalidate many potential Web rendering technologies that do not use CSS
(e.g., JavaFX or Flash). The CSS standard has limitations (e.g., dynamic values for
style properties). Additionally, some of the most used browsers do not fully support
the CSS standard, so complex CSS rules must be taken into account and must be
added to the CSS file according to specific browsers.

An enhanced solution should be to manage all the UI properties in a canonical
specification, allowing static and dynamic values. These properties (grouped or not)
could be managed using abstractions, allowing us to specify them only once and then
be transformed for different rendering technologies which only must take into account
cross-browsing compatibility when the development technology requires it.

c) Location-aware services

Location-aware services in the motivating example imply that according to the
position of a device, the application will change its responses to the user questions.
The presentation model of WebML supports the specification of the look&feel and
layout of the content units within each page. It uses the full refreshing page technique
used in traditional Web 1.0 UIs. Under this situation, the entire page needs to be
reloaded for responding to each user action synchronously. In addition, and due to its
conception, WebML cannot launch several operations chains at the same time
because it was conceived under the synchronous HTTP request/response paradigm,

2044 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

where a user interaction initiates one operations chain that finishes rebuilding the
HTML to be presented to the user. This issue is well addressed in WebML-CA
marking the pages with the C label, when needed, being the marked pages translated
by the code generator with an additional refreshment mechanism for partial content
updates.

An enhanced solution can be the use of the single-page application paradigm
available in RIA UIs, where a page is a combination of different presentation
elements that can be updated independently triggering/consuming different
underlying operations synchronously and asynchronously. This paradigm allows
using highly interactive capabilities for context-aware UIs, allowing to improve the
UX.

d) User-aware personalization

User-aware personalization in N2S implies changes in the UI according to the
previous preferences of the user or default ones. WebML offers support for content
and services personalization at data and hypertext level successfully.

However, as it is explained above in b)Time-aware presentation, also user-aware
personalization issues require to define CSS styles that will be altered according to the
user that visit the application using data-driven values, and those values (e.g., the
position of the menu) cannot be stored in a CSS file.

Following the conclusion in b)Time-aware presentation, an enhanced solution
should be using a canonical representation of the UI look and feel properties
independently of its value (dynamic or static).

4 RUX-Method for Context-Aware User Interfaces

4.1 RUX-Method all-purpose introduction

RUX-Method is a model driven method which supports the design of multimedia,
multi-modal and multi-device interactive UIs for RIAs. RUX-Method focuses on the
enrichment of the UI while takes full advantage of the content and functionality
already provided by the existing Web models (e.g. WebML). RUX-Method supports
natively the Single-page paradigm, allowing highly interactive capabilities for
context-aware UIs, improving this way the UX to be achieved.

RUX-Method overview is depicted graphically in Figure 2. At design time, RUX-
Method uses existing data, business logic and presentation information offered by the
underlying Web model being enriched (e.g. WebML). This information provides a UI
abstraction which is transformed until the desired RIA UI is reached. At run time,
while a new UI is generated from RUX-Method, the data and business logic remain
the same. To sum up, the responsibility of RUX Method is providing a new UI with
RIA features. To facilitate the UI development process, RUX-Method is divided into
three Interface levels: Abstract, Concrete and Final UIs. Each UI level is mainly
composed by UI Components whose specifications are stored in the Component
Library where one Component can only belong to one Interface level. The Library
also stores how the transformations among Components of different levels are carried
out.

2045Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

There are two kinds of adaptation phases in the RUX Method according to the UI
levels defined above. Firstly, the adaptation phase that catches and adapts a Web 1.0
model (taking the data, navigation, as well as presentation concepts when it is
possible) to RUX-Method Abstract UI that is called Connection Rules (CR).
Secondly, the adaptation phase that adapts this Abstract UI to one or more particular
devices that is called Transformation Rules 1 (TR1). Finally, there is an additional
transformation phase, Transformation Rules 2, (TR2) that completes the MDD life-
cycle of RUX-Method supporting and ensuring the right code generation. Thus, in
TR2, the Final UI is automatically obtained depending on the chosen RIA rendering
technology (e.g. Laszlo, JavaFX or AJAX). This process is performed automatically
because TR2 establishes the way the matching takes place among Concrete and Final
UI Components.

RUX-Method defines a Device Repository (RUX-DR) that extends the
capabilities of Wurfl [Wurfl, 10] due to the latter being only focused on mobile
devices. These extensions have been done mainly to specify RIA rendering
technologies not specified previously in Wurfl (e.g., JavaFX); to filter all those non-
RIA capable devices; and to add some devices (e.g., netbooks, consoles) not included
in Wurfl. RUX-DR is managed using the standard Device Description Repository
(DDR) Simple API [DDR, 10], so RUX-Method is not limited to use its Wurfl
repository extension, taking advantage of third-party repositories (e.g,, UAProf).

Figure 2: RUX-Method User Interface Design

2046 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

The idea behind RUX-Method is that an Abstract UI can be transformed to many
Concrete UIs, where Concrete UIs are focused in the capabilities of a device or the
common capabilities of a group of devices. Final UIs can be generated from each pair
of Concrete UI and available final rendering technology. The set of Final UIs is
organized in a sorted (by preference) list where only one of them can be marked as
default (to be used when none of the Final UIs fits with the device used at runtime to
access the Web application.

4.2 RUX-Method capabilities for CA constrains

This section explores how the context-aware limitations identified in Section 3.3 are
managed by RUX-Method according to its UI levels and transformations. To illustrate
it, Figure 2 is marked with letters (from a to g) that will be used to specify where each
context-aware issue is taken into account in RUX-Method.

a) Device-aware presentation

RUX-Method is able to constrain the Concrete UI using expressions over one or many
device capabilities. These constrains are applied at TR1 (marked b in Figure 2) using
an expression algebra for minimal capabilities. This algebra is based on the Device
Description Structures [DDS, 10] working draft. As an example the code below is
used to select all the devices with a display width between 240 and 299 (pixels) and
touchscreen as interaction mechanism:

 <expression>

(([displayWidth] >= 240 and [displayWidth] < 300) and
[inputDevices]contains('touchScreen'))

 </expression>

This kind of expressions returns, on the one hand, a set of real UI constrains (e.g.,
devices selected with the expression above may also impose constrains over the e.g.,
displayHeight to be between 450 and 600) and, on the other hand, a set of user_agent
strings which are stored to be used later.

Spatial presentation (marked c in Figure 2) is also constrained by the device
selection e.g., the available screen size is limited, but also the kind of components that
could be used can be limited when e.g., devices are not able to support the quicktime
plug-in to show videos.

Interaction presentation (marked e in Figure 2) is also dependent of the selected
devices that could impose constrains over the events that can be used in a component
even when the event is already defined for that component. For example, mouseover
effect is available for the text_field component when the target is a PC but not when
the target is a touchscreen phone).

When transforming from a Concrete to a Final UI, using TR2 (marked f in Figure
2), those constrains imposed by the selected devices could make not available all the
RIA technologies for the Final UI. So when an iPhone has been selected as a target
device, a new constrain has arisen specifying that the only possible rendering platform
for the RIA UI is AJAX (due to the fact that the iPhone does not support flash-based
RIAs).

2047Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

 As we had advanced, the set of user_agent strings were stored to use them later,
and it is at the Final UI (marked g in Figure 2) where at runtime a switch that is
automatically generated by TR2 takes action. First of all, it captures the user_agent
string of the user device and secondly, according to the user_agent strings previously
stored, it redirects the user to that UI that was designed to maximize the UX of his
device with the designed application.

At the Final UI (market g in Figure 2) level there is a switcher that is
automatically generated to be used at run-time. When a user with a particular device
access to the Web application, it is captured its user_agent string to be used to
retrieve from RUX-DR the device capabilities. According to these capabilities, the
switcher redirects the user to the first Final UI of the list that fits with the device
capabilities.

b) Time-aware presentation

RUX-Method is able to manage dynamic UI properties. Abstract UI level (marked a
in Figure 2) is used to specify those dynamic data that come from the underlying Web
Model business logic and to specify how the collected data (e.g., using form fields)
must be sent to the business logic level to be understood.

RUX-Method Spatial Presentation (marked c in Figure 2) specifies the type of UI
component to be used, so all the properties of those components can be got or set at
this presentation level. Each property in RUX-Method can be fixed with a static value
(e.g., 14 points for the font_size property) or a dynamic one (i.e., a data-driven value
for a property).

c) Location-aware services

RUX-Method is able to fully exploit the single-page application paradigm, avoiding
unnecessary refreshments and allowing asynchronous communications between the
client and the server. Synchronous and asynchronous links, UI modifications, etc. are
conceptualized by RUX-Method as actions at the Concrete UI level. Different kinds
of actions are available in RUX-Method e.g., UI-Actions, which make it possible to
perform dynamic changes over a UI component through its methods and properties or
Call-Actions, which are defined to specify calls to the underlying business logic.
Actions are always specified inside a handler that can be triggered by a predefined
behavior (i.e., time-based) by the temporal presentation (marked d in Figure 2) and/or
by a non-predefined behavior (i.e., user interaction) by the interaction presentation
(marked e in Figure 2).

d) User-aware personalization

RUX-Method support for UI personalization uses the same mechanisms as those for
time-aware presented before. All the UI component properties in RUX-Method are
categorized into families and can be reused along all the UI using styles, which share
many concepts with the CSS classes, but are more abstract. Indeed, RUX-Method has
been used to create Adobe Flash-based UIs and Flash do not fully support CSSs.
Other important issues are that CSSs are not fully cross-browser (i.e., there is not a
browser actually covering the last CSS standard) and style properties in a CSS file
cannot contain dynamic values, so the personalization of a UI using only a CSS
approach should be incomplete.

2048 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

5 Combining RUX-Method and WebML-CA

The combination takes the best from both, WebML-CA and RUX-Method. The data
model is the WebML original one. Regarding the specific WebML-CA extensions at
hypertext level, this work proposes to use (a) the GetURL Parameter Unit for
accessing fresh context information (but it does not use the Get Data Unit that in our
work is substituted by the Selector Unit); (b) the units for condition evaluation. The
presentation is modelled with RUX-Method that is able to take advantage of the UI
composition available in the WebML hypertext model (e.g., pages). This choice
avoids those WebML-CA extensions related to the UI (i.e., Change Site View Unit
and Change Style Unit).

Next we present how this combination faces the motivating example. First a
general solution to the four problems identified in Section 2 is introduced. Then, a
particular solution to the data, hypertext and presentation levels of N2S is presented.

We will not focus thoroughly in context information provider due to it being a
more technological aspect, which does not affect significantly the specification of the
data, hypertext or presentation design.

5.1 The motivating example revisited using an MDD approach

N2S has been developed using WebRatio [Acerbis, 08] and RUX-Tool [Linaje, 09]
the CASE tools of WebML and RUX-Method respectively. N2S can be accessed at
http://www.next2student.com.

Section 2 summarized briefly the context-aware features available in N2S: a)
device-aware presentation, b) time-aware presentation properties, c) location-aware
services and d) user-aware preferences. These features have been considered at
different levels in the N2S development design process.

Regarding a), it was solved at the presentation level using the multi-device
approach proposed by RUX-Method.

The issues regarding b) are solved at different levels:
• at WebML data level, by extending the WebML schema storing such

attributes,
• at WebML hypertext level, for recovering the suitable set of values for those

attributes regarding the current time and,
• at presentation level, using the RUX-Method dynamic properties for the

presentation elements fed by the appropriate values in each case.

The c) feature involves a cross cutting solution that also implies the three levels.
Thanks to the possibility for UIs generated by RUX-Method for triggering/consuming
several services provided by the underlying business logic at the same time, the N2S
maps show the filtered results by different criterions “on the fly” under the single-
page paradigm.

The features in d) have been treated through the data storage in a Preferences
entity associated to the User entity in the data level. In this case, the WebML
hypertext also allows managing it for sending such information to the presentation
level, defined by RUX-Method.

2049Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

Context-Aware
functionality

WebML-CA
Data design

WebML-CA
Hypertext Design

RUX-Method
presentation

a) Device-aware presentation Not relevant Not relevant Multi-Device spatial design
presentation

b) Time-aware presentation
properties

Data entities for
properties

Acquisition of time
information

Presentation elements with
dynamic properties

c) Location-aware services Data entities for
services information

Filtering and managing
results

· Presenting services results
· Triggering/consuming
several underlying
operation chains
· Single-page paradigm

d) User-aware preferences Data entities for
properties

Selecting current user
and its preferences

Presentation elements with
dynamic properties

Table 1: Relation between levels and contexts

Table 1 summarizes the relations between the different levels and the considered
contexts. In the next subsections we show some details of these different levels for
N2S. For space reasons, we focus on a reduced version of N2S with the aim of
showing better the context-aware features described in this paper. So we avoid other
complementary issues such as multi-language content, reminders, volatile capabilities
and other architectural features.

5.1.1 Defining the N2S context-aware sub-schema Datadata model

The N2S example uses three main groups of entities for expressing the location-aware
and time-aware capabilities at data level expressing a basic user profile/preferences
and context-aware schema (Figure 3). The User entity is related to Rol/SiteView
entities for expressing an essential profile for each active user in the application
regarding its privileges and consequently the Siteviews that can be accessed by that
user according to his Role. The user preferences are directly related to each user item.
The Preferences entity represents the user preferences regarding the number of baths
and rooms in the desired houses. In this entity there is an integer attribute called radio
that represents the distance preferred by the user for searching services and houses
around its current position expressed in meters.

2050 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

Figure 3: Data model excerpt of N2S in WebRatio

The context entities are not always related to the User entity because some
context features are related to the device, location and other information that can be
treated in a volatile way (e.g., session variables).

There are another group of entities associated to Services. The example offers
different types of services categorized by type (e.g., drugstores, banks, faculties,
houses) using the Services_type entity. Each item of this entity has a blob attribute
called icon (the icon associated to each service, e.g., a green cross for drugstores).
Only when an item of Services is a house such item is associated to its corresponding
item in the Services_houses entity for storing the number of existing baths and rooms.
Each service has a location for representing longitude and latitude concatenated and it
has states according to its time activity, e.g., a drugstore can have two items
depending on it is closed or not. This feature is expressed in the
Timed_located_services entity. In this entity we can find several derived attributes
that do not store information in the database but are very useful for making simple the
design process of the WebML hypertext. The last entity that can be found in this data
context model excerpt is the UI_timed_properties. It is used for managing the
dynamic UI properties at runtime according to the current time. The general UI
properties are associated to a starting time for establishing a concrete set of values for
the fonts, background and image used.

5.1.2 Defining N2S Context-Aware features in the hypertext model

The hypertext excerpt depicted in Figure 4 provides some of the context-aware
capabilities needed at UI level. At the top we can find the managing of dynamic
properties according to the current time. This functionality has been placed in a

2051Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

master page (called Timed_Dynamic_Properties) with the aim of being accessible
from all the pages of the siteview showed in Figure 4.

The business logic process always begins as follows when a user has already
signed on the online application and has been redirected to the protected siteview
(depicted on Figure 4). Firstly, the Time Unit retrieves the current time and this
information is used for choosing the appropriate set of dynamic UI properties in the
Data Unit (called current_Timed_Dynamic_Properties) regarding fonts color,
background color and dynamic image (e.g., #BFC0C3 from 09h, #F2F7FA from 17h
and #FFFFFF from 20h for fonts color). Secondly, the user sign on information
(available at GetUserCTX) is used to get the User UI preferences for that specific
user.

In Figure 4 we also see two pages, Simple Version of UserPreferences and Simple
Version of CurrentLocation filtered services. The first page is used for retrieving the
user preferences (i.e., choices about the services) or selecting new ones. The second
page is used for calculating the group of services that fit in the group of user
preferences taking into account the selected distance from the current location.

In the UserPreferences page the current user key is obtained from the context
parameter information using the Get Unit. Based on this information the current user
details are shown (User Information Data Unit) and its basic preference values
regarding the number of the baths and rooms in the desired houses and the original
searching distance established are retrieved (Preferences Selector Unit) for preloading
such information in the suitable data input unit (New/Current PreferencesEntry Unit).
The values of these preferences must be changed to perform a new searching with
new parameters (e.g., a new searching radio value). The New/Current Preferences
Unit is also fed by the list of existing service types (retrieved by the Services_Type
Selector Unit) in a multi-entry field to be used (by means of check boxes) in the
searching preferences, e.g., including banks, restaurants, etc. This entry unit triggers
the filtering of services, which is performed in the Simple Version of CurrentLocation
filtered services page. The searching of services to be displayed over the map is
carried out using several parameters and preferences: on the one hand, the user
preferences established in the entry unit and, on the other hand, the location and time
information. We can see a Get Unit (GetLocationCTX) for retrieving the current
location context parameter and the Time Unit (GetCurrentHour) for knowing the
current time. This information is collected in a Script Unit (Nearby Services) that
filters the services fed by the Services Selector Unit according to the activity hour (for
showing only those services with a time slot in the current time) and are in the
indicated radio action. The Nearby Services Unit gives the list of services that meets
the context and preference values, which is used for feeding the UI map using the
Map Information Index Unit.

The N2S application retrieves the current time regarding the device location for
managing the dynamic properties and the active services by means of Web services
and more complex operations chains that those here described. For simplicity reasons,
N2S has been represented here in a simpler way using the current server time.

2052 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

Figure 4: Hypertext model excerpt of N2S application using WebRatio

5.1.3 Defining N2S Context-Aware presentation

Figure 5 illustrates how in the presentation design process the single-page paradigm
composition allows to specify an UI spatial presentation combining different pages of
the hypertext model simultaneously. Through the use of asynchronous
communications between the client and the server, the UI composition capability of
RUX-Method allows retrieving, consuming and updating content asynchronously
from one or many operation chains simultaneously.

Based on the single-page application paradigm, the basic application's activity is
carried out in the same page, updating the page's content and presenting new
information as the preferences change and the context evolves.

After applying the connection rules (CR in Figure 2) over the WebML model, the
Abstract UI is obtained. Applying TR1, a first draft of the spatial presentation is
automatically obtained according to the device particularities that usually establish
constrains over the Concrete UI. Then, the designer can refine this first draft to meet
the particular spatial design requirements in order to get a better UX.

For example, Figure 5 depicts in the left-up side the different containers
(commonly called views in RUX-Method) that are hierarchically composing the main
application presentation (shown in the center in the same Figure). This part of the
Figure illustrates the spatial UI design for a specific set of devices (e.g., iPhone series)
taking in mind its particularities (e.g., screen size and resoltution) by means of RUX-
DR (RUX Device Repository).

2053Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

In the right side of Figure 5 the set properties of each UI component are shown,
where the names, properties and behaviors for each component can be customized.
The figure shows how the Multi_Input_Google_Map component is configured. This
presentation component is used for managing a google map element in a data-driven
way filtering the results according to the options selected by the user for showing the
nearby services available and current location issues.

Figure 5: Presentation design process of N2S using RUX-Tool

Regarding dynamic properties, Figure 6 shows how a presentation property (i.e.,
Font Size) can be treated statically (i.e., “10” value in Figure 6 left) or dynamically
(i.e., font_size in Figure 6 right). When a presentation property is static, the value
remains fixed in the code generation phase; when it is dynamic, its value is recovered
from the data model through the hypertext model. Figure 6 (right side) shows how the
Font Size presentation property is dynamically used in the N2S case study.

Figure 6: Snapshot of static (left side) and data-driven dynamic (right side)
properties selection using RUX-Tool

2054 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

This property was represented in the WebML data model (Figure 3) for
symbolizing the user preferences and managed at hypertext level (Figure 4) by the
User UI Preferences Data Unit placed in the master page. In the case of those
properties whose values are dynamically based on time the treatment is always the
same.

6 Related Work

There are not many works in the area of MDD of Multi-device context-aware RIA
IUs. However, two different fields deserve our attention: the Human Computer
Interaction (HCI) and Web Engineering fields. Indeed, RUX-Method supposes a
bridge between both fields. For this related work, we only focus on MDD approaches
because they provide a more abstract and general solution not being dependent of the
e.g., RIA rendering technology. For instance, [Buttler, 07] is only focused on XUL so
other RIA technologies cannot take direct advantage of this research.

Regarding the HCI field, a classification of UI adaptations and methods are
carried out in [Pihkala, 03]. Among these methods, those ones based on the Cameleon
Framework [Calvary, 03], are commonly accepted MDD approaches for multi-device
UI design. RUX-Method is based on this approach, so it inherits its context-awareness
advantages. Many efforts have been carried out in the HCI field for the UI adaptation
to multiple devices e.g., [Calvary, 02] where a plastic approach is presented.
However, as stated in [Martínez, 08], these works are mainly applied to text or forms
based UIs, so more complex structures like RIA UIs cannot take full advantage of
these solutions.

In this sense, UsiXML is a Cameleon Framework based approach used to
generate RIA UIs [Martínez, 06] and it has been extended in many directions. The
main differences with regard to our approach is that UsiXML establishes a 1:1
relation between a Concrete Interface and a rendering technology and it is focused in
the concept of one UI that is adapted to fit all the devices while RUX-Method is
focused in the design of a UI for a set of devices with common capabilities in order to
maximize the potential UX. This UI adaptation of UsiXML evolved in [Martínez, 08],
that proposes the generation of context-aware UI containers providing a general
solution to automatically adapt a UI to different devices (mainly based on the screen
capabilities). However, other context-aware implications (e.g., user personalization)
are not considered.

Regarding the Web Engineering field, there exist Web models that claim to
integrate natively adaptive concepts such as Hera [Houben, 08] and other that have
been extended to cover them [Ceri, 07] [De Virgilio, 05] [Garrigós, 07]. Hera has
been also extended in [Fiala, 05] to deal with presentation issues, but this extension
does not provide temporal and interactive relationships and does not consider multiple
Web models. [De Virgilio, 05] uses WebML and extends it with profiles that can be
used to represent a variety of contexts with different detail levels. It differs from other
Web Engineering techniques because it can address an ad-hoc fine-grained final UI.
However, context presentation issues are specified using HTML+CSS, presenting the
same problems already specified in this paper for WebML-CA. The proposal
presented in [Garrigós, 07] and [Ceri, 07] are generic and valid in many different
environments. Both require a “rule” engine that in the related literature is usually

2055Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

addressed as a specific server extension. However, they do not specifically focus on
RIA presentation and interaction necessities. For example these approaches are not
able to specify interactions that modify the UI state at client side [Bandelloni, 07]
avoiding unnecessary communication roundtrips.

Focused on RIAs, the work in [Garrigós, 09] proposes an interesting extension of
OOH4RIA [Meliá, 08]. This work treats both, personalization of content and
presentation, to offer user and device-aware personalization capabilities. For this
purpose, authors make use of the extra presentation possibilities offered by RIAs to
establish the concrete presentation capabilities in the target device. Firstly, they tag
the elements that need to be reorganized in the Presentation Model with the aim of
applying the particular spatial arrangement settings (when needed) of the content
containers and secondly they define a User Model to collect the user preferences.

In [Wright, 08] some Web Modeling approaches are analyzed to compare their
suitability to model interactive applications (like RIAs are). According to the
conclusions of this survey, [Ceri, 07] is a good approach while it lacks an events
model, more control over the web browser, and scripting support. We have
demonstrated in practical terms through the case study presented in this paper that
WebML-CA limitations can be solved by connecting it with RUX-Method.

According to [Pietschmann, 09] the field of context-aware Web applications is
still restricted to basic hypermedia systems and these approaches fail for Rich Internet
Applications (RIA) and dynamic content adaptation. To the best knowledge of the
authors, out of these engineering fields and closely related with our objective, we only
found two relevant research publications. On the one hand, [Schmidt, 07] that use
ontologies, but it does not contemplate the personalization of the presentation
features. On the other hand, [Heidenbluth, 09] proposes status senstive components as
regular UI elements extended to react to the change of watched statuses (using a
publish/subscribe message service approach). It presents a pattern and a case study
using it. However, due to the fact that all the sensitive components must listen to each
sensitive event (e.g., signed on, going offline…), according to our development
experience in the field, run-time performance will be damaged and this is a drawback
in real applications such as N2S.

7 Conclusions and Future Work

Web technology is increasingly being used to deliver services. However, it is also
increasingly becoming the individual’s right to choose how they are supported. This
then becomes personalized services that encompass a wide range of technology issues
including different devices. This personalization forces applications to adapt to some
contexts such as location, identity, activity or time. Adaptations on multi-device Web
applications particularly affect their UIs. These UI adaptations are far from being
trivial and there are some interesting works addressing the issue as stated in section 6.
Among all of them, those incorporating MDD concepts are exhibiting many
advantages due to them showing the technology details only in the last transformation
phases. However, client requirements continue increasing with regard to UX (e.g.
multimedia contents, high interactivity) and technology is answering with a new wave
of Web applications known as Rich Internet Applications that adds wood to the fire
and makes context-awareness a little bit more difficult. The fact is that Web

2056 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

methodologies (Model-Driven or not) are not able to face some of the new UI
requirements imposed by the appearance of Rich Internet Applications.

Among those Web methodologies following an MDD approach, WebML has
been recently extended for context-awareness (WebML-CA). Although this approach
presents many advantages at the data and hypertext levels, it also exhibits some
limitations at the presentation level. This paper not only has identified these
limitations but also has shown how the combination of WebML-CA and RUX-
Method supposes a significantly advance in the Model Driven Development of Multi-
device Context-Aware User Interfaces for RIAs by defining an independent
multilevel presentation layer. For this purpose, a running context-aware application
recently deployed has been used.

This example has helped us to show the main contributions of the approach that
can be summarized as follows:

• It solves device-aware presentation by using RUX-DR which is a repository
of devices and their properties.

• It solves time-aware presentation by using the dynamic properties provided
by RUX-Method.

• It solves location-aware services by using the single-page paradigm inherent
to RIAs and managed by RUX-Method.

• It solves user-aware personalization by using again the dynamic properties of
RUX-Method.

Although here presented with WebML, RUX-Method can be used on top of other

Web models with the aim of enriching the presentation layer with RIA concepts.
A work we are facing now and that is complementary to the one here presented

embraces the inclusion of accessibility features in the applications generated with
RUX-Tool. In this sense, the UI components of RUX-Tool at the level of the
Concrete Interface are being enriched with roles, states and properties coming from
the WAI-ARIA specification draft [WAI-ARIA, 10].

Acknowledgements

This work has been partially supported by Fondo Europeo de Desarrollo Regional
(FEDER) and the Spanish projects: TSI-020501-2008-47 (granted by Ministerio de
Industria) and TIN2008-02985 (granted by Ministerio de Ciencia e Innovación)

References

[Abowd, 99] Abowd, G.D., Dey, A.K., Brown, P.J. Nigel Davies, N. Mark Smith, M. Steggles,
P.: Towards a Better Understanding of Context and Context-Awareness Source. International
Symposium on Handheld and Ubiquitous Computing, pp. 304-307, 1999.

[Acerbis, 08] Acerbis, R., Bongio, A., Brambilla, M., Butti, S.: WebRatio 5: An Eclipse-Based
CASE Tool for Engineering Web Applications. International Conference on Web Engineering,
Springer Berlin/Heidelberg. LNCS 4607, pp. 501-505, 2007

[Bandelloni, 07] Bandelloni, R., Mori, G., Paternò, F., Santoro, C., Scorcia, A.: Web User
Interface Migration through Different Modalities with Dynamic Device Discovery.

2057Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

International Workshop on Adaptation and Evolution in Web Systems Engineering at
ICWE’07, pp. 58-72, 2007

[Bozzon, 06] Bozzon A., Comai S., Fraternali P., Toffetti Carughi G.: Conceptual Modeling
and Code Generation for Rich Internet Applications. International Conference on Web
Engineering, pp. 353-360, 2006

[Butter, 07] Butter, T., Aleksy, M., Bostan, P., Schader, M.: Context-aware user interface
framework for mobile applications. 27th International Conference on Distributed Computing
Systems - Workshops, pp. 39, 2007

[Calvary, 02] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Souchon, N., Florins, M.,
Vanderdonckt, J.: Plasticity of User Interfaces: A Revised Reference Framework. International
Workshop on Task Models and Diagrams for User Interface Design, pp. 127-134, 2002

[Calvary, 03] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computers, Vol. 15, No. 3, pp. 289-308, 2003

[Ceri, 07] Ceri, S., Daniel, F., Matera, M., Facca, F. M.: Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology, vol. 7, pp. 1-33, 2007

[Daniel, 09] Daniel, F.: Context-Aware Applications for the Web: a Model-Driven
Development Approach. Context-Aware Mobile and Ubiquitous Computing for Enhanced
Usability: Adaptive Technologies and Applications, IGI Global, pp. 59-82, 2009

[DDR, 10] http://www.w3.org/TR/DDR-Simple-API/. Last visited: 1-June-2010

[DDS, 10] http://www.w3.org/TR/dd-structures. Last visited: 1-June-2010

[De Virgilio, 05] De Virgilio, R., Torlone, R.: A general methodology for context-aware data
access. ACM International Workshop on Data Engineering for Wireless and Mobile Access,
pp. 9-15, 2005

[Fiala, 05] Fiala, Z., Hinz, M., Meissner, K.: Developing component-based adaptive Web
applications with the AMACONTBuilder. IEEE International Symposium on Web Site
Evolution, pp. 39-45, 2005

[Garrigós, 07] Garrigós, I., Cruz, C., Gómez, J.: A prototype tool for the Automatic Generation
of Adaptative Websites. International Workshop on Adaptation and Evolution in Web Systems
Engineering at ICWE’07, pp. 13-27, 2007

[Garrigós, 09] Garrigós, I., Meliá, S., Casteleyn, S.: Personalizing the Interface in Rich Internet
Applications. International Conference on Web information Systems. Springer-Verlag LNCS
vol. 5802, pp. 365-378, 2009

[Heidenbluth, 2009] Heidenbluth .Status Sensitive Components: Adapting Rich Internet
Applications to their Runtime Context. International Conference on Digital Society, pp. 133-
138, 2009

[Houben, 08] Houben, G.J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z.,
Frasincar, F.: Web Engineering: Modelling and Implementing Web Applications. Springer,
Chapter 10, pp. 263-301, 2008

[Limbourg, 05] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.:
UsiXML: a Language Supporting Multi-Path Development of User Interfaces. IFIP Working
Conference on Engineering for HCI. pp. 207-228, 2005

2058 Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

[Linaje, 07] Linaje, M., Preciado, J.C. and Sánchez-Figueroa, F.: Engineering Rich Internet
Application User Interfaces over Legacy Web Models. IEEE Internet Computing, vol. 11, iss.
6, pp. 53-59, 2007

[Linaje, 09] Linaje, M., Preciado, J. C., Morales-Chaparro, R., Rodríguez-Echeverría, R.,
Sánchez-Figueroa, F.: Automatic Generation of RIAs Using RUX-Tool and Webratio.
International Conference on Web Engineering. Springer-Verlag LNCS 5648, pp. 501-504, 2009

[Martínez, 06] Martinez-Ruiz, F., Muñoz Arteaga, J., Vanderdonckt, J., Gonzalez-Calleros, J.
Mendoza, R.: A first draft of a Model-driven Method for Designing Graphical User Interfaces
of Rich Internet Applications. Latin American Web Congress, pp.32-38, 2006

[Martínez, 08] Martinez-Ruiz, F.J., Vanderdonckt, J., Muñoz Arteaga, J.: Context-Aware
Generation of User Interface Containers for Mobile Devices. Mexican International Conference
on Computer Science, pp. 63-72, 2008

[Meliá, 08] Meliá, S., Gómez, J., Pérez, S., Díaz, O.: A Model-Driven Development for GWT-
Based Rich Internet Applications with OOH4RIA. International Conference on Web
Engineering, pp.13-23, 2008

[Moreno, 07] Moreno, N., Romero, J.R., Vallecillo, A.: An Overview of Model-Driven Web
Engineering and the MDA. In Web Engineering: Modelling and Implementing Web
Applications. G. Rossi, O. Pastor, D. Schwabe, L. Olsina (eds.) Springer-Verlag, pp. 353-382,
2007

[Pietschmann, 09] Pietschmann, S., Voigt, M., Meißner, K.: Dynamic Composition of Service-
Oriented Web User Interfaces. International Conference on Internet and Web Applications and
Services, pp. 217-222, 2009

[Pihkala, 03] Pihkala, K. Extensions to the SMIL Language. PhD dissertation.
http://lib.tkk.fi/Diss/2003/isbn9512268043/. Last accessed: 29-Jan-2010

[Preciado, 05] Preciado, J.C., Linaje, M., Sánchez, F., Comai, S.: Necessity of methodologies
to model Rich Internet Applications. IEEE Web Site Evolution, pp. 7 - 13, 2005

[Schmidt, 07] Schmidt, K., Stojanovic, L., Stojanovic, N., Thomas, S.: On Enriching Ajax with
Semantics: The Web Personalization Use Case. European conference on The Semantic Web,
pp. 686-700, 2007.

[Seffah, 03] Seffah, A., Javahery, H.: Multiple User Interfaces: Crossplatform Applications and
Context-Aware Interfaces. J. Wiley, 2003

[WAI-ARIA, 10] Accessible Rich Internet Applications. http://www.w3.org/TR/wai-aria/. Last
visited: 1-Jun-2010

[Wright, 08] Wright, J. Dietrich, J.: Survey of existing languages to model interactive web
applications. Conferences in Research and Practice in Information Technology Series,
Australian Computer Society, vol. 325, pp. 113-123, 2008

[Wurlf, 10] http://wurfl.sourceforge.net. Last visited: 1-Jun-2010

2059Linaje M., Preciado J.C., Sanchez-Figueroa F.: Multi-Device Contex--aware RIAs ...

