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Abstract: Interval algebra networks are traditionally defined over finite intervals. In this paper, 
we relax this restriction by allowing one or more of the intervals involved to be infinite. 
Intervals in the network can be finite, left-infinite, right-infinite, or infinite in both directions. 
The network’s intervals can all be of the same type, or different. We present algorithms for 
finding a consistent scenario.  
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1 Introduction  

Allen [84] defines a temporal reasoning approach based on intervals and the 13 
possible binary relations between them. The relations are before (b), meets (m), 
overlaps (o), during (d), starts (s), finishes (f), and equals (=) (see Table 1). Each 
relation has an inverse. The inverse symbol for b is bi and similarly for the others: mi, 
oi, di, si, and fi. The inverse of equals is equals.  

A relation between two intervals is restricted to a disjunction of the basic 
relations, which is represented as a set. For example, (A m B) V (A o B) is written as 
A {m,o} B. The relation between two intervals is allowed to be any subset of I = 
{b,bi,m,mi,o,oi,d,di,s,si,f,fi,=} including I itself. 

An IA (Interval Algebra) network is a graph where each node represents an 
interval. Directed edges in the network are labelled with subsets of I. By convention, 
edges labelled with I are not shown. An IA network is consistent (or satisfiable) if 
each interval in the network can be mapped to a real interval such that all the 
constraints on the edges hold (i.e., one disjunct on each edge is true). 

A scenario of an IA network is a singleton labelling of the network (i.e., each 
edge only has one of its original labels). A consistent scenario is a scenario where 
each constraint on each edge is true. An IA network is consistent if and only if it has a 
consistent scenario.  

Intervals in Allen’s interval algebra are finite and convex. In this paper, the 
finiteness condition is relaxed. In addition to finite intervals, intervals that are half 
infinite towards negative infinity, half infinite towards positive infinity, and infinite in 
both directions are allowed. Note that all intervals are convex. 

In this paper, we present and solve IAinf networks. An IAinf network is similar in 
structure to an IA network. In an IAinf network, intervals are allowed to be non-finite. 
The intervals can all be of the same type, or mixed. For example, an IAinf network can 
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contain finite, left-infinite, right-infinite, and infinite intervals. Note that an IA 
network is an IAinf network. 
 

Relation Symbol Example 

X before Y b  
 

X meets Y m  
 

X overlaps Y o  
 

X starts Y s  
               

X during Y d               
 

X finishes Y f                    
 

X equals Y =               
 

Table 1: Possible relationships between two finite intervals 

In the next section, we catalogue the different possible relationships among finite 
and non-finite intervals. We then present two algorithms for finding a consistent 
scenario of an IAinf network.  

2 Possible Relationships Involving Non-finite Intervals 

The following graphical notation is used for convex intervals: 
• Finite length interval (i.e., finite):               
• Fixed endpoint on the left and infinite on the right (i.e., right-infinite):                 
• Fixed endpoint on the right and infinite on the left (i.e., left-infinite):                  
• Infinite in both directions (i.e., infinite):              

All the possible relationships involving non-finite intervals are shown in Table 2 
and Table 3. Table 2 summarizes the non-finite possibilities by relation. Note that 
each entry in Table 2 has an inverse. For example, in the first row finite interval X is 
before (b) right-infinite interval Y. It is also the case that Y is after (bi) X. Table 3 
summarizes the possible relations by interval type.  The entry in row r and column c is 
all the possible relations between an interval of type r and c. For example, if X is left-
infinite and Y is right-infinite, the only possibilities are X {o, m, b} Y. It is interesting 
to note that each entry in Table 3 also appears as entries in Allen’s [83] full 
composition table. 

An interesting property of Allen’s relations is that if a relation r holds between two 
possibly non-finite intervals, then it also holds between finite versions of the intervals 
(the intervals are made finite by chopping the infinite ends at large positive and/or 
negative values). For example, let X and Y be intervals of type finite, right-infinite, 
left-infinite, or infinite. Note that X and Y may or may not be of the same type, and if 
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they are of the same type they may not be equal. Assume there is a valid relation r 
which holds between X and Y (i.e., X {r} Y). Now map both X and Y to real 
intervals. If X and/or Y extend towards negative infinity, chop off these intervals at a 
value called LE such that if X and Y contain any finite endpoints, they are all larger 
than LE. Do the same on the right hand side and chop all intervals going towards 
positive infinity at a large positive point RE. Both X and Y are now finite. One can 
verify manually that it is the case that regardless of the original intervals and relation 
chosen, it is still the case that X {r} Y. An example of the construction is shown in 
Figure 1. X is right-infinite, Y is infinite, and X {f} Y. Both intervals are made finite 
by chopping the infinite ends. X’s left endpoint is not modified. It remains the case 
that X {f} Y for the finite versions of the intervals. 
 

 
Symbol Example 

b  
 

  

m  
 

  

o  
 

  

s  
 

  

d  
 

  

f  
 

  

=  
 

  

Table 2:  Summary by relation 

     
 b, bi, m, 

mi, o, oi, 
d, di, s, 

si, f, fi, = 

b, m, o, 
s, d 

bi, mi, oi, 
f, d d 

 bi, mi, oi, 
si, di fi, =, f oi, mi, bi f 

 b, m, o, 
fi, di o, m, b si, =, s s 

 di fi si = 

Table 3: Summary by interval type 
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Figure 1: X {f} Y 

3 Properly Labelling Missing Edges 

An IAinf network is shown in Figure 2 where interval A is finite, B is left-infinite, C is 
right-infinite, and D is infinite. If the network in Figure 2 is used as input to a 
standard IA network finite interval algorithm (e.g., [van Beek, 96]), we could generate 
the solution shown in Figure 3. This solution is correct if all the intervals are finite. It 
is incorrect in our case. It is impossible for the interval B to be before (b) the infinite 
interval D.  
 
 
 
 
 
 
 
 
 

Figure 2: IAinf network 

 
 
 
 
 
 
 
 
 
 

Figure 3: Consistent finite interval scenario 

The problem is not with the algorithm. It should be used with a proper model of 
time. Figure 2 has three hidden edges (i.e., AD, BC, and BD) which are each assumed 
by the algorithm to have a label of I. This is causing the problem. The label I on each 
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A 

d 
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C 

b 

b D 

f 
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of these edges is incorrect because not all the labels within I are possible. For 
example, B cannot be before (b) the infinite interval D. To rectify this situation, 
instead of labeling missing edges with I as is the standard practice, we must label 
missing edges with the appropriate entry from Table 3. The correctly labeled network 
from Figure 2 is shown in Figure 4. Note that the label “oi,mi,bi” in the center of the 
figure belongs to the edge CB. This label is the entry in the right-infinite row and left-
infinite column in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: IAinf network with missing edges properly labeled 

If we now input the network in Figure 4 to IA network software (e.g., [van Beek, 
96]), we could generate the correct scenario shown in Figure 5. The scenario in Figure 
5 represents the relative arrangement of intervals shown in Figure 6.  
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Correct non-finite interval scenario 

 
 
 
 
 
 
 

Figure 6: Solution involving non-finite intervals 
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4 Algorithm 1: IA networks 

A consistent scenario to an IAinf network is found as follows. First add missing edges 
labeled with the appropriate entry from Table 3. Then, apply finite interval IA 
network solution software to the network. The software will either report that the 
original network is inconsistent, or return a consistent scenario.  

The algorithm is simple, and correct. Let NF-IAN be an IAinf network. If NF-IAN 
has any missing edges, add them to NF-IAN along with the appropriate label from 
Table 3. Let another IA network F-IAN have the same nodes, edges, and labels as 
NF-IAN. The only difference between the two is that all the intervals in F-IAN are 
finite. The following theorem proves the correctness of the proposed algorithm. 
 

Theorem: S is a consistent scenario of NF-IAN if and only if it is a 
consistent scenario of F-IAN. 

Proof: Assume S is a consistent scenario of NF-IAN. We can map all the 
intervals in S to intervals over the real numbers such that each relation in S 
holds. As we did in Section 2, we chop off all the left-infinite and infinite 
intervals on the left hand side at some arbitrary number LE which is smaller in 
value than any of the finite endpoints which may occur in any of the other 
intervals. We do the same with right-infinite and infinite intervals on the right 
hand side. They all get chopped at the same point RE. As observed in Section 
2, this chopping does not affect the individual relations between pairs of 
intervals. All the edge labels in S will still hold and all the intervals are finite. 
We therefore have a consistent scenario for F-IAN. For example, assume NF-
IAN is the network in Figure 4, F-IAN is the same network where all the 
intervals are finite, and S is the scenario represented by Figure 6. The non-
finite intervals of S are chopped in Figure 7, and the resulting finite F-IAN 
scenario is shown in Figure 8. 

Now consider the case where S is a consistent scenario of F-IAN. Map all 
the intervals in S to finite intervals over the real numbers such that each 
relation in S holds. Let LI be the set of left-infinite and infinite intervals in NF-
IAN. If LI is non-empty, the following will be the case: 
1. The finite intervals in S corresponding to the intervals in LI will all have 

the same left endpoint. No other intervals will have this left endpoint. This 
follows from the possible relations in Table 3 involving left-infinite and 
infinite intervals. 

2. It also follows from Table 3 that no interval endpoint will be to the left of 
the left endpoints of the intervals in S which correspond to the intervals in 
LI. 

Based on the above properties, we can shift the left endpoints of the intervals 
in S which correspond to the intervals in LI any arbitrary distance towards 
negative infinity without violating any relations in S. Push these endpoints all 
the way to negative infinity. Now perform the same operations in the opposite 
direction with the right endpoints of the intervals which correspond to the 
right-infinite and infinite intervals, if there are any. None of the relations in S 
have been violated. S has been transformed into a consistent scenario for NF-
IAN. For example, let F-IAN be the network in Figure 4 and S be the scenario 
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represented in Figure 8. Intervals B and D can be extended on the left towards 
infinity and, C and D can be extended on the right towards infinity without 
violating any of the relations in S. The resulting scenario, shown in Figure 7, is 
a scenario for the NF-IAN version of Figure 4. 

Therefore, S is a consistent scenario of NF-IAN if and only if it is a 
consistent scenario of F-IAN. Q.E.D. 

 
 
 
 
 
 
 
 

Figure 7: Chopping the non-finite intervals 

 
 
 
 
 

Figure 8: Finite scenario S 

5 Algorithm 2: Finite Domain CSP 

An IA network is traditionally defined to be a binary CSP with infinite domains. The 
intervals are the variables. The domain of each variable is the set of pairs of reals of 
the form (x,y) where x<y. The constraint between two variables i and j is the label on 
the edge (i,j) in the IA network. 

Thornton et al. [04] show how to convert an IA network into an equivalent non-
binary CSP with finite integer domains. They observe that the relative positions of the 
interval endpoints in an IA network can be used to determine consistency: each 
interval in an IA network with n intervals can be mapped to a real interval such that 
all the constraints on the edges hold if and only if each interval in the IA network can 
be mapped to an interval with integer end-points in the range 1,…,2n such that all the 
constraints on the edges hold.  

An equivalent result was derived earlier by Ligozat [90]. In [Ligozat, 90], a purely 
algebraic proof in terms of p-intervals is provided for the equivalence between 
general IA networks and networks with integer end-points in the range of 1 to 2n.  

An IA network can also be converted to a binary CSP with finite integer domains 
[Trudel, 03; Trudel, 05]. 

Although intervals can be infinite, an IAinf network can be converted to a finite 
domain CSP. Given an n interval IAinf network, we define the domains of the 
endpoints as follows. Each left endpoint of left-infinite and infinite intervals is equal 
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D 
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to 0. Each right endpoint of right-infinite and infinite endpoint is equal to 2n+1. The 
domain of all other endpoints is from 1 to 2n. For example in  

Figure 13, the domain for the left endpoints of intervals A and D is zero, and the 
domain of all the other endpoints is 1..8 (in this case n=4). The result is that all the 
originally finite endpoints are bounded from below and above by the infinite 
endpoints. The remainder of the transformation to a finite domain CSP is unchanged. 
See Thornton et al. [04] for details.  

Off the shelf finite domain CSP software can be used to solve IAinf networks. 

6 Algorithm 3: Under Specified IAinf Networks 

The algorithms presented in the previous sections assume each interval in the network 
is known a priori to be either finite, left-infinite, right-infinite, or infinite. This 
information is required to properly label missing edges. What if the type of one, many 
or all the intervals in the network are unknown? 

We show how to label unknown nodes using an example. Consider the IAinf 
network in Figure 9. Interval A is left-infinite, and B is finite. The types of C and D 
are unknown. The first step is to label the unknown intervals with all four possible 
types as in  

Figure 10. Now view the network as a CSP problem where the nodes are the 
variables and their domain is its type. The next step is to make the network arc-
consistent. Arc-consistency is achieved by repeatedly comparing each edge in the 
network with Table 3. Note that missing edges are ignored. For example, for edge AD 
we look at the left-infinite row of Table 3 and look for entries containing the relation 
“s“. This constrains D to be either left-infinite or infinite. The edge BD does not 
further constrain D. For edge BC, the entries b, m, and o only appear in the first row 
of Table 3 in the finite and right-infinite columns. No processing is required for edge 
AB.  The arc-consistent network is shown in Figure 11. We must now choose 
between the two types for intervals C and D. Looking at Table 3, the finite interval 
row contains the most relations, and the infinite row the fewest. The left-infinite and 
right-infinite rows contain an equal number of relations. In order to maximize the 
number of relations on missing edges which hopefully increases the probability of the 
existence of a solution, we prefer finite intervals, equally less preferable are left and 
right-infinite intervals, and the least preferred type is infinite. The final network is 
shown in Figure 12. This IAinf network can then be solved using the algorithm 
presented in the previous section. 
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Figure 9: Intervals C and D are of Unknown Type 

 

 

 

 

 

 

 

 

Figure 10: Missing Types are Replaced with all Possibilities 
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Figure 11: Arc-consistent Network 

 

 

 

 

 

 

Figure 12: Final Network 

To summarize, given an IAinf network, we first assign all four possible types to 
each interval of unknown type. We then apply an arc-consistency algorithm (e.g., use 
AC-3). If the network is not arc-consistent, then it does not have a consistent scenario. 
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Otherwise, for each node which has more than one type assigned, order the types 
using the following preferences:  

1. Finite. 
2. Left or right-infinite. If both are present arbitrarily choose one. 
3. Infinite. 

For each node with multiple types, choose the highest ranked type. We now have a 
standard  IAinf network and the algorithms from the previous sections can be used to 
solve it. If the network does not have a solution, backtrack over the multiple node 
types one at a time until a solution is found. If no solution is found after trying all the 
possible combinations of node types, the network cannot be solved.  

Note that if all the interval types are unknown, the type finite will be assigned to 
each, resulting in a standard IA network. If a solution is not found with all nodes of 
type finite, no backtracking over alternate node types is required. In this case, the 
network has no solution. 

It is sometimes possible to change the type of an originally unknown interval after 
a solution is found. For example, a solution to the network in Figure 12 is shown in  

Figure 13. The relative position of the intervals is shown in Figure 14. If there are 
no right-infinite or infinite intervals, and the right-most finite points belong to 
intervals that were originally of unknown type, then these intervals can all be allowed 
to extend to positive infinity without affecting the consistency of the solution. For 
example, the scenario depicted in Figure 15 is a solution to the network in Figure 11. 
A similar construction is sometimes also possible in the direction of negative infinity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 13: Consistent scenario 
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Figure 14: Scenario Drawing 

 

 

 

Figure 15: Infinite Version 

7 Previous Work 

Details of the IA network based algorithm for solving IAinf networks have been first 
presented in [Trudel, 09]. I am not aware of any other previously published 
algorithms for solving IA networks containing non-finite intervals. 

The concern with infinity is not limited to AI in computer science. For example, 
the IEEE standard 754-1985 for binary floating-point arithmetic has special values 
assigned to positive and negative infinity. The default in IEEE arithmetic is to round 
overflowed numbers to infinity [Goldberg, 91]. 

The problem of representing non-finite intervals was not addressed in this paper. 
Hobbs [02], and in a later collaboration with Pan [Hobbs, 04] present a succinct and 
elegant first order axiomatization of Allen’s relations for non-finite intervals. 
Although they make minimal ontological commitments, the axiomatization contains 
instants, intervals can have endpoints, and relies on the fact that a left-infinite interval 
has no left endpoint (similarly for right-infinite and infinite intervals). This seems to 
imply a point based model of time. Note that a model does not necessarily need to 
contain an infinite number of points to represent the non-finite intervals. 

Another elegant and formal axiomatization of Allen’s intervals for non-finite 
intervals appears in [Cukierman, 04]. This axiomatization includes predicates to 
distinguish between the various types of non-finite intervals. This capability is 
missing in the logics presented in [Hobbs, 02] and [Hobbs, 04], where the user must 
extend the logic. 

Bouzid and Ladkin [02] define temporal intervals as the union of convex finite 
intervals. They also define operations over these sets. One operation is union. Since 
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their underlying structure is the rationals, they require this infinite interval in their 
system since the union of a set and its complement is the set of all the rationals. 
Positive and negative infinity are represented by adding two points at infinity to the 
set of rationals. They do not consider the possible relationships between infinite sets. 

Infinitely periodic temporal data has been studied in the temporal database area. 
Baudinet et. al. [91] and Kabanza et. al. [95] consider infinite sequences of finite 
intervals over the integers. Note that the individual intervals are finite; not infinite. 

Another paper from the temporal database area is by Koubarakis [94] which uses 
the rationals as the underlying temporal structure. He does not consider infinitely 
periodic temporal data. But, since he is using an underlying dense temporal structure, 
he considers the fact that temporal information can be true at infinitely many points 
over a finite interval to be infinite temporal information. He does not allow non-finite 
intervals. 

8 Future Work 

Future work will include implementing and testing all the algorithms described in this 
paper. Also, the algorithms need to be applied to a real world example. 

9 Conclusion 

Allen’s interval algebra axiomatization has been extended to include non-finite 
intervals (e.g., [Cukierman, 04] and [Hobbs, 04]). However, no one has considered 
the problem of finding a consistent scenario to an IAinf network.  

In this paper, we presented two algorithms for finding a consistent scenario of an 
IAinf network. Both algorithms re-use algorithms and techniques developed for IA 
networks. The algorithms assume that each interval duration type is known a priori. 
We showed how to fill in missing interval types so that the algorithms can then be 
applied. 

In a third algorithm, we showed how to solve an IAinf network with missing or 
unknown interval types. 
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