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Abstract: The purpose of this paper is to address some theoretical issues related
to the track-to-track fusion problem when the measurements tracking the same tar-
get are inherently correlated by the common process noise of the underlying target.
This problem has been intensively investigated using standard Kalman filter with some
appealing theoretical results, however such results are no longer valid in case of subop-
timality due to either the presence of strong nonlinearity or to the discrete uncertainty
pervading the origin of the measurement. This paper reviews several architectures of
parallelized blocks of Kalman filters, including the augmented stacked measurement,
sequential and data compression architectures. Next, convex combination architecture
will be investigated and some theoretical results concerning its extension as well as in
case of presence of correlation are investigated. Two special cases of correlation are
highlighted. This concerns the case of presence of only two correlated tracks among all
tracks and the case of weak correlation. In both cases some original theoretical results
are put forward. Finally, links with related fusion architectures is investigated.
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1 Introduction

The problem of fusing information issued from disparate sensors has been widely
investigated in the literature of information theory, control and engineering as
testified by the amount of publication in the field, see extensive review in [Luo
and Kay, 1995], text book of [Bar-shalom and Li, 1995], among others. In es-
timation theory, the fusion problem arises from both the level of redundancy
and diversity occurring in the information supplied by the various sensors. For
instance, radar provides accurate range but poor bearing while infrared sensor
provides accurate angle but poor range data. So fusing information of the differ-
ent sensors allows us to extract the relevant information on the target(s). It is
typically assumed that the outcome of the fusion node provides the ”best” global
estimate of the target feature given the system constraints, like computational
cost, global accuracy, bandwidth capacity, among others. Strictly speaking, a key
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issue prior to the fusion is the knowledge of the various interconnections among
the information supplied by the sensors. This includes the level of dependency or
independence of the sensors, the time of availability of sensory information, the
accuracy of the outputs and the computational constraints, etc. The fusion archi-
tecture is crucial in any fusion problem in the sense that it describes the level and
type of interconnections among the various nodes constituting the whole system.
Traditional architecture for data fusion is mainly centralized where data issued
from the multiple sensors are sent to a single node that processes the outcome,
which is then communicated to the user(s). However, with the developments of
the computing and communication technologies, more advanced fusion architec-
ture become feasible. This ranges from the hierarchical architecture to the fully
distributed architecture. In the former, the lowest level nodes process data and
send it to the next higher level node in the hierarchy to be combined and sent
again to the next node and so on. While in the latter, each node can commu-
nicate to any other node subject to connectivity constraints. This allows for an
increase in communication computational and communication costs, fault tol-
erance and cost effective realizability, which motivates its growing application
in many communication and tracking systems. Indeed, in the distributive archi-
tecture for target tracking for instance, the sensors require to send processed
data to a set of local processors connected by a communication network where
the local nodes/processors process the local sensor data and then communicate
output tracks to a global processor that computes a global estimate of the tar-
gets to be tracked [Fong, 2008]. The research into the optimality of the fusion
rules using various fusion architectures is very active since these last decades
as testified by the growing publications in the field. See, for instance [Cavalaro,
2007], [Chong et al., 1990], [Hashemipour et al., 1988], [Chang et al., 1997],
[Ducan and Sameer, 2006], [Fong, 2008] and references therein. Especially this
has given birth to various extensions of Kalman filtering theory under stochas-
tic and observability constraints, and assuming the existence of both the state
and measurement models. Nevertheless, it has also been acknowledged that the
research in the field of distributed fusion is very much premature as compared
to that carried out for centralized fusion. The track association arises from the
fact that in multisensory system or distributed architecture, each local system,
associated to a given sensory information, has a number of tracks, so the de-
cision whether two tracks from different systems represent the same target is
crucial. Ultimately, if the above associations were made incorrectly, then the
fused track estimates will potentially be worse than those arising from a single
sensor. Although measurement errors resulting from a single sensor are indepen-
dent of those resulting from other sensors, the track estimates, corresponding to
a given target, computed by different local processors are subject to the same
common process noise in the sense that the process noise statistics are used by
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the local processor estimates. This makes the above estimates ultimately corre-
lated. Besides, in practice, target manoeuvre and sensors typically communicate
infrequently to save communication bandwidths, which makes other local sen-
sory systems not necessary aware of new updates occurred elsewhere, yielding
a systematic correlation Bar-Shalom and Li, 1995; Chang et al., 1997]. This de-
pendence is characterized by the cross-covariance of the local estimation errors.
At least, two distinct streams can be distinguished in handling the correlation
issue. The first one follows on Bar-Shalom and Campo’s approach [Bar-Shalom
and Campos, 1986] that makes use of the static linear estimation equation where
the prior is mapped into the posterior using the measurement. The approach is
therefore usually sensitive to the choice of the prior, or equivalently, the order
in which the measurements or local estimates are handled, especially in case of
strong correlation. The second one consists in driving a likelihood-ratio based
cost function suitable for the use of a multi-dimensional assignment to decide
which track should be fused. Especially, the cost function allows simultaneous
consideration of tracks corresponding to the same target [Bar-Shalom and Fort-
mann, 1988], [Kaplan et al., 2008]. This paper reviews the various parallel fusion
schemes and investigates the influence of correlation of the inputs on the final
outcome. Especially, one considers the situation of target tracking using different
sensors. So, the issue of track correlation will be highlighted. Previous results ob-
tained in [Bar-Shalom, 1981] and [Bar-Shalom and Campo, 1988] in case of two
measurements scenarios will be extended to several measurements. On the other
hand, special cases of correlation including two (out of n) tracks correlation and
weak correlation will be investigated. Section 2 of this paper highlights the gen-
eral models (dynamic and measurement models) and the standard combination
architecture using Kalman filter. Section 3 focuses on the convex combination
architecture underlying the main results in the case of non-correlation. Section
4 investigates the general case of dependent tracks where two special cases are
examined. The first deals with the occurrence of two-out of n dependent tracks
while the latter concerns the case of weak correlation.

2 Dynamic and measurement model

Let us consider a target, which is tracked by a set of sensors modeled by the
following discrete state space model

Tht1/k = A(k). gk + I'(k)v(k) (1)

And
T, = Hi(k).xg/p +ei(k) (2)
Where xj is the state vector of the target at time index k. A(k) and I'(k)
corresponds to the linearized state transition matrix and noise transition matrix,
respectively. v(k) is the state noise assumed be zero-mean Gaussian with known
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variance-covariance matrix Q.

z,; represents the measurement vector at time k issued from the ith sensor.
H,(k) and zj,; stand for the linearized measurement transition matrix and the
zero-mean white Gaussian measurement noise with variance-covariance matrix
Ry ;, respectively. It is also assumed that the noise measurement ¢;(k) and ¢; (k)
for i # j are uncorrelated, so is the state noise v(k) with any of measurement
noise €;(k). That is,

Elu(k)v(D)] = Q(k)-0k—1
Elei(k)ei(D)"] = R(k).0k—1

Elv(k)e;(1)T] =0
Where 6;_; denotes the Kronecker delta function; that is, dy—; = 1 if k& = [
and 0 = 0 if k& # . The notation 2|3 in (1) denotes the prediction on the
value of state vector = at time k+1, given its current value zy;, at time k. While
measurement equation (2) provides a quantitative link between the current mea-
surement and the current evaluation of the state vector ys.

The standard fusion methodology consists to stack all the measurements to-
gether into a single stacked vector and then perform the standard Kalman filter
equation; that is, the measurement vector and the associated variance-covariance
matrices are given by

Z(k) = [2k,15 2k,25 - Zk,n] (3)
R(k) = diag[Rk,1, Rk,2; -, Rk,n] (4)
More formally, the output in terms of the state vector estimation and its asso-
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Figure 1: Augmented measurement vector based fusion

ciated variance-covariance matrices are given by

Thi1/k+1 = Tht1/k E Kiy1,i(zia1,0 — Hi(k+1).Zpq1/1k) (5)

i=1

With Filter gain:
Kiy1,i = Pk+1/k+1HiT(k + 1)R;41_1,1‘, (6)

And variance matrix

Pl;-ll/k-u =PI;-:1/k+ E H?(k+1)~R;i1,q‘hHi(k+1) (7

i=1
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It is clear that the above has the advantage of using a single Kalman filter
model using the stack of all measurements. However, its shortcoming cannot be
ignored. This includes mainly

— The dimension of the measurement vector Z as well the associating variance-
covariance matrix R in the sense that high dimension vector and matrices
makes the computational of inverse matrices computationally expensive and
possibly instable.

— The difficulty in getting synchronized measurements in the sense that there
is always some delay in the process of gathering measurements which is not
systematically included in the .

In order to deal with the above difficulties, An alternative implementation has
been suggested by Willner et al. [Willner et al., 1978] in early seventies using
sequential implementation of a set of recursive filters in which the i** sensor mea-
surement will be used to update the state estimate outputted by (i—1)** Kalman

filter that is updated by the (i — 1)** sensor measurement. This is illustrated in
Figure 2. More formally, the estimation in case of sequential architecture yields

z1.R1¢ ZQ.R% Zan R'¢

ek KT kb2
- - e real <z
=] Kalman =] Kalman =] alrnan o
Qe gl Filter 1 L Filter 2 el 2 Filter n =
-~ S (5]

Figure 2: Sequential fusion architecture

Trt1/k+1 = Tha1/kt1,n

n

= Zp41/k,0 + E Kip1,i(ze1,s — Hi(k 4+ 1) 241 /k41,i-1) (8)
i=1
Kit1,i :Pk+1/k+1,iH?(k+1)R;_¢l.1y,; i=1ton 9)
1 1 T 1 )
Pl ienn = Pty enaoa + HE(k+ ) Ry, Hi(k+1) i=1ton
Consequently,
—1 —1 —1 T —1

Ptk = Porisetrin = Prri/et10 T § Hi (k+1).R 4y - Hi(k+1) (10)

=1

Another reformulating, also investigated in [Willner et al., 1978] consists
to compress the initial measurements data zi to a single measurement of the
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same dimension and then use the latter in the kalman filter equations. In others
words, Figure 3 provides an overview of the new Data compression architecture.
Especially, the outcome of the data compression block yields the aggregated
measurement

2(k) = R(k). Z Rtz (11)
=1
With
R(k) = Z R} (12)
=1
And

H(k) = <Z R) > RpLHi(K) (13)
i=1 =1

Then the state and variance-covariance are obtained by use of standard Kalman

filter while updating with measurement (11-12). It is straightforward that the
recourse to (11-12) does only make sense if all the measurements are of the same
dimension, otherwise the matrix summation does not hold. This clearly adds an
extra difficulty in the application of the data compression fusion architecture.

R Data z. R Kalman
compression = Filter

Ckekl

=] F"liklk)

Figure 3: Data compression architecture fusion

The following result has been demonstrated by Willner et al. [Willner et al.,
1978], restated here differently

Proposition 1

— In the case of linear system and zero-mean Gaussian uncorrelated state and
measurement noise, the outcomes of the parallel and sequential architectures
are equivalent.

— If in addition to the above, the measurement equations have identical transi-
tion matrices, then the data compression architecture yields the same result
as that of the parallel and sequential architectures.
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In other words, in the case of linear system (both state and measurement) the
outputs of the parallel and the sequential architecture always coincide, while if
additionally, the measurement equations have the same transition matrices H;,
then the output of the data compression architecture always coincides with the
two previous architectures. This is particularly useful in terms of computational
cost where it is straightforward that the data compression architecture yields
a lower burden time followed by the sequential architecture and then followed
by the parallel architecture. In this respect, despite the presence of several mea-
surements at a given time, the order in which these measurements are processed
in the sequential architecture does not matter. In the presence of nonlinearity,
the above equivalence between the three architectures is no longer valid. For
instance, in case of sequential architecture, the order in which these measure-
ments are processed is important. In this respect, it is recommended to start
with the measurement with the lowest variance-covariance matrix R; -the most
accurate one-, in order to reduce subsequent linearization errors. Besides, data
compression architecture does not perform well in general since it does not use
the full rank of the measurements -all measurements are aggregated to a single
measurement-. On the other hand, as far as the track-to-track tracking is con-
cerned, the independence assumption of the noise is no longer valid since the
measurements are intuitively correlated by the same noise process of the target.
Therefore the equivalence between the three architectures is also no longer valid.
The rest of the paper will investigate this issue.

3 Convex combination architecture

A fourth architecture advocated by Singer and Kanyuck (Singer and Kanyuck,
1971] consists of running a set of independent Kalman filters, each using one mea-
surement together with the same state process, and then combine the outcomes
of the n filer blocks using an optimal convex combination rule. Figure 4 illustrates
the block diagram of such fusion architecture. More formally, the rationale be-
hind the optimality as suggested in [Bar-Shalom and Campo, 1986; Bar-Shalom
and Li, 1995] consists of assuming that one of the output is a prior while the other
one as a measurement, thereby, used for the update. Although the authors in
the above references have restricted the reasoning to a two-measurement model,
none extension exists as far as authors’ knowledge. In the two-measurements
scenario, the outputs reads as

Xysi = Py (Prje + Peji2) ™ Xisi2 + Prsie2(Pryin + Prji,2) ™ Xijen (14)
And .
P/ = Pesia(Pryk + Prye2) Pryk2 (15)

In the following, one shall investigate the extension of (14-15) to the case
of several measurements; that is, given, at time t, a set of local estimators
(Xk/kyi» Piji,i) for i = 1 to n of X, how to determine the underlying global
estimator (Xj/i, Prx). In this course, following the approach in [Bar-Shalom
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Figure 4: Parallel-Convex architecture

and Campo, 1986] and [Ducan and Sameer, 2006], one assumes one estimate,
say, (Xu/k,i) to act as a prior information denoted Dy, so that

P(X/D1) = N(X; Xk/k,15 Pr/k,1) (16)

Where notations of right hand side of (16) stands for Gaussian distribution with

mean Xy, 1 and variance-covariance matrix Py /., 1 of state vector X. Similarly,

the estimate Xy ;, @ # 1, which now acts as a measurement yielding information
D; is such that B

Xiskg = E[Xg/k,i|D1] = Xgjen i=1ton 17

So, the global estimate X}, will be estimated from the posterior probability

P(X| X /k20 Xk /k,3>» Xk /k,n) Dy using for instance, the minimum mean square

estimate where the solution is given in terms of conditional mean X (X) =
E[X|Z] = [xp(x|Z)dz, here Z is the vector of all measurements. Consider
a stacked vector y = [x 2122 -+ 2,]7, with p(z) = N(x;Z, Pyx) and p(z;) =
N(zi;Zi, P.,2,), © = 1 to n. Let us also assume that z, z1, 22, ., 2z, are jointly
Gaussian, i.e., the stacked vector y is also Gaussian:

p(®, 21, 22, ., 2n) = p(y) = N(y; 9, Pyy)

Then the conditional mean is given by the following.

Proposition 2

&= Blx|21,22,.,20] = 2 — T, § Tuz; (2 — 21) (18)

i=1

with )
wa\21>22>4>2n =T,, (19)

P, P, P,

—1
lezl lez2 ' lezn P121

T = Pog — (Pusy Pusy Pusy) | 77271 77272 0 F225n ( . ) (20)
P... P P Pozn

Znz1 ZnZz2 * Znzn
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-1
1122121 PZIZZ N IP;zlzn
-1 z 29 - Pagzy
Too (Twzy Tozy Tozp) = =(Pozy Pazy oo+ Pozy) [ 77270 77272 2 (21)
Pznzl PznZQ ' Pznzn
Proof Let us use the notations (, =x — %, (; =2, — 2;, i = 1ton
Using Bayes’theorem,we have
P\, 21, 22, -, 2 Py
P(z|z) = p(x|z1, 22, ., 2n) = Q = L (22)
p(21, 22, -, 2n) p(Z)
With L )
P(y) = p(y; 9, Pyy) = 27| Pyy|" “exp(—(y — §) Py, (y — 9)/2) (23)
Pry Ppzy . Poz,
Where § = [Z 71 Z2. 2,7 and p,, = [ Pz Prazi - Prizn
Pepa Papzy - Popzn
Similarly,
P(2) = p(Z; Z, P..) = 27| P..| " Peap(—(Z = Z)P 1 (Z — 2)/2) (24)

By substituting into expression of p(z|Z), the exponent of the exp function
becomes

- G
G Pog Pozy o Pazy G G\ Tt Peyzy Pesy \ T G2

g= C2 P.iz Peyzy - Peyzy, C2 | ¢ Piizg Papag _ (25)
Cn Popa Popzy - Pepzy Cn Cn Peizy Pepzn CI

Rewriting the inverse matrix, using the matrix inversion lemma as follows:

—1
Poo Posy . Pooy \ 7' Tem | Pem o Pem Loz | Tomy - Tomn
P.,. P . P
s1e Tz e =| Poa | Poysy - Payon = Toye | Toyey - Topom
Pepw Peroy . P L - L -
Fn@ T EnEL S EnEn Pepo | Popzy - Papzp Topa | Tonzy - Topzn
(26)
1 /P
1 Poyzy Payzg - Peyzy ! pot
Ty = Poo — (Pozy Pozy - Posy ) . 2 (27)
PZ?LZI PZ?LZZ N Pznzn sz
n
T
1 Toyey Toyng - Toyon Toye Ty
P2121 P2122 . lez—n oz oz - Tz2zn T22:L' 1 T'J?22
» P » i Tiw i (28)
FnFl T EnEz ot T EnEn znz] T2n22 cTapzp Tepa Tz
lezl P2122 N lezn -t
_ P P . P
Tm:cl (T’czl T’CZQ - T'czn) - (R'czl R’CZQ - R'czn) 271 2?22 #2%n (29)
Pznzl Pznz2 ' Pznzn
Let us denote for simplicity
lezl P2122 . lezn Tzlzl TleQ N Tzlzn
Payzy Payzg - Pagzy =pP,, and Tegzy Togzy - Togzy =T,
P

Zn 21 PZ'ILZZ : PZTLZTL Tznzl T27L22 - T

Znzn
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Rewriting the expression of ¢, after substituting (28) and (26) into (25) leads to

Tew | Tosy Tz,

L N A ot Ca
(77/ Tz na ‘ Tz nz 1 . Tz nzn (77/
ANT [ Tozy = ToyaTor Tozy - Toyep — ToyaTpy Tazy, I
| ¢ . C2 (30)
Cn Tz”ﬂ *TanTz_mlTw—n . T212n *TZVerT;lewZn Cn

After some manipulations, (30) is equivalent to

0=l TaaCa + Gy ZT( + (Z c,-TTm> o+ ZZ(TTk
=1

i=1 i=1 k=1

n

§ : § : T § : T -1 § : T
- < Ci Tzi,zk - Ci TZinxw Ck T’“k) (31)
k=1

i=1 k=1 =1
i.e.,
0= TonCo +C7 Y TaniCi (Z <,»,TTZN> Gt Y Tty [Z Tk] G (32
i=1 i=1 k=1

i=1

After some manipulations this yields, using the fact that 77, = 7.., and 7.} 7., =
Tpu Tt =1

T
q= (cm + T ZT() Tyo (cm + T ZT() (33)
i=1 i=1

Which is a quadratic form in z, therefore, the conditional mean is achieved
when

Co+ Ty E Tyz;Gi =0 (34)
i=1
i.e.,
(x— )+ T, E Typoi(2—2)=0= E[z|Z] =& =& — T, E Toz; (2 — 2) (35)
i=1 i=1
And )
_1 Peyzy o Poyzp \ Przy
Prgiz =T,, = Pea — (szl . Py, ) . . (36)
Pznzl ' Pznzn Pfﬂzn

which completes the proof.

The following result concerns the matrix inversion and will be used in the later
development. It is adapted from [8], therefore, the reader should refer the above
citation for full proof.

Lemma 1 If A is an arbitrary non-singular square matrix n x n and let U, V
be n x k matrices with £ < n, then
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(A + UVT) — A"l At ysiyT 4t

With s=r1+v7a-lu
The above follows straightforwardly from Woodbury formula of inversion of sum
of matrices, see, for instance [Dahquist and Bjorck, 1974; Halmos, 1958], for de-
tailed calculus in this respect. Although to perform the calculus S requires to
be non-singular matrix. The preceding provides an efficient tool to determine
inverse of matrix as a function of the non-singular matrix A whose inverse is
known or easily processed.

Proposition 3
Given a set of local estimators (Xj /i i, Py/k,i) for i = 1 to n of X, the global

estimator (Xj, /i, Py/,) obtained by considering one local estimator as prior in-
formation and the others as measurements and assuming independence of the
local estimators, is given by

Xisr =¢ E Py i Xk ki 37

=1

n -1
Pyk = l§ Pk/llm.‘| (38)
i=1

Proof

Using the notations of stacked vector y in Proposition 1, and given the assump-
tion (16) and let us assume that the prior is constituted of the first estimate
Xi/k,1, the key is to find the counterpart of the various parameters of y

— Z corresponds to E [X/D1] = Xy /51

— z; corresponds to Xy ;

— Py, corresponds to E [(X = Xi/k,1)(X — Xk/k,l)T] = Pr/ka
— P, , corresponds to E [(Xk/,m = Xi/k,1) (X, — Xk/kJ)T}

T
=B | ((X = Xiyi1) = (X = Xigis)) ((X = Xpjpn) = (X = Xoge1) ]
= Py, + Prjroa

— Pzizj corresponds to E [(Xk/;m- = Xi/k,1)(Xeyn,j — Xk/k,l)T}, so

P2y =E {((X - Xi/r) — (X — Xk/lc,i)) ((X - Xi/r) — (X = ch/k,j))T:| (39)

= Pr/r1
— Py, corresponds to E [(X = X)X yryi — Xk/kJ)T], so

=FE [(X — Xk/k,1)) ((X - Xi/k1) — (X — Xk/k,i))T:| = Py i1

Now substituting these values in (18-21) yields (for simplicity of notations,
the time subscript is removed from X and P formulations):

Pr+P P Py

—1
P\ T : P
Tpw = Pogiz=P1— | . ' (40)
1l Py P . Pi+ Py P
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P+ P> P . Py -t
P P+ Ps. Py
Ty (Toey Tozy - Tozn ) = — : (41)
Py Py . P1+ Pnoa
n—1
Tk = Th/k,1 + E Ty Tosy (Tr/bi — Thyro1) (42)

=2

Now using Lemma 1, one can write the matrix to be inverted into

Py + Ps Py . Py Py 0 . 0 P, P . P
Py Py + Ps . Py 0 Ps. 0 P, P . P
. = ) + .
Py Py . P+ Ppy 0 0 .P,_1 P P . P
P, 0. 0 I -t
0 P;3. O Ip
= . + p (PL P . Pr) (43)
0 0 .Puy L

Where Ip is identity matrix of the same as P;.

Using Woodbury’s inversion formula of Lemma 1 and denoting

P, 0. O -1 I
0 Ps 0 7

F:Ier(PlPl.Pl) p (44)
0 0 .Py_: Ip

Noticing that for a diagonal matrix, the inverse coincides with inverse of its
diagonal elements, its holds that

P 0. 0\ Pyl 0 0
0P;. 0 2y
. = B0 (45)
-1
0 0 .Puy 0 0 AL
Therefore,
-1
Pyt o .0 I,
0o P70 Ip
F:Ier(PlPl.Pl) .
0o o .P' Ip
=L+ PPy + PP+ 4+ PP
=P P '+PP +PP; +.+PP =P E P! (46)
i=1
i.e.,

r=np E P l=pXx (47)
i=1
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with ¥ = > P71 So ' =y-tp!
i=1
Now applying Lemma 1 leads to

Pr+P P . Py -t
P P+ Ps. Py
Py Py P+ Ppoa
—1
P, 0. 0 P P 0 . 0
0P;. O fp 1131 [
— P 1 —
= . +1 . = . (48)
0 0 .P,_1 Iy i o o .PY
P, 0 .0 PP 0 .0
2 -1 2
—1 Ip P1 —1
om0 L\ ip [P o P7'. 0
: . : 1 .
I P
o o .PL ’ ! o o .PL
Let us denote by A the quantity
Pyt 0 L0 s Pyt o L0
o Pyt 0 P 0 Pyt.o0
. P Pt (P Py Py)
I
o o .P*" P o o .P Y
Since
I, tyt ozt
—1 y—1 -1
Ip 271P171 (P1P.P1)= R (49)
I, -ty ypt
we have
Pyt 0o L0 y-ly-l pl Pyt 0 L0
A [ r-ty-t gt o Pyt o0
o o .P1Y r-ty-t ozt o o .P1Y
P;12—1P271 P2712—1P371 . P271271P”71
“ly—1p—1 p—1lgy—1p—1 “1ly—1p—1
_ | Ptz ipt pyteipst L Pyt P, (50)
prlyipyt polyTtipst Pt ip st
P, + Py Py . Py -1 P,
(mp.py| P PP P <p2.)=
P P .Pi+P, Pn
Pyt 0 0 P P
(ppp.pPy| 0O B0 Pl _(pp.pyal D (51)
o o .P*' Py P
After some manipulations, we have
-1
P, 0 .0 P,

0 n
(pp.py| OB 0 P p ZPII P (52)
0 o -.-pP! Py i=2

n—1
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Similarly,
P2_12_1P2_1 P2_12_1P3_1 ) Pz_lZ‘_lP;l Py
Tlg—1p—1 p—1lgyi—1p—1 Tlg—1p—1

(P PL.Pp) Py XTOR, T By XTORy L By X Py
P IR PUETIRTT POIDTIRT J AR

n

=P E Plzipt | =R E P =t E Pt (53)
=2

i=2,nj=2,n i=2

Substituting these entities in expression of T,.! in (41), yields

n n n
-1 —1 —1| y—1 —1
T,y =P ="P—-P g P, P+ P g P X E P, Py
i=2 i=2 i=2
(54)
Noticing that " p ' => P~ '—pP ' =x- P ', we have
=2 =1
T =Py=Pi—P (Z-P )PP ((5-P) s (Z-P7Y)) Py
To prove the result for X, one shall first determine the quantity 7,,! Ty.,.
After some manipulations, we have
P+ P> Py . P, -1
P Pi+P;. P
— (PP .P) 1 1+ 3. 1
Py P . P+ Pp
Py P ETIRY
1 i=2
—P\ P, n . )
—p Pt Py PTET Py
= - i=2 (55)
—P p;l . .
Py P ETRY
=2
Consequently,
T T, = —P P 4+ Py g ol DRl
=2
=-PPl+p (2 - P;l) »iptl= —xTipTt (56)

Therefore expression of X becomes,

n

Xi/ke = Xi/p,1 — Z (-Eilpfl) (Xk/k,i - Xk/k,l)

i=2

:Xk/k@*E_l E Pi_lxk/k,ifz_l E Pi_lxk/k,l
i=2 i=2

n

= Xp/pq— 5" E P Xy — 2 N (E = Py )Xy =270 E P Xy 1, (57)
=2 i=1
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This completes the proof.

Especially, the result pointed out in Proposition 3 indicates that the outcome
of the fusion rule does not depend on the specific choice of the prior. In other
words, the global estimate (38-39) is still valid if one chooses as a prior another
(X% /ki» Prjk,i) with @ # 1. This arises from the symmetry of the expressions
(38-39) with respect to individual local estimates (X ;, Prj,;). An interesting
issue consists to compare the quality of the estimate as supplied by the associ-
ated variance-covariance matrix compared to that of individual local estimates
in the special case where the variance-covariance matrix has dominant diagonal
elements (e.g., Pss >> P;; for all integers 4, j, s within [0, n] and 4 # 7). In this
course, the following holds.

Proposition 4

If the individual variance-covariance matrices Py, (4 = 1, n) have dominant
diagonal elements, then it holds that

Determinant(Py ) < DeterminantPy . ;), foralli= 1,n (58)

Proof

First, one shall notice that the condition of dominant diagonal elements allows
us to stipulate that the determinant of the sum of matrices is always greater
than the determinant of any individual matrix. To see it, assume without loss of
generality, that matrices A and B are 2x2. Therefore, using the notation |.| for
determinant, we have

|A+ B| = (a11 + bi1)(az22 + ba2) — (a21 + ba1)(a12 + bi12)

= (a11a22 - a21a12) + (511522 - 521512) + (a11b22 — bi1ag2 — a21b12 — a12521)

= |A| + |B| + (a11b22 — bi1azs — a21b12 — a12b21)

Clearly, when diagonal parts are dominant the quantity under brackets is posi-
tive, and, therefore, |A+B| > |A|+|B|. Therefore |A+B| > |A| and |A+B| > |B]
On the other hand, from the product rule of determinant, i.e., |A.B| = |A]|.|B|,

it turns out since A.A~! =1, that |4~} = % for any non- smgular matrix A.
Consequently,
-1
1
lz i T (59)
Using the assumption of dominant diagonal elements, we have
v P‘1 ! Ui=1 60
k/sz k) ki |PkT7 foralli=1,n (60)
Consequently,
1
< | P (61)

E

Which completes the proof.
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Proposition 4 stipulates that when the accuracy is understood in terms of the
determinant of the variance-covariance matrix, then the global estimate result-
ing from the fusion of individual local estimates induces a smaller variance-
covariance matrix, indicating an improvement of the accuracy with respect to
the best accuracy of individual estimator.

The preceding shows that the use of this fusion rule always guarantees a reduc-
tion of the variance-covariance matrix in the sense of its determinant. As special
case, when the variance-covariance matrices are real valued, in which case it
holds that |Pj/x ;| = Pk, , therefore, Proposition 4 entails that

Py < ming Py, (62)
On the other hand, one notices the following

— The assumption of dominant diagonal elements in local variance-covariance
matrices pointed out in Proposition 3 is widely realistic when the components
of the state vector are uncorrelated. However in case of strong correlation,
such condition may no longer be valid. This also occurs when the local esti-
mator is the result of a large number of iterations using (extended) Kalman
filter, which due to lack of convergence may lead to highly correlated variance
estimators.

— In terms of computational complexity of the calculus of the global estimate,
one shall notice that, assuming the variance-covariance matrices are m x m
matrices, the determination of P/ involves (n 4 1) matrix inversion, which
yields a complexity O((n + 1)m3) = O(n.m?®) when using standard Gaus-
sian elimination approach for inverse matrix calculus. While this complexity
reduces to O(n.m?37)

Similarly, the calculus of the global state vector estimate involves (n + 1)

in case of Coppersmith-Winograd type algorithm.

matrix inversions for the calculus of expression ¢ plus n matrix multiplica-
tions of (m x m) x (m x 1) matrices, so with complexity O(n.m?). Therefore
the complexity of the calculus of Xy ;) yields O(n.m?) + O(n.m?), which
entails O(n.m3) in case of Gaussian elimination approach and O(n.m?37%)
in case of Coppersmith-Winograd type algorithm. This indicates that both
global state vector and variance-covariance matrix of the fusion rule do have

equal computational complexity of O(n.m?).

— Expression (38) indicates that the global state vector estimate is given as
a weighted average of local state vector estimates, where the weights are
inversely related to the associated variance-covariance matrix. This results in
a biased estimation where the global estimate is driven by the local estimate
with smaller variance-covariance matrix. Indeed, smaller variance-covariance
Py 1.5, indicating a more accurate and reliable local estimation, yields a
larger value of P,;/}“ Therefore the contribution of the underlying Xy, /5 ; to
the sum becomes important.
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In case of equally state vectors estimates, say, X/ ; = Xo for all 4, then

n -1 5
using (38), it is easy to see that Xy, = {21 Pk_/}m} DY Pk_}m-Xo = Xo.
i= i=1

In other words, if all local estimators pro;ide the same outcome in terms
of state vector Xy, ;, then regardless the associated variance-covariance
estimates, the fusion rule will also yield the same state vector estimate.

Similarly, in case of equally valued variance-covariance matrices, i.e., Py /i, ; =
Py, then the use of (30-40) yields Py, = [n.PO_l]*1 = %PO. In other
words, regardless the estimate of the local state vectors, the global variance-
covariance matrix is proportional to local estimate variance-covariance ma-
trix Py.

The preceding indicates a complete decoupling between the estimates of state
vector and variance-covariance estimates.

One shall notice that the fusion rule corresponding to the parallel convex
combination was thought originally to be optimal in the sense of minimum
mean square error but has been discovered recently that it is optimal only
in maximum likelihood sense. This also applies to the extensions developed
throughout this section.

Case of dependent tracks

General case

In the case of dependent tracks; that is, the local estimators (Xj/p i\ Pi/k,i),
i =1 to n, are no longer independent, which often justified by the fact that the
estimators are linked to the same process noise, therefore, they are correlated,
at least from this perspective. In this course, using the same reasoning as that
carried out in the proof of Proposition 3, assuming, without loss of generality
that the first local estimator (X} /i1, Pi/k,1) acts as a prior estimator, then using
the same notations as in Proposition 1, the counterpart of the various parameters
of the stacked vector y are:

Z corresponds to E [X/D1] = Xy /i1

z; corresponds to Xy /. ;
z; corresponds to E [Xk/,m/Dl] = Xk/k,1
P, corresponds to E [(X — Xk/k,l)(X — Xk/k,l)T] = Pr/k,1

P, ., corresponds to E [(Xk/k, = Xi/k,1) (X yk,i — Xk/kyl)T} Ji.e.,

P.,.,=E [((X - Xi/k1) — (X — Xk/k,a‘,)) ((X = Xk/k1) — (X — Xk/k,a‘,))T:|

P2y = Pryki + Poser — Prjeii — Pryrin
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— Pz;z; (i # j) corresponds to £ I:(Xk/k,i = Xi/k,1)(Xky,j — Xk/k,l)T]7 so
T
Py = FE ((X - Xi/r) — (X — Xk/k,i)) ((X - Xp/e1) — (X — Xk/k,j)) } Peizy =
Pr/ka — Prykii — Pryeag + Prykig
— Py, corresponds to E [(X = Xi/k,1)(Xeyr,e — Xk/kJ)T], so

T
Py., = E {(X — Xk/k,1)) ((X = Xi/k1) — (X — Xk/k,i)) } = Py/k1 — Prjr,1e

Consequently using result of Proposition 2, we have
T;mlzpl_ (Pl—P12 ~P1—P1n) X

Py + Pay —Pio—Pa1 . PL+Pay — Py — Pa1\ ~* / PL— P

Py + P32 — P12 — P31 . P1+ P3p — Pin — P31 Py — P3;
Py + Pp2 — P12 — Pp1 - Pr+ Ppn — Pip — P Py — Py
i.€.,
Pyylz =P1 —(PL— P12 . PL — P ) X
Py — P12 — Pa1 . P — Pipy — Py ~t /P — Pn .
P . P 63

P3y — P12 — P31 . P3p — Pip — Pay ( 1. 1> Py — P3y (63)
Ppo — Pi2 — Pp1 . Pan — Pip — Ppa Pb Py — Ppa

It should be noted that unlike the case uncorrelated track, the matrix inver-
sion in the above expression can be simplified further using Woodbury formulae,
consequently, one cannot drive straightforwardly a simplified expression for 7},
or, equivalently, Py x|z. Similarly, using Proposition 2, the state vector of the

fusion rule is given by

n

Xk = Xg/pa — E Poo)zTez; (Xijk,i — Xeyr,1) (64)
i=1
with
(Pee|z-Tezy - Pog|z Tozy ) = —(P1— P12 . PL — Pip ) %
Pay — Pig — Po1 . Popp — P — P21 PP -t (65)
P3z — P12 — P31 . P3p — P — P31 < )
Pp2 — P12 — Pp1 . P — Pip — Py Pob

Strictly speaking, the previous expressions testify the complexity of the calculus
of the quantities P,z and X} /,. Such complexity raises to O((n — 1)2.m?) in
case of variance-covariance matrices Py /., ; of dimension m x m. Especially, the
result (64-65) is very much dependent on the choice of the prior. In other words,
the result of the fusion rule is no longer symmetric with respect to the choice of
the prior datum Di. Nevertheless, it is worth investigating some special cases of
the correlation.
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4.2 Case of two-correlated tracks

A special case arises when there are only two correlated tracks among the set of
n tracks. For instance, assume that tracks 2 and 3 are correlated. Therefore, the
counterpart of the expression (63) will be

Poyiz =P1 — (P1— P12 . PL — Pip) X

P2y Pag Oy Oy . Oy Oy . —1 b,
P32 P33 0 O - O O 7’ B (66)
Om Om Pia Oy . Oy Oy + P (Pl P . Pl) 1
Om Om Om Om . Om Pan Iy P
Given that
- —1
Py Po3 0 0.0 0 ! Pas Pas 0 o
Ps; P33 0 0.0 O Pso Pas 2m . O2m
0 0 Pss0.0 O = . P4_1 0, . O (67)
0 0 0 0.0 Py, o ol
—1
_ [ Q11 Qi2\ _ [ P22 P23
Let o= (Q21 Q22 ) — \ P3x P33
And let

(Qu1+Qu2) "t if i =2
D=4 (Qa1+Q22) ' if i =3
P; Otherwise
Using the same development as that performed in the proof of Proposition 3, we

have

—1
Pyy Po3
(P32 Pss) O2m, . O2m, §p
I'=1I,+ (P P1. P1) Om Pl Om . O ’
. I
Om . Om Pan i

P=T,+MA + M4 + + AA =AY AT =A 8

i=1
Using Woodbury formula and after some manipulations in the same spirit as
that carried out in (48-50), we have

Py, Po3 0 0. 0 -1 Q11 Q21 0 Oy . Opn

Ps; P3 0 0. 0 P . P Q21 Q22 0m Opy . Oy

0 0 P,0. O +( . .. =] Om Om A7 O . O
. P1 . P1 .

0 0 00.P Om Om O Om . Anp

nn

—1g—1 A—1 a—lyg—1 p—1 —1y—1 p—1
AylzTlast AjlzTlagt ajizTiagn
A DAY ASTETIATY A ST AL

AP ETIASY AT ETIADY LA ALY
Substituting in (63) yields after some manipulations, using = =3 A"

=2

Tyl =Py = AL — Ay (E Ail) Ay
=2

+4, {<Z24_1> =t <22A—1>} Ay =371

(68)
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Similarly,
T ey = v )Z Tnaw)z; =
—A1A; + Ay {E Ail] 2lAT = —xtart (69)
=2
=x1
Substituting in (64) and using similar developments as in (57) yields
Xk = Xg/pa — E (—Z7 AT (Xn s — Xiypo1) = =zt E A:lxk/k,i (70)
=2 i=1

4.3 Discussion

Clearly the above results have been established assuming that only tracks 2 and
3 were correlated but can be extended to any two tracks among the n tracks.
However cautious should be made when dealing with the prior information.
Indeed, given track one was used as a prior, two cases should be distinguished:
Case 1: track ¢ and j are correlated where ¢ # 1 and j # 1, the results pointed
out earlier are valid under the following refinements (assuming j > %)

Q11 Q12 - Qu P, 0 .0P;\ !
Q= Q21 Q22 - Qu | _ 0 Piy1.0 0 = 1)

Quu Qiz - Qu Py; 0 .0 P
_ (@ +Qra+ + Q)" ifk €[5,4]
Ap = { Py otherwise (72)

Under the above changes, expressions (68) and (70) are still valid for the calculus
of the global state and variance-covariance matrix of the fusion rule.

Case 2: track 1 and track j are correlated In this case, the development carried
for the determination of the block inversion matrix is no longer held as the block
diagonal cannot be straightforwardly constituted. Indeed, the counterpart of the
inverse matrix in (69) will be

Py 0 . Plj 0 . 0
0 Ps 0 . Py . 0 PP P . P
= . + P =U+ L. 73
Q —Pj1 —Pj1 . —P1 —Pj1 . —Pj (Pl ) P1> <P1 ' Pl) ( )
0 0O .—-Pp1 0 . P,

In order to apply Woodbury formula, one would require to determine the in-
verse of the first matrix in the above expression.

For this purpose, a simple approach consists of use of Gauss elimination method.
After some manipulations, the detail is omitted here, by taking

¢=P;—Pij— Pjn — g PP P (74)

=2, i#£j
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The final result is given by:
(I+ Pyt Pu¢ ' PPyt P3¢~ PPyt ¢ PPyt
PylPuCT PPyt (I + Py 'PuC PPy (TP Pyt
Ul = :

P2_1Pj1(71 P3—1Pj1<—1 ) ¢t

Py Pu¢T PPt Pyl Pu¢T PPt T PPt
Pj+1C_1Pj1P271 . PnC‘lP,-lP;l
P PPyt Po¢ PPyt
PrLPuCT PPt

P Pjp¢T PPt L+ P Pu¢T PP
Now using Woodbury formulae, the counterpart of (45) will by

IP
I'=1I,+ (P Pl.Pl)U_l I
IP
r="p [I+ DRy Yoy < PR St S N
=2, i#£j =2, i#j =2, i£]

+ Z PTIPH¢T 4 Z ¢TI PP T
i=2, %] i=2, %]

i.e.,

FPIKPJ;Mr > P;1>PJ-1§—1PU( > P;1+P1—jl>+ > P;1+1]P1.A

i=2,i#j i=2, i#£j i=2, i#£j
(75)

Similarly to (50), we have

ATt A7 oA MsA"YNy MyA™'N3 . MaA™IN,
vt . vt (76)

ATt A7 A MpA"*Ny MpyA™ Ns . M A™YN,

With

1 —1 -1 < —1 —1 -1 ifi=2n
Py <I+Pj1 (le + 2 BPag le))Pi *oandi#j

M; = =2 (77)
(Pﬂl + > P,j) Pp¢Th, ifi=
i=2i#£j
<1+PJ§1<—1P1,- (P;j1 + > Pk_l>) , ifi=2 nandi#j
N; = i=2i7j (78)
n
Py <P1j1+ SopTt) L ifi=g
i=2i#£j

This yields after some manipulations:

Py =T, =P —F — F» (79)
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Py T
! MyA~'Ny MyA~'Ns . MaA~1N,,
. —1 —1 —1
T,:;T‘Lz — _ Pl _ Plj U—l M3A N2 M3A N3 . Mg/l Nn (80)
Py -1 -1 ’ -1
. Mu,A""No MpA~™" N3 . M, A N,
Py
Or for the i** component:
T'c_a‘,lTl'zi =" |:Pi_1 + Pi_lpjlc_lplj < Z Pk'_l * I> B Z MkA_lMi:|
i=2i#j] i=2 (81)
-1 -1 -1
—Pyy (P P = MATING)
with
n n n
Fo=p (Pt Y PTU ) Pu¢tPy | PGy P PAPL Y, PR
i=2i#j i=2i#j i=2i#£j
(82)
—Py Y P'Py¢TiPL - Pig? (1 +Pyoy P1:> Pji+ Py¢" ' Pi
i=2i#j i=2i#£j
n n n
Fo=P », MA™' > NiPL—PyMpA™ | Y NiP - P
i=2i#£j i=2i#j i=2i#j (83)
—Pi M A" Py
Therefore,
n
Xk = Xg/pa — E T;;T'czi (Xk/k,i - Xk/k,l) (84)
i=2

As it can be seen from expressions (79-84), the case where the correlation occurs
between the prior yields highly coupled outcomes of Pi as compared to the first
scenario where the correlation does not involve the prior track. Intuitively, in
the absence of the symmetry feature, this is mainly intuitive as the correlated
prior would ultimately affect all other tracks.

4.4 Case of weak correlation

Another interesting case worth considering is the situation in which the corre-
lation among any track is quite weak. In other words, the diagonal elements
any joint variance-covariance matrix are dominant with respect to off-diagonal
elements. More formally, it holds that

E[(X - X)(X - X;)7] < B [(X = X,)(x - Xx)T| and

E [(X — X)) (X — Xj)T] < E [(X - X;)(X - Xj)T} for all 7, j.

Using the assumptions and notation of Section 4, and denoting the matrix in
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expression (63) by QQ; that is,

Pyy — Pig — Po1 . Papy — P1pp — P21 P . P

Q0 = P33 — P12 — P31 Py, — P — P31 + < S ) = Qi1Qp,
Pna — P12 — Pa1 . Ppn — Pin — P PL. B

Again the hint consists of how to find appropriate inverse for matrix Q1. For

this purpose, one uses the following Lemma [Dahlquist and Bjorck, 1974].

Lemma 2 [Neumann Series]

If P is a square matrix and |P| < 1,

(I-P) '~I+P+P> 4. 4+P" (85)

Consequently, rewriting the matrix @7 as the sum of a diagonal matrix (Qp)
and another matrix containing the off-diagonal elements of Q1 and zero-diagonal,
denoted A, i.e., Q1 = Qp + A. Therefore applying Lemma 2 leads to

Q' =Qp (I - AQ5" + 4051 AQ + ..) (86)

Consequently, if one stops at the second term of the Neumann expansion, one
has the approximation

Q' =Q, (I -4Q) =@ - Q' Q! (87)

While if one restricts to the first term of the series expansion, one gets Ql_l =

QBI, i.e., the inverse coincides to the inverse of the diagonal matrix of Q.
Propositions 5 and 6 below are provided without proof because of its similarity
with previous ones.

Proposition 5

Using the first order approximation of Neumann series and assuming the first
track (Xpx,1, Prjk,1) as the prior, the weakly correlated track yields

n

Pxxiz = P1 — E (P1 — P1;)(Pi — Pix — P1;) "

i=2

x <<‘1Z<PJ P = Piy) T (P = Po) = (P Pm) (38)

j=2

Tyt Tazy = —(P1 — Pri)(Py — Piy — Py;) "
+ E (Py — Pyy)(P; — Pjy — Pyy) "¢ NP — P — Pui) (89)
j=2

With
C= (P =Pp—Py)~" (90)
j=1
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Proposition 6

If second order Neumann approximation series was used and assuming the first
track (Xp k1, Pr/k,1) as the prior, the weakly correlated track yields

n—1 n-—1 n—1 n—1
Pxx|z = P1 — E E (P1 — P1iy1) <<Pu - g 0 E ¢kj> (P1 — Pjy1,1) (91)
k=1 k=1

i=1 j=1

n—1n-—1

n—1 n—1
T Ty = — E E (Py— Pi1iv1) (q&ij - E &, 7! E qskJ) (92)
k=1 k=1

i=1 j=1
With

n—1n-—1

r=p" +ZZ¢“ (93)

i=1 j=1

(Pig1+ Piig1 + Piy1,1)" " i =]
Oij =< —(Pigy1+ Prit1+ Piy1.1) 7" X (Pig1,j41 + Prjt1 + Pig11) (94)
X(Pj41+ Prjt1+ Pjy11)”! otherwise

Note that the expression of X}/, is omitted in Proposition 5 and Proposition
6 because of its similarity to the general expression (64), so only parameters
T..'T,., involved in X, /i expression is detailed.

5 Conclusion

This paper reviewed some of the fusion architectures used in literature of stochas-
tic estimation theory. Especially, the augmented measurement vector based fu-
sion, sequential and data compression architecture have been reviewed. Next the
convex combination put forward by Bar-Shalom and Campo, where some track
were used as a prior and others as measurements in the static linear estimation
equation, has been investigated and its extension to several sources has been
investigated. The paper has also investigated the effect of the correlation among
the tracks extending the BarShalom’s and Campos’s-based approach. Especially,
two types of correlations have been investigated. The former consists on the exis-
tence of only two-out of the total n tracks, which are correlated. The theoretical
results show that the outcome can be straightforwardly interchangeable with re-
spect to track annotation as far as the track used as the prior is not concerned.
Otherwise, more complex analytical expressions are entailed. The second situa-
tion consists of the presence of only weak correlation. In this course, the use of
Neumann Series approximation has been employed to establish results in case of
first and second approximation. Finally, some links to distributed and hierarchi-
cal fusion architecture pointed out by Chong has been established. So far this
study shown the ultimate importance of the prior track employed in the fusion
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architecture. Indeed, except the case of zero-correlation or specific distribution
of the correlation, the final outcome is ultimately influenced by the choice of
the track used as a prior. Intuitively, this order-dependence can be avoided by
simultaneous consideration of all tuples at the cost of increased complexity.
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