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Abstract: Classical classification and clustering based on equivalence relations are very 
important tools in decision-making. An equivalence relation is usually determined by properties 
of objects in a given domain. When making decision, anything that can be spoken about in the 
subject position of a natural sentence is an object, properties of which are fundamental 
elements of the knowledge of the given domain. This gives the possibility of representing the 
concept related to a given domain. In general, the information about a set of the objects is 
uncertain or incomplete. Various approaches representing uncertainty of a concept were 
proposed. In particular, Zadeh′s fuzzy set theory and Pawlak′s rough set theory have been most 
influential on this research field. Zadeh characterizes uncertainty of a concept by introducing a 
membership function and a similarity (fuzzy equivalence) relation of a set of objects. Pawlak 
then characterizes uncertainty of a concept by union of some equivalence classes of an 
equivalence relation. As one of particular important and widely used binary relations, 
equivalence relation plays a fundamental role in classification, clustering, pattern recognition, 
polling, automata, learning, control inference and natural language understanding, etc.  An 
equivalence relation is a binary relation with reflexivity, symmetry and transitivity. However, in 
many real situations, it is not sufficient to consider equivalence relations only. In fact, a lot of 
relations determined by the attributes of objects do not satisfy transitivity. In particular, 
information obtained from a domain of objects is not transitive, when we make decision based 
on properties of objects. Moreover, the information about symmetry of a relation is mostly 
uncertain. So, it is needed to approximately make decision and reasoning by indistinct concepts. 
This provokes us to explore a new class of relations, so-called class of fuzzy semi-equivalence 
relations. In this paper we introduce the notion of fuzzy semi-equivalence relations and study 
its properties. In particular, a constructive method of fuzzy semi-equivalence classes is 
presented.   Applying it we present approaches to the fuzzyfication of indistinct concepts 
approximated by fuzzy relative and semi-equivalence classes, respectively. And an application 
of the fuzzy semi-equivalence relation theory to generate decision rules is outlined.  
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1 Introduction  

The concepts of equivalence and similarity play basic roles in many fields of pure and 
applied sciences, in particular, classical classification and clustering based on 
equivalence relations are very important tools in decision-making, since we need 
searching for similar behavior based on classification and/or clustering, when making 
decision. This includes application of many technologies, e.g. pattern recognition, 
diagnosis, learning, control inference and natural language understanding etc. An 
equivalence relation is usually determined by properties of objects in a given domain. 
When making decision, anything that can be spoken about in the subject position of a 
natural sentence is an object, properties of which are fundamental elements of the 
knowledge of the given domain; then concepts are more complex elements of 
knowledge [Orlowska and Pawlak, 1984]. This gives the possibility of representing 
concepts related to a given domain.  

In general, the information about a set of the objects is uncertain or incomplete. 
We observe that, in most practical cases, the a priori data as well as the criteria, by 
which the performance of a making-decision system are judged, are far from being 
precisely specified or having accurately-known probability distributions. To cope with 
the analysis of man-machine systems of various types (e.g. economic systems, 
biological systems, social systems and political systems etc.) and to deal effectively 
with such systems, it is needed a radically different kind of mathematics. For 
representing indistinguishability of a concept, it is important that how to 
classify/cluster objects and to select corresponding criteria, for example, feature of 
objects. The binary classification into conferring and non-conferring of product/parts 
are often used for dealing with sources of uncertainty or imprecise condition, while 
feature selection is meant here to refer to the problem of dimensionality reduction of 
data, which initially contain a great number of features (or characters): one hopes to 
choice “optimal” subsets of the original features which still contain the information 
essential. Thus, for dealing with problems with uncertainty or incompleteness 
involving equivalence, similarity, clustering, preference pattern, etc. various 
approaches representing uncertainty of a concept were proposed, many of which are 
based on some extensions of classical set theory. In particular, Zadeh’s fuzzy set 
theory [Zadeh, 1965] and Pawlak′s rough set theory. In particular, Zadeh′s fuzzy set 
theory [Zadeh 1965] and Pawlak′s rough set theory [Pawlak, 1994] have been most 
influential on this research field. Zadeh characterized uncertainty of a concept by 
introducing a membership function from a set of the objects to the real interval [0,1] 
(possibly any algebraic construct with a partial order, e.g. a lattice, a Boolean algebra 
etc.) . He also studied similarity relation among objects of a set for fuzzy classification 
and cluster [Zadeh, 1971]. A similarity relation is essentially a generalization of the 
concept of an equivalence relation. Furthermore, Zadeh thought that the remarkable 
human capability to perform a wide variety of physical and mental tasks without any 
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measurements and any computation is computing with words. Therefore, he presented 
the notion of computing with words (so-called soft computing), which plays a key role 
in human recognition, decision and execution processes [Zadeh, 1996; 1999]. On the 
other hand, Pawlak then characterizes uncertainty of a concept by union of some 
equivalence classes of an equivalence relation [6]. He and his followers Orlowska et al. 
[Orlowska and Pawlak, 1984; Orlowska, 1998] used the concept of rough set as a 
formal tool for modeling and processing incomplete information in information 
systems. As in soft computing, this also makes making-decision more plastic. It seems 
that there is a connection between the both theories since they all address the problem 
of information granulation: the theory of fuzzy sets is centered upon fuzzy information 
granulation, whereas rough theory is focused on crisp information granulation. In 
particular, the fact that the focus of rough set theory moved from the notion of 
indistinguishability to one of similarity shows that these two theories have become 
much closer to each other. Dubois and Prade  [1992]  are one of the first who 
investigated the problem of fuzzification of a rough set. Then a more general approach 
to this issue was proposed recently by Radzikowska and Kerre [2002] .  

It is worth to point out that an equivalence relation R on a nonempty set should 
satisfy reflexivity (R(x,x) holds), symmetry (R(x,y)=R(y,x)) and transitivity (R◦R⊆R). 
However, in many real situations, it is not sufficient to consider equivalence relations 
only. In fact, a lot of relations determined by the attributes of objects do not satisfy 
transitivity. Moreover, the information about symmetry of a relation is mostly 
uncertain. For example, we want to determine appropriate strategies by a friendship or 
neighbor relation. Clearly they are both reflexive and symmetric. Unfortunately, 
neither friendship nor  neighbor relations among a group of persons are transitive. 
Similarly, in general, the strength of a fuzzy relation is not transitive yet. Thus a 
question arises: can we represent (characterize) indistinct concepts based on such 
relations. Wu Xuemou [1981] and Zhang Mingyi [1984; 1989] introduced the theory 
of semi-equivalence relations (i.e. a relation satisfying reflexivity and symmetry) such 
that solutions to the above question become possible. According to Wu Xuemou, let R 
be a semi-equivalence relation. Then a subset Q of G is a semi-equivalence class (w.r.t. 
R) if Q is a maximal subset of G such that G2⊆R. Zhang Mingyi gave approximations 
of uncertain concepts by unions of some semi-equivalence classes. This provokes us 
to explore a new class of relations, so-called class of fuzzy semi-equivalence relations, 
and study its properties. Considering fuzziness of a relation, study on fuzzification of 
approximations based on a semi-equivalence relation is naturally interesting from 
either theoretic or practical point of view.  

In this paper we present the fuzzification of approximations of indistinct concepts 
characterized by fuzzy semi-equivalence classes. At first, we briefly recall basic 
notions of semi-equivalence relations. Then the concept of fuzzy semi-equivalence 
relation is introduced and its properties are showed. In particular, a constructive 
method of fuzzy semi-equivalence classes is presented. Approximations of indistinct 
concepts under a fuzzy semi-equivalence relation are discussed using two ways based 
on fuzzy relative and fuzzy semi-equivalence classes, respectively. And approaches to 
a set of decision rules generated by a fuzzy equivalence relation are outlined. Finally, 
concluding remarks, comparing of relative work and some options of further work 
complete the paper.  
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2 Semi-equivalence relation and Es-approximations 

In this section, we recall notions and results on semi-equivalence relations, proofs of 
which are given in the appendix. At first, we give notions of a semi-equivalence 
relation, its relative classes and semi-equivalence classes.  
Definition 2.1 [Wu Xuemou, 1981] A relation R on a nonempty set G is called a 
semi-equivalence relation if it is reflexive and symmetric. Let ES[G]={R⎢R is a semi-
equivalence relation on G} and E[G]={R ⎢R is an equivalence relation on G }. 
Definition 2.2 [Wu Xuemou, 1981] For any R∈ES[G] and any a∈G, [a]R={b∈G ⎢aRb} 
is called a relative class of G w.r.t. R and the family GR={[a]R ⎢a∈G} of sets is called 
the relative quotient of G by R. A subset Q of G with Q2⊆R and maximal w.r.t. 
inclusion relation (i.e. Q=max{A⊆G ⎢A2⊆R}) is called a semi-equivalence class of G 
w.r.t. R and G/R ={Q ⎢Q is a semi-equivalence class of G w.r.t. R} is called the 
quotient of G by R.  

Important properties of semi-equivalence relations are as follows:  
Theorem 2.1 [Zhang Mingyi, 1984] (ES[G], ∪, ∩} is a complete lattice, where G2 
(complete relation) is the greatest element and I (equality relation) is the least element. 

 
Theorem 2.2 [Zhang Mingyi, 1984] For any given R∈ES[G] and a∈G,                          

(1) if a∈Q∈G/R then Q⊆[a]R.  
(2) ⎜G/R⎜≤⎜GR⎜, where ⎜B⎜ is the cardinal of B for any set B. A  

(3) For any given R∈E[G] (ES[G]) and Q∈G/R, the restriction R↾Q of R to Q is an 
(semi-) equivalence relation on Q.  

(4) ∪a∈G [a]R =G,  ∪G/R=G. 
(5) For any R∈ES[G],  ∪Q∈G/R Q2= ∪a∈G [a]R

2. 
From the above properties, we can get an algorithm for computing the quotient set 

G/R. Note that equivalence classes are nonempty and pairwise disjoint, whereas semi-
equivalence classes overlap each other possibly. 

Then the (approximately) definability of a set under a semi-equivalence relation and 
its algebraic construction are given.  
Definition 2.3 [Zhang Mingyi, 1984] For any R∈ES[G], a subset A of G is R-
definable if there are Qi∈G/R (i∈I, I is an index set, possibly empty) such that 
A=∪{Qi ⎢i∈I}. Let Def[G]={A ⎢A⊆G and A is R-definable}. A set Q∈G/R is R-
selective if Q is a singleton set. 
Theorem 2.3 [Zhang Mingyi, 1984] (Def [G], ∪) is a complete upper semi-lattice. In 
general, Def [G] is closed under neither the intersection nor the complement c. 
Definition 2.4 [Zhang Mingyi, 1989] For any R∈ES[G] and A⊆G, we say that 
   (1) the set A  =∩{B ⎢A⊆B and B∈Def[G]} is an exterior Es-approximation of  A,  
and  A = ∪{B ⎢B⊆A and B∈Def[G]} is an interior  Es-approximation of A; 

(2) a set A is approximately R-definable if A ≠G and A ≠∅; 

(3) a set A is internally indefinable if A =∅ and A is externally indefinable if A =G. 

A is totally indefinable if A =G and A =∅. 
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Roughly speaking, R-definability gives us a possibility to answer such membership 
question as whether x belongs to A precisely. When R is specialized as an equivalence 
relation, the above definitions and results can be naturally translated into 
corresponding ones in rough set theory.  

3 Fuzzy Semi-equivalence Relation 

In this section, we introduce the notions of a fuzzy semi-equivalence relation as a 
generalization of a semi-equivalence relation. In addition, fuzzy Es-approximations 
and their some basic properties are derived.  In [Zadeh, 1965], a fuzzy (binary) 
relation R was defined as a fuzzy collection of ordered pairs. In the following, the 
symbols ∨ and ∧ stand for max and min respectively. For convenience, we identify a 
fuzzy relation R and its membership function μR. The concept of a similarity relation 
defined in [Zadeh, 1971] is essentially a generalization of the concept of an 
equivalence relation. More specifically,   
Definition 3.1 [Zadeh, 1971]  Given a nonempty universe G, call a fuzzy relation R 
on G (i.e. a fuzzy subset of G2: G2 → [0,1]), a fuzzy equivalence (similarity) relation 
if R satisfies:  

(1) reflexivity: R(a,a)=1 for any a∈G;  
(2) symmetry: R(a,b)=R(b,a) for any a, b∈G;  
(3) transitivity: R◦R⊆R or, more explicitly, R(x,z)≥∨y∈G (R(x,y)∧R(y,z)). 

Definition 3.2 [Zadeh, 1971]  The height of a fuzzy relation R，denoted by h(R) is 
defined by h(R)=∨x∈G∨y∈G R(x,y). A fuzzy relation is subnormal if h(R)<1 and normal 
if h(R)=1. For any α in [0,1], an α-level-set of a fuzzy relation R from X to Y，
denoted by Rα， is a non-fuzzy set in X×Y such that Rα={(x,y) ⎢R(x,y)≥α}. A 
subnormal non-fuzzy set, denoted by αRα, is defined as αRα(x,y) = α•Rα(x,y), where 
the notation • stands for the algebra product. 

From the above definition an immediate and yet important consequence is that any 
fuzzy relation admits of the resolution R=∪ααRα , 0<α≤1[Zadeh, 1971]. Based on this 
consequence we get the following basic property of fuzzy equivalence relations:  
Theorem 3.1 [Zadeh, 1971]  Let R=∪ααRα , 0<α≤1, be the resolution of a similarity 
relation. Then each Rα is an equivalence relation on G. Conversely, if 

(1) the Rα , 0<α≤1, is a nested sequence of distinct equivalence relations on G, with 
α1>α2 21 αα RR ⊂⇔ ,  

(2) R1 is non-empty and Dom(Rα)=Dom(R1),  
then for any choice of α’s in (0,1] which includes α=1, R is a similarity relation on G. 

In most real-world situations, the strength of a fuzzy relation is not transitive. So, 
we introduce the concept of a fuzzy semi-equivalence relation. 
Definition 3.3 A fuzzy semi-equivalence relation R on G is a fuzzy relation such that 
R satisfies reflexivity and symmetry. A fuzzy relative class [a]R with a∈G as a 
representative is a fuzzy subset of G defined by [a]R(x)=R(a,x) for all x∈G and the 
fuzzy relative quotient of G by R is the family of fuzzy sets GR={[a]R ⎢a∈G}. A fuzzy 

144 Mingyi Z., Danning L., Ying Z.: An Approach to Generation of Decision ...



  

semi-equivalence class Q is a fuzzy subset of G such that Q=max{T⎢T is a normal 
fuzzy subset of G and T2⊆R}, where T2 is the algebra product:T2(x,y)=T(x)•T(y). The 
quotient of G by R is the family of fuzzy sets G/R={Q ⎢Q is a fuzzy semi-equivalence 
class of G w.r.t. R}. 

From the above definition, it is easy to get the following result, which shows 
relationship between fuzzy semi-equivalence and fuzzy relative classes.  
Corollary 3.2 For any Q∈G/R if Q(a)=1 for some a∈G then Q⊆[a]R.  
Proof   

From Q∈G/R and Q(a)=1, we have Q(x)=Q2(a,x)≤R(a,x)=[a]R(x), which means that 
Q⊆[a]R.  

Fuzzy relative classes and fuzzy semi-equivalence classes both are just similar 
classes when R is specified to be a fuzzy equivalence relation on G. Usually we 
wonder whether there is a∈G such that Q(a)=1 for each Q∈G/R. In general, this is not 
true if G is infinite. Consider the following example:   
Example 1 Suppose G={ai⎥ i≥1}, R(ai,aj)=1 if i=j and R(ai,aj)=(i/i+1)•(j/j+1) if i≠j for 
i, j≥1. Clearly, R is a fuzzy semi-equivalence relation on G. We  construct an element 
Q in G/R as follows：Q(ai)=i/i+1 for any i≥1. It is easy to see that Q is normal and 
Q2⊆R.  In face, ∨iQ(ai)=1, Q2(ai,ai) = (i/i+1)•(i/i+1)<R(ai,ai) for any i≥1 and 
Q2(ai,aj)=R(ai,aj) for i≠j.  Now we show the maximality of Q.  If there is a fuzzy subset 
P of G such that P2⊆R and Q⊂P, then there is k≥1 such that Q(ak)<P(ak). So, 
R(ak,ak+1)=Q2(ak,ak+1)=Q(ak)•Q(ak+1)<P(ak)•P(ak+1)=P2(ak,ak+1), which contradicts the 
assumption P2⊆R. Hence Q∈G/R and there is no a∈G such that Q(a)=1. 

However, a positive result holds: given Q∈G/R, there is a∈G such that Q(a)=1 by 
the normality of Q. Furthermore, we can construct a fuzzy subset Q∈G/R such that 
Q(a)=1 for any a∈G, that is, we have the following result:  
Theorem 3.3 Suppose that R is a fuzzy semi-equivalence relation on G. For any a∈G 
there is Q∈G/R such that Q(a)=1. More precisely, For any a∈G, a fuzzy subset Q of G 
can be constructed as follows such that Q∈G/R and Q(a)=1： 

Q(a1)=1; for i≥1,  Q(ai+1)=∧j≤i {R(aj,ai+1)/Q(aj)⎥ 0<Q(aj)}, 
where {ai⎥i≥1} is any enumeration of all elements in G with a=a1. 
Proof   

It is clear that Q(ai)≤1 for any i≥1and Q(ai)≤R(aj,ai)/Q(aj) for any j<i with  Q(aj)>0. 
Hence, Q2(ai,ai)≤R(ai,ai) and Q2(ai,aj)=Q(ai)•Q(aj)≤R(aj,ai)=R(ai,aj). Clearly, 
Q2(ai,aj)≤R(ai,aj) for any j such that Q(aj)=0. Furthermore, Q2(ai,aj)≤R(ai,aj) for any j<i. 
By symmetry we have Q2(ai,aj)≤R(ai,aj) for any j:j>i. Therefore, Q2⊆R. To prove the 
maximality of Q, we suppose there is a fuzzy subset P of G such that P2⊆R and Q⊂P. 
Then there is i>1 such that P(aj)=Q(aj)  for any j:1≤j<i and Q(ai)<P(ai). Since 
Q(ai)=∧j<i{R(aj,ai)/Q(aj)⎥ 0<Q(aj)}, we have Q(ai)=R(ak,ai)/Q(ak) for some k<i. Hence 
R(ak,ai)=Q(ak)•Q(ai)<P(ak)•P(ai)=P2(ak,ai), which contradicts the assumption P2⊆R. 
Thus, Q∈G/R and Q(a)=1.  

Note that, for different enumeration of elements in G, Q constructed as above is 
different possibly.   
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Example 1 (continue) Under the enumeration {ai⎥ i≥1} of elements in G, we have 
Q∈G/R, where Q(a1)=1 and Q(ai)=R(a1,ai) for any i>1.  In general, for any given i≥1, 
if P is a fuzzy subset of G such that P(ai)=1and Q(aj)=R(ai,aj) for j≠i, then P∈G/R.  
Example 2 Assume that G= {a, b, c} and the fuzzy semi-equivalence relation R on G 
is as follows: 
                    a        b         c    
             a      1      0.3      0.2 
             b     0.3     1        0.7 
             c     0.2     0.7       1 

Clearly, R is not transitive since R◦R(a,c)=0.3 > 0.2=R(a,c). Then 
GR={{(a,1), (b,0.3), (c,0.2)}, {(a,0.3), (b,1), (c,0.7)}, {(a,0.2), (b,0.7), (c,1)}        
G/R= {{(a,1), (b,0.3), (c,0.2)}, {(a,0.3), (b,1), (c, 2/3)}, {(a,2/7), (b,1), (c,0.7)},   
            {(a,o.2), (b,0.7), (c,1)}}. 
Corollary 3.4  ∪a∈G[a]R=G and ∪ G/R=G. 
Proof 

By Definition 3.3 we have (∪a∈G[a]R)(x)=∨a∈G [a]R(x)=[x]R(x)=1 for any x∈G. 
Hence, ∪a∈G[a]R=G. By Theorem 3.3 we have (∪(G/R)(x)=∨Q∈G/RQ(x)=1for any x∈G. 
Therefore, ∪ G/R=G. 

For a fuzzy semi-equivalence class we have the following properties, which are 
similar to those for a fuzzy equivalence relation.  
Theorem 3.5 If R is a fuzzy semi-equivalence relation on G then Q2 is a symmetric 
fuzzy relation and Q2⊆Q2◦Q2  for any Q∈G/R.  
Proof  

It is clear that Q2(x,y)= Q(x)• Q(y)= Q(y)•Q(x) =Q2(y,x). And  
Q2◦Q2(x,y)=∨z∈G{Q2(x,z)∧Q2(z,y)} 

=∨ z∈G {Q(x)•Q(z)∧Q(z)•Q(y)}     
                  =∨z∈G Q(z)•(Q(x)∧Q(y))  

=(Q(x)∧Q(y))•∨z∈GQ(z)   (since Q is normal) 
                  = Q(x)∧Q(y)  

≥ Q(x)•Q(y)  
= Q2(x,y) 

As in [Zadeh, 1971], Aα  denotes an α-level set of a fuzzy A of G  by Aα ={x⎥ 
A(x)≥α}and αAα denotes a subnormal non-fuzzy set by αAα(x)=α•Aα(x),where 
0<α≤1. By these nations, an immediate and yet interesting consequence is the 
following result:  
Theorem 3.6 Any fuzzy relative class [ ]Rx  of x (x∈G) w.r.t. a fuzzy semi-

equivalence relation R admits of the resolution [ ]Rx =∪0<α≤1 α, where [ ]Rx  is the 
relative class of Rα (the α–level set of R), the representative of which is x.  Any fuzzy 
semi-equivalence class Q of G w.r.t. a fuzzy semi-equivalence relation R admits of the 
resolution Q=∪0<α≤1αQα.    
Proof 

We identify [ ]
αRx and α[ ]

αRx with their membership function, i.e. 

             [ ]
αRx (y) =1, if y∈[ ]

αRx  and [ ]
αRx (y) =0, otherwise;  
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             α[ ]

αRx (y)=α, if y∈[ ]
αRx and α[ ]

αRx (y)=0, otherwise. 

Therefore ∪αα[ ]
αRx (y)=∨αα [ ]

αRx (y)= [ ] α
α

α Rx≤∨ = [ ]
αRx (y), which in turn implies 

[ ]
αRx =∪αα[ ]

αRx . 

Similarly, we have ∪0<α≤1 αQα(x)= 10 ≤∨ α≺  αQα(x)= α
αα )(xQ≤∨  = Q(x) for any 

x∈G and hence Q= 10 ≤∪ α≺  αQα.  
By the above theorem we get the following basic property of a fuzzy semi-

equivalence relation, which is similar to Theorem 3.1. 
Theorem 3.7 Let R= 10 ≤∪ α≺  αRα be the resolution of a fuzzy semi-equivalence 
relation R on G. Then each Rα is a semi-equivalence relation on G. Conversely, if the 
Rα, 0<α≤1, is a nested sequence of distinct semi-equivalence relations on G, with 
α1>α2 21 αα RR ⊂⇔ ,  R1 non-empty and Dom(Rα)=Dom(R1), then for any choice of 

α’s in (0,1] which includes α=1, R is a semi-equivalence relation on G. 
Proof 

We identify Rα and αRα with their membership function respectively, i.e. 
              Rα(x,y) = 1 if (x,y)∈Rα and Rα (x,y) = 0, otherwise;  
             αRα(x,y)=α if (x,y)∈Rα and α Rα(x,y)=0, otherwise. 

“⇒” First, from R(x,x)=1 for any x∈G, we have Rα(x,x)=1 for any x∈G and hence 
Rα is reflexive for all α in (0,1]. Next, for each α∈(0,1], let Rα(x,y)=1, which implies 
R(x,y)≥α and hence, by symmetry of R, that R(y,x)≥α. Consequently, Rα(y,x)=1 and  
Rα is symmetry.  

“⇐” Since R1 is non-empty, R1(x,x)=1 for any x∈Dom(R1)=G. Noting that R(x,y) 
= 10 ≤∨ α≺ α Rα(x,y) for any x,y∈G, it is clear that the symmetry of Rα for each α∈(0,1] 
implies the symmetry of R. Hence, R is fuzzy semi-equivalent.  

Zadeh [Zadeh, 1971] pointed out that the similarity classes of a similarity relation 
are not disjoint, in general. He gave a more general property (Proposition 5 of [Zadeh, 
1971]) to characterize the counterpart of disjointness. We state it as follows: 
Proposition [Zadeh, 1971]   Let R be a similar relation in G={a1,...an} characterized 
by a membership function R(ai,aj). With each ai∈G, we associate a similar class [ai]R 
or simply [ai] characterized by [ai](aj)=R(ai,aj). Suppose [ai] and [aj] are arbitrary 
similar classes of R, the height of the intersection of [ai] and [aj] is bounded from 
above by R(ai,aj), that is h([ai]∩[aj])≤R(ai,aj).   

Unfortunately, a result similar to the above proposition does not hold for the fuzzy 
relative classes of a fuzzy semi-equivalence relation, in general. Here we give a 
counterexample.   
Example 2 (continue) It is clear h([a]R∩ [c]R)= R◦R(a,c)=0.3>0.2=R(a,c).  

If we replace the algebra product T2 by “min-product” T∗T (i.e. T∗T(x,y)= 
min{T(x),T(y)} (or T(x)∧T(y)) in Definition 3.3, then Corollaries 3.2 and 3.4 still 
hold. Theorem3.3 also is valid，but its proof will be anew given. 
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Theorem 3.3* Suppose that R is a fuzzy semi-equivalence relation on G. For any 
a∈G there is Q∈G/R (under the min-product operator∗) such that Q(a)=1.  
Proof   

Suppose that {ai⎥i≥1} is any enumeration of all elements in G. No loss generality, 
let a=a1. We define a fuzzy subset Q of G as follows: 

Q(a1)=1; for any i≥1, Q(ai+1) is a maximal solution of the inequalities  
Q(ai+1)∧Q(aj)≤R(ai+1,aj) , where j≤i                                                          (*) 
By induction on i, it is easy to show that there is k≤i such that Q(ai+1)∧Q(ak)= 

R(ai+1,ak), since Q(ai+1) is a maximal solution of inequalities (*). By the definition of Q, 
we have Q(ai)≤1 for any i≥1 and (Q∗Q)(ai,aj)= Q(ai)∧Q(aj)≤R(ai,aj) for any j<i. Since 
R is symmetrical, we have (Q∗Q)(ai,aj)≤R(ai,aj) for any j>i. Hence, Q∗Q⊆R.  
If there is P such that (P∗P)⊆R and Q⊂P, then there is some i>1 such that P(aj)=Q(aj)  
for any j<i and Q(ai)<P(ai). By the assertion proved previously, we have   
Q(ai)∧Q(ak)=R(ai,ak) for some k<i. Therefore, R(ai,ak)=Q(ai)∧Q(ak)<P(ai)∧P(ak)= 
(P∗P)(ai,ak), which contradicts the assumption P∗P⊆R. So, Q∈G/R and Q(a)=1.  

Moreover, we can get results similar to Theorems 3.6 and 3.7. 
Example 1 (continue) Under the min-product ∗ and the enumeration {ai⎥ i≥1} of 
elements in G, we also have Q∈G/R, where Q(a1)=1 and Q(ai)=R(a1,ai) for any i>1. In 
general, for any given i≥1, if P is a fuzzy subset of G such that P(ai)=1 and 
Q(aj)=R(ai,aj) for j≠i, then P∈G/R. 
Example 2 (continue) Under the min-product ∗, we have the quotient of G by R: 
G/R={{(a,1), (b,0.3), (c,0.2)}, {(a,0.3), (b,1), (c,0.2)}, {(a,0.2), (b,1), (c,0.7)}, 

{(a,0.2), (b,0.7), (c,1)}}. 
Different from Theorem 3.5, we have the following theorem.  

Theorem 3.8 If R is a fuzzy semi-equivalence relation on G then Q∗Q is a symmetric 
and transitive fuzzy relation and Q∗Q= (Q∗Q)◦(Q∗Q) for any Q∈G/R. 
Proof   

The symmetry of Q∗Q is clear. For any x,y ∈G,  
(Q∗Q)◦(Q∗Q)(x,y)= ∨z∈G{(Q∗Q)(x,z)∧(Q∗Q)(z,y)} 
                              = ∨z∈G{Q(z)∧(Q(x)∧Q(y))} 
                              = (Q(x)∧Q(y))∧(∨z∈G Q(z)) 
                              = (Q∗Q) (x,y)   (∨z∈G Q(z)=1 by the normality of Q). 

Furthermore, the following result is obvious.   
Theorem 3.9 Assume that Q is a fuzzy semi-equivalence class of G w.r.t. a fuzzy 
semi-equivalence relation R. For the 1-level-set Q1 of Q, Q1

2 (or Q1∗Q1) is an 
(classical) equivalence relation on Q1. Further, Q1

2=Q1∗Q1=R↾Q1.  
Proof 

By Definition 3.3 and the definition of 1-level-set of a fuzzy set, it is obvious that  
Q1

2 (or Q1∗Q1) is an equivalence relation on Q1. Since Q(x)=1 for any x∈Q1, it is clear 
that Q1

2(x,y)=Q1∗Q1(x,y)=R↾Q1(x,y) for any x,y∈Q1 and hence that Q1
2= Q1∗Q1= 

R↾Q1. 
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4 Approximation under fuzzy semi-equivalence relations  

In this section we explore how to approximate an indistinct concept under a fuzzy 
semi-equivalence relation. Indistinct objects are those, by means of properties of 
which we are not able to distinguish them since information about them is incomplete 
or uncertain. In most real situations, relations representing properties of indistinct 
objects are fuzzy semi-equivalence relations.  To deal with such situation we introduce 
the notion of fuzzy approximate definability of sets, which is an extension of rough 
sets [Orlowska and Pawlak, 1984; Dubois and Prade, 1992; Pawlak, 1994; Orlowska, 
1998; Padzikowska and Kerre, 2002]  and fuzzy rough sets [Wu Xuemou, 1981; 
Zhang Mingyi, 1984 and 1989]. 

Corollaries 3.2, 3.5 and theorem 3.3 (both under algebra product and min-product 
operator) told us that G/R is a refinement of GR, when they are considered as fuzzy 
partitions. Therefore, we will give two approaches to approximate indistinct concepts, 
which are based on fuzzy relative classes and fuzzy semi-equivalence classes 
respectively. 

4.1  Fuzzy relative rough approximation  

For a nonempty universe G and a fuzzy semi-equivalence relation R on G, let G= {ai 
⎢i∈I} and F (G) be the class of all fuzzy subsets of G. 
Definition 4.1 A fuzzy set A∈F(G) is fuzzy relative rough (shortly, FRR) definable if 
there is I0⊆I such that A=∪{[ai]R ⎢i∈I0}. Denote DefFRR[G]={A⎢A∈F(G) and A is 
FRR definable}. 

Clearly, the empty set and the universe G both are in DefFRR[G]. And [ai]R is FRR 
definable for each  i∈I. 
Definition 4.2 A fuzzy relative rough (shortly, FRR)  approximation is a mapping 
AprFRR: F(G)→F(G)×F(G) such that AprFRR(A) =( A FRR, A FRR) for every A∈F(G), 

where FRRA =∪{B⎢B⊆A and B∈DefFRR[G]}, FRRA =∩{B⎢A⊆B and B∈DefFRR[G]}. 

The fuzzy set FRRA  (resp. FRRA ) is called an FRR-interior (resp. FRR-exterior) 

approximation of A. A fuzzy set A∈F(G) is interior FRR indefinable if FRRA =∅ and 

A is exterior FRR indefinable if  FRRA =G. 
Definition 4.3 A pair (D,E)∈F(G)×F(G) is called an FRR set iff (D, E)= AprFRR(A) 
for some A∈F(G).  

We always omit the subscripts “FRR” when it does not confuse. The following 
result shows an important algebraic property of  FRR definable classes.  .  
Theorem 4.1 (DefFRR[G], ∪) is a complete upper semi-lattice, where G and ∅ are 
greatest and zero elements respectively, i.e. A∪∅=A and A∪G=G for any A∈ 
DefFRR[G].  
Proof   

It is easy to verify that DefFRR[G] is closed under union of a class of FRR definable 
sets and G, ∅ is its greatest and zero element, respectively. 

From Theorem 4.1 and Definition 4.2 we immediately get 
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Corollary 4.2 A ∈DefFRR[G] . 
Now we give some properties of FRR interior and exterior approximations. 

Theorem 4.3  For a fuzzy semi-equivalence relation R on G and A, B∈F(G), 
(1) A is FRR definable iff A= A = A .         

(2) A ⊆ A⊆ A . 

(3) A⊆B ⇒ A ⊆ B ,       A ⊆ B .                      

(4) A = A  = ( )A ,          A  = A = ( )A . 

(5) BA∪ = BA∪ ,     BA∪ ⊆ BA∪ . 
Proof  

The item 2 is clear by Definition 4.2. 
(1) A is FRR-definable ⇔ there is I0 ⊆I s.t. A=∪{[ai]R ⎢i∈I0} ⇔ A =A= A  by 

Definitions 4.1 and 4.2.  
(3) For any Q∈DefFRR[G], if Q⊆A then Q⊆B. Therefore,   

{Q ⎢Q⊆A and Q∈DefFRR[G]}⊆{Q ⎢Q⊆B and Q∈DefFRR[G]}. 
This implies that A ⊆ B . On the other hand, for any Q∈DefFRR[G], if B⊆Q then 
A⊆Q. Thus {Q ⎢B⊆Q and Q∈DefFRR[G]}⊆{Q ⎢A⊆Q and Q∈DefFRR[G]}. This shows 
that A ⊆ B . 

(4) It is only needed to note that A ∈Def[G] by Theorem 4.1. From item 1 we get 

 A = A  = ( )A . Similarly, we have A  = A = ( )A . 

(5) By item 3, we have A , B ⊆ BA∪ . Hence  A ∪ B ⊆ BA∪ . Conversely 

A⊆ A  and B⊆ B from item 2.  So, A∪B⊆ A ∪ B . Since A ∪ B ∈ Def[G] by 

Theorem 4.1, we get  BA∪ ⊆ A ∪ B . Hence,  BA∪ = A ∪ B . For the second 
part of the item, we have BA∪ ⊆ BA∪  since BA∪ ⊆ A∪B (by item 1) and 

BA∪ ∈ Def[G].  

Note that  BA∪ ⊆ BA∪  does not hold，in general. For example, let A={(a,0.5), 

(b,0.5), (c,0.5)} and B={(a,0.1), (b,1), (c,1)} in Example 2. Then A = B  =∅ but 

BA∪ = {(a,0.3), (b,1), (c,1)}. 

Theorem 4.4  For any fuzzy semi-equivalence relation R on G and A∈F(G), B= A  iff 
B is a maximal fuzzy subset of G such that B⊆A and B∈Def[G].  
Proof  

“IF”  If B is a maximal fuzzy subset of G such that B⊆A and B∈Def[G], then 
B ⊆ A  is obvious. On the other hand, we have A ∈Def[G] by Corollary 4.2. So, 

B= A  by the maximality of B. 
 “Only IF”  It is clear from Corollary 4.2 and Definition 4.2. 
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4.2  Fuzzy semi-equivalence rough approximation 

As we pointed out, the fuzzy semi-equivalence classes are more refined classes than 
fuzzy relative classes. Using fuzzy semi-equivalence classes, we can give definitions 
and results similar to those in the above subsection. All following results are true for 
quotient set G/R induced by either algebraic product or min-product operator. And 
their proofs can be given in a way similar to those in the preceding subsection. Here 
we only state corresponding notions and results.  

For a nonempty universe G and a fuzzy semi-equivalence relation R, let 
G/R={Qi⎢i∈I} and F(G) be the class of all fuzzy subsets of G.   
Definition 4.4 A fuzzy set A∈F(G) is fuzzy semi-equivalence rough (FSER) definable 
if there is I0⊆I such that A=∪{Qi ⎢i∈I0}. DefFSER[G]={A ⎢A∈F(G) and A is FSER 
definable}. 
Definition 4.5 A FSER approximation is a mapping AprFSER: F(G)→F(G)×F(G) such 

that AprFSER(A)=( FSERA , FSERA ) for every A∈F(G), where FSERA =∪{B⎢B⊆A and 

B∈DefFSER[G]} and FSERA =∩{B ⎢A⊆B and B∈DefFSER[G]}. The fuzzy set FSERA  

(resp. FSERA ) is called an FSER-interior (resp. FSER-exterior) approximation of A. 

A fuzzy set A is interior (exterior)  FSER indefinable if FSERA =∅ ( FSERA =G). 
Definition 4.6 A pair (D,E)∈F(G)×F(G) is called a FSER set if there is A∈F(G) such 
that  (D,E)=AprFSER(A). 
Theorem 4.5 (DefFSER[G], ∪) is a complete upper semi-lattice, where G and ∅ are 
greatest  and zero elements respectively.  
Corollary 4.6 A ∈DefFSER[G]. 

In the following theorem we omit the subscripts “FSER” in interior (exterior) FSER 
approximations and definable sets when they are confused from context. 
Theorem 4.7 For a fuzzy semi-equivalence relation R on G and A,B∈F(G), 

(1) A is FSER definable iff A= A = A ;          

(2) A ⊆ A⊆ A . 

(3) A⊆B ⇒ A ⊆ B ,       A ⊆ B .                      

(4) A = A  = ( )A ,          A  = A = ( )A . 

(5) BA∪ = BA∪ ,     BA∪ ⊆ BA∪ . 

Theorem 4.8 For any fuzzy semi-equivalence relation R on G and A∈F(G), B= A  iff  
B is a maximal fuzzy subset of G such that B⊆A and B∈Def[G]. 
Example 2 (continue)  

DefFRR [G]= GR∪{∅ , G, {(a,1), (b,1), (c,0.7)}, {(a,1), (b,0.7), (c,1)}, {(a,0.3),  
(b,1), (c,1)}}; 

DefFSER[G]= G/R ∪ {∅ , G, {(a,1), (b,1), (c,2/3)}, {(a,1), (b,1), (c,0.7)}, {(a,1), 
(b,0.7), (c,1)}, {(a,2/7), (b,1), (c,0.7)}, {(a,0.3), (b,1), (c,1)}, 
{(a,2/7), (b,1), (c,1)}, (under algebraic product) 
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DefFSER[G]= G/R ∪ {∅ , G, {(a,1), (b,1), (c,0.2)}, {(a,1), (b,1), (c,0.7)}, {(a,1), 
(b,0.7), (c,1)}, {(a,0.3), (b,1), (c,0.7)}, {(a,0.3), (b,1), (c,1)}  
(under min-product). 

It is easy to verify that, in anyone of the above three cases, Def[G] is closed under 
neither intersection nor complement. In addition, for any non-normal fuzzy set A (i.e. 
A(x)<1 for all x∈G), we have A =∅.  Let A={(a, 1), (b,0.7), (c, 0.7)}. Then  A = 

{(a,1,), (b,0.3), (c,0.2)}, A =A and  ( )A ={(a,1,), (b,0.3), (c,0.2)} (under either 
algebraic product or min-product). 

For A={(a,0.2), (b,0.5), (c,0.5)} and B={(a,0.1), (b,1), (c,1)}, A = B =∅ but 

BA∪ = {(a,2/7), (b,1), (c,1)} (under algebraic product) or BA∪ ={(a,0.3), (b,1), 
(c,1)} (under min-product). This shows, in general, that = does hold in the second part 
of item 5 of Theorem 4.7.   

5 Application 

When constructing a decision system, the central problem is generating a set of 
decision rules and implementing approximate reasoning. The rough theory is based on 
approximate reasoning. It allows reducing original data and generating in automatic 
way the sets of decision rules. One enhancement of standard rough set classification 
does not well perform their task in an environment characterized by uncertain on 
incomplete data.  In many real-word applications, we need deal with partially 
uncertain condition and decision attribute values in a decision system. Furthermore, 
relationship among these values with the same type, e.g. neighbor relation, often is not 
transitive. For example, in medicine, symptoms and diseases of a patient may be 
partially uncertain. In particular, diseases (decisions) made by doctor’s experiences 
are uncertain usually. This needs a flexible way to handle uncertain condition and 
decision attribute values in a decision system. Though rough sets can approximately 
represent rough concepts, it is based on an equivalence relation. So, application of 
fuzzy semi-equivalence relations for making decision appears to be natural and 
possible.  

In this section, we illustrate application of fuzzy semi-equivalence relation theory in 
medicine by outline an approach to making decision from given case histories. This is 
an improvement of our original method in [Zhang Mingyi and Li Danning, 1986]. 

Let S=(U, C, D, V) be a decision system, where U, C, D and V are pairwise disjoint 
sets; U={o1,...,0n} is a finite set of patients or cases (objects); V={v1,...,vq} is a class 
of attribute values with different types; and C={c1,...cm} is a finite set of symptoms 
(condition) such that, for c∈C, c:U→V(c) (V(c) is the value of symptom c)；D 
={d1,...,dk} is a set of diseases (decisions) such that, for d∈D, d:U→V(d) (V(d) is the 
value of disease d). Values of a symptom are given by case history (an oral account) 
of a patient or an instrument, while values of a disease are given by a doctor. The two 
sets C and D characterize each object o in U, that is, for each o in U, there are two 
corresponding fuzzy sets c and d, which characterize the patient o.  
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The fuzzy-rough (-relative) sets adopt the concepts of a fuzzy semi-equivalence 
relation to approximately discern training instances according to some criteria. The 
objects x and y are indiscernible for each attribute on a subset B of attributes, if their 
values for each attribute in B are closed according to a certain distance. One uses the 
lower and upper approximations for B on X to derive certain and possible decision 
rules.  

Our approach is outlined as follows: 
Step 1. To get a fuzzy subset of U by the set of attribute values, we use canonical 

methods to translate values with the same type of all symptoms into a number in [0,1], 
i.e. we establish  fuzzy subsets of U×C (U×D). For each o∈U, c(o) and d(o) are 
memberships  of symptom c and disease d for patient o, respectively. c(o) = 0 (=1) 
represents patient o has no (certainly has) symptom c. Similarly, we can understand 
what does d(o) mean. Then, for each o∈U, C(o) and D(o) are fuzzy subsets of {o}×C 
and {o}×D, which characterize symptoms and diseases of patient o, respectively.  

Step 2. A fuzzy semi-equivalence relation on U based on symptom attribute values 
is defined as following: given any oi,oj∈U and d∈D, for each c∈C, R(oi,oj)(c)∈[0,1] is 
determined by a   distance of some type between ci(o) and cj(o), e.g.  

R(oi,oj)(c)=1−Abs(ci(o)−cj(o)) / (ci(o)+cj(o)).  
Based on the set C of symptom-attribute values, we establish the similar (semi- 

equivalence) relation RC on U such that, for each c∈C, RC(oi,oj)(c)= R(oi,oj)(c)/Q, 
where oi, oj ∈U, α(c,d)  is the weight of symptom c for disease d such that  

Σc∈C, d∈D  α(c,d)  = 1 and Q=Σc∈C, d∈D α(c,d)• R(oi,oj)(c).  
Furthermore, we construct  fuzzy relative classes URC and fuzzy semi-equivalence 
classes U/ RC.   

Step 3. Define a fuzzy semi-equivalence relation RD on D such that, for any 
oi,oj∈U,  

RD(oi,oj)(d) =1−Abs(d(oi)−d(oj)) / (d(oi)+d(oj)).   
Using it we construct DRD and D/ RD. 

Step 4. Generate decision rules of form “If Then”. For each RC fuzzy relative 
(semi-equivalence) class, use the conjunction of symptom-attribute values of the class 
representative as the condition of a rule and the disjunction of lower (or upper) 
approximations of the class representatives  under the relation RD as the decision of 
corresponding rule respectively. Usually, we can reduce a set of decisions by some 
level λ, i.e. for D′⊆D, let D′(o,λ)={d∈D⎥ d(o)≥λ}.  

Step 5. (It is unnecessary when only one of fuzzy relative and fuzzy semi-
equivalence relations is used).  Select an appreciate relation between fuzzy relative 
and fuzzy semi-equivalence relations by a lot of real applications.   
Remark There are many methods for dealing with multi-criteria decision, e.g., 
Yager’s Ordered Weighted Averaging (OWA) operators and their variants, reduced 
multivariate polynomial pattern classifier et al. [Kar-Annt et al., 2004; Muller et al., 
2007; Pelatz et al., 2007; Skowron et al., 2007]. They are useful for determining the 
weight of symptom c for disease d in Step 2. In our forthcoming paper, we will discuss 
it. In addition, other problems are considered. Firstly, we give a method to alter these 
rules by justifying or testing these generated rules using new cases (patients).  Then 
when adding new conditions (symptoms) we use gradual approximations of indistinct 
concepts under fuzzy semi-equivalence relations to refine the generated rules.     
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As a simplified example for illustrating the above stated application, we consider 
the following 
Example 2 (continue) G={a,b,c} is the set of patients in a given case history and  
each element in G is determined by its set of attribute (symptoms) values. Sometimes, 
for convenient, we make a patient (or a class of patients) equivalent to a disease 
suffered by the patient or to treatments made for the patient). R is an alike relation 
among patients, which is fuzzy semi-equivalent and a pair of alike degrees between 
their corresponding attribute values determines the alike degree between two patients. 
We consider the set of fuzzy semi-equivalence classes under the min-product operator, 
since Q*Q is transitive for each Q∈G/R. For any x∈G, Q(x) represents degrees of 
belongingness of x to Q. For example, Q(a)=1 means that x is certainly in Q (or a is a 
core of Q, i.e. the distance between  a and the borders of G equals to zero), and 
Q(b)=0.3 represents that b is close to the borders of G with distance 1−0.3. So, 
treatments made for each definable set A∈DefFSER[G] are known by the case history. 
These treatments are dependent on the order of all value Q(x), that is, they are base 
principally on these cores and attributes with bigger alike degrees. Decision rules then 
can be made as follows: given a patient o, we establish a fuzzy set A∈F(G) such that,  
for x∈G, A(x) is the alike degrees between patients a and x determined by their 
corresponding attributes.   

(1) if FSERA =∅ then the treatments for A can be only made by FSERA  when  

FSERA ≠G (this means that the treatments for A contain  at the most treatments for 

FSERA ); otherwise, A is a new disease.  For instance, if A(x)=0.8 for any x∈G, then 

FSERA =G and A is a new disease.  

(2)  if FSERA ≠ ∅, then the treatments for A contain at the least treatments for  

FSERA .  

(3) if FSERA ≠ ∅ and FSERA ≠G, then the treatments for A should range form  the 

treatments for FSERA  to  the treatments for  FSERA .             

6 Discussion and Further Work 

In the paper, we used Vojtas’ Truth-function fuzzy logic in a narrow sense [Vojtas, 
2001]. Assume L is a multi-sorted predicate language with or without function 
symbols and restrict our declarative semantics only on Herbrand models UA

L, a 
Herbrand universe of sort A--- all ground terms as crisp. Let BL be the Herbrand base 
of the language L. All fuzzy predicates will be interpreted by a mapping from BL to 
the unit interval [0,1]. We call f: BL→[0,1] a fuzzy interpretation of our language. For 
ground atoms p∈BL, f(p) is its truth value. For arbitrary formula ϕ and an evaluation 
of all sorts of variables eA: VarA→UA

L, the truth value f(ϕ)[e] is calculated along the 
complexity of formulas using truth functions of connectives and quantifiers: 
f(¬ϕ)=1− f(ϕ). 
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f(ϕ∨ψ)=max(f(ϕ), f(ψ)). 
f(ϕ∧ψ)=min(f(ϕ), f(ψ)). 
f(ϕ→ψ)=max(1 −f(ϕ), f(ψ)). 
f(∀xf(ϕ))=inf{f(ϕ)[e′] ⎢e′=x e},  where e′=xe means that e′ can differ from e only  at x.  
f(ϕ)=inf{f(ϕ)[e] ⎢e arbitrary}. 

In a similar way, we can discuss corresponding classes of fuzzy semi-equivalence 
relations and approximations based on them, when we choose some of the following 
types of connectives by practice or experience:   

The Lukasiewicz connectives--- 
           ∨L(x,y)=min(1, x+y)                     ∧L(x, y)=max(0, x+y−1) 
           ¬L(x)=1−x                                    →L(x, y)=min(1,1−x+y) 

The Godel intuitionist connectives--- 
           ∨G(x,y)=max(x, y)                        ∧G(x, y)=min(x, y) 

¬G(0)=1,  ¬G(x)=0  for x>0         →G(x, y)=y if x>y else 1 
The product logic--- 

         ∨P(x,y)=x+y−x•y                           ∧P(x, y)= x•y 
¬P(0)=1, ¬P(x)=0 for x>0            →P(x, y)=min(1, y/x) if x>y else 1 

Modeling imprecise and incomplete information is one of the main research topics 
in the area of knowledge representations. Fuzzy set theory and rough set theory have 
been most influential on this research field. Wu and Zhang considered a general class 
of relations, so-called semi-equivalence relation. In this paper we present a more 
general approach to this issue. By introducing the notions of fuzzy semi-equivalence 
relation, we propose a broad class of fuzzy rough sets, and define three classes of 
fuzzy rough sets taking into account three classes of quotients: relative quotient as 
well as semi-equivalence quotients under algebraic product and min-product 
respectively. The study of gradual approximations of indistinct concepts under fuzzy 
semi-equivalence relations and its application to generating decision rules as well as 
revision of generated rules is an option of our further work. 
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Appendix   

Proof of Theorem 2.1  
Clearly, for any Ri(i≥2)∈ES[G] and any x,y∈G，(x,x)∈∪iRi. If (x,y)∈∪iRi, then there 
is some Rk⊆∪iRi such that (x,y)∈Rk. By the symmetry of R, we have (y,x)∈Rk⊆∪iRi. 
So, ∪iRi∈ES[G]. If (x,y)∈∩iRi, then (x,y)∈Ri for any i. Hence (y,x)∈Ri for any i and 
(y,x)∈∩iRi. Therefore, ∩iRi∈ES[G]. It is easy to verify that G and I are the greatest 
and least elements respectively.  

Proof  of Theorem 2.2 
(1) For any x∈Q, (a,x)∈Q2⊆R by Definition 2.2 . So, x∈[a]R, which means Q⊆[a]R. 
(2) It is obvious when G is a countable infinite universe. For any finite G, we show 

⎜G/R⎜≤⎜GR⎥  by induction on cardinal n of G.   
Base For n=1 it is clear.  
Step Suppose that ⎜G/R⎜≤⎜GR⎥ for n=k. We consider the case where n=k+1. Let 

P=G−{a} for some a∈G. Then ⎥P⎥=k and ⎥P/R⎥≤⎥PR⎥=k by induction hypothesis. For 
any Q∈G/R, if a∉Q then Q⊆P and Q∈P/R. If a∈Q and⎥Q⎥>1，then Q−{a}∈P/R; if 
Q={a} then Q∉P/R. Hence, we have ⎜G/R⎜≤⎜P/R⎜or ⎜G/R⎜−1≤⎜P/R⎜. This implies 
that ⎜G/R⎜≤⎜P/R⎜+1≤⎜PR⎥+1=k+1=⎜GR⎥.     

(3) It is obvious.  
(4) Since ∪G/R⊆G, it is sufficient to prove that, for any x∈G, x∈∪a∈G [a]R. For 

simplicity, let G={ai⎥ i≥1}. No loss generality, we assume x=a1. Define Q={bi⎥ i≥1} 
⊆G as follows: 

b1=a1, for i≥1,  
bi+1=aj , where aj∈G−{b1,...bi} such that {b1,..., bi, aj}2⊆R.  
It is easy to show that Q∈G/R. So, for any x∈G， there is Q∈G/R such that x∈Q. 

Then we have x∈∪G/R. Therefore G⊆∪G/R, which implies ∪G/R=G. It is obvious 
that ∪a∈G[a]R=G by Definition 2.2.  

(5) From (1) and (4) we have ∪a∈G[a]R
2⊆ ∪Q∈G/RQ2. for some a∈Q, if Q∈G/R,  then 

we have  Q⊆[a]R by (1). Therefore, Q2⊆∪a∈G[a]R
2 . Thus, ∪Q∈G/RQ2=∪a∈G[a]R2. 

Proof of Theorem 2.3  
For any class of R-definable sets {Ai⎥ Ai⊆G and Ai is R-definable, i≥1}, we have 

that ∪iAi=∪i∪j{Qij⎥Qij∈R/G}, where Ai=∪j{Qij⎥Qij∈R/G, j≥1}. So, ∪iAi = ∪i,j{Qij⎥ 
Qij∈R/G}. By Definition 2.3, ∪iAi∈Def[G]. 

For the assertion that Def [G] is closed under neither the intersection nor the 
complement c generally, we consider the following example. 
Example 3. Let G be the set constituted by six people and R be a relation on G 
defined as follows:    

 R   o1    o2   o3    o4   o5     o6 
       o1   1     0     1    1    0     0 
       o2   0     1     0    1    1     1 
       o3   1     0     1    0    0     0 
       o4    1     1     0    1    0     1 
       o5    0    1     0     0    1     0   

157Mingyi Z., Danning L., Ying Z.: An Approach to Generation of Decision ...



  

       o6    0    1     0     1    0     1   
Here, oiRoj  shows that oi and oj are familiar with each other for any i, j∈{1, …, 6}. 

And We have  
G/R= {{o1, o3}, {o2, o4, o6}, {o2, o5}}.  

    GR={{ o1,o3,o4},{o2,o4,o5,o6}, {o1,o3},{o1,o2,o4,o6}, {o2, o5},{o2, o4, o6}}. 
     ∪G/R=∪a∈G[a]R=G 
     ∪Q∈G/R Q2=∪a∈G [a]R

2. 
Def[G]={{o1,o3}, {o2,o4,o6}, {o2,o5}, {o1,o2,o3,o4,o6},{o1,o2,o3,o5}, {o2,o4,o5,o6}}.  
A =G and A={o1,o3} for A={o1, o2, o3}. 
{o2, o4, o6}∩{o2, o5}={o2}∉Def[G].  
{o2, o4, o6}c={o1, o3, o5}∉Def[G].     
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