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Abstract: In group decision making situations, there may be cases in which experts
do not have an in-depth knowledge of the problem to be solved and, as a result,
they may present incomplete information. In this paper, we present a new selection
process to deal with incomplete fuzzy linguistic information. As part of it, we use an
iterative procedure to estimate the missing information. This procedure is guided by
the additive consistency property and only uses the preference values provided by the
experts. In addition, the additive consistency property is also used to measure the
level of consistency of the information provided by the experts. The main novelties
of this selection process are both the possibility to manage decision situations under
incomplete fuzzy linguistic information and the importance of the experts’ preferences
in the aggregation processes is modeled by means of the experts’ consistency.
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1 Introduction

In Group Decision Making (GDM) problems there are a set of alternatives to
solve a problem and a group of experts, characterized by their own ideas, atti-
tudes, motivations and knowledge, trying to achieve a common solution. To do
this, experts have to express their preferences by means of a set of evaluations
over the set of alternatives.

Preference relations are usually assumed to model experts’ preferences in
GDM problems [Orlovski 1978, Saaty 1980, Tanino 1984]. According to the na-
ture of the information expressed for every pair of alternatives, there exist
many different representation formats of preference relations. In this paper, we
use fuzzy linguistic preference relations (FLPRs) because of most GDM prob-
lems present qualitative aspects that are complex to assess by means of precise
and exact values and, in such cases, an ordinal fuzzy linguistic approach can
be used to obtain a better solution [Herrera et al. 1997a, Herrera et al. 1998,
Herrera-Viedma 2001, Herrera-Viedma et al. 2005, Herrera-Viedma et al. 2006,
Zadeh 1975a, Zadeh 1975b, Zadeh 1975c]. FLPRs assessed on a 2-tuple fuzzy

Journal of Universal Computer Science, vol. 16, no. 1 (2010), 62-81
submitted: 1/2/09, accepted: 15/10/09, appeared: 1/1/10 © J.UCS



linguistic modelling [Herrera and Mart́ınez 2000] are assumed because it pro-
vides some advantages with respect to the ordinal fuzzy linguistic modelling
[Cabrerizo et al. 2009, Herrera and Mart́ınez 2001]. The main advantage of pair-
wise comparison is that of focusing exclusively on two alternatives at a time,
which facilitates experts when expressing their preferences. However, this way of
providing preferences limits experts in their global perception of the alternatives
and, as a consequence, the provided preferences could be not rational. Usually,
rationality is related the consistency concept, which is associated with the tran-
sitivity property. Many properties have been suggested to model transitivity of a
fuzzy preference relation [Herrera-Viedma et al. 2004]. One of these properties is
the additive consistency, which, as it was shown in [Herrera-Viedma et al. 2004],
can be seen as the parallel concept of Saaty’s consistency property in the case
of multiplicative preference relations [Saaty 1980].

It is obvious that consistent information, i.e., information which does not
imply any kind of contradiction, is more relevant or important than information
containing some contradictions. The general procedure for the inclusion of impor-
tance degrees in GDM problems involves the transformation of the preference val-
ues under the importance degrees to generate new values. This activity is carried
out by means of a transformation function [Herrera and Herrera-Viedma 1997,
Yager 1978, Yager 1994] or by using the importance degrees to induce the or-
dering of the preference values prior to their aggregation as in Induced Ordered
Weighted Averaging (IOWA) operator [Yager and Filev 1999].

As aforementioned, each expert has his/her own knowledge concerning the
problem being studied, which also may imply a major drawback, that of an
expert not having a perfect knowledge of the problem to be solved. Indeed,
experts could not be able to efficiently express any kind of preference degree
between two or more of the available options. This may be due to an expert
not possessing a precise or sufficient level of knowledge of part of the problem,
or because that expert is unable to discriminate the degree to which some op-
tions are better than others. Experts would rather not guess those preference
degrees in these situations and, as a consequence, they might provide incomplete
information [Alonso et al. 2008, Kim et al. 1999, Herrera-Viedma et al. 2007a,
Herrera-Viedma et al. 2007, Xu 2005]. In this way, a difficulty that has to be
addressed is the lack of information in the experts’ opinions and, therefore, it
would be of great importance to provide experts some tools that allow them to
express this lack of knowledge in their opinions.

The aim of this paper is to present a new selection process based on addi-
tive consistency property to deal with GDM problems with incomplete FLPRs.
This new selection process is composed of three steps: (1) estimation of missing
preference values, (2) aggregation and (3) exploitation. So, we define an addi-
tive consistency measure for FLPRs that is based on the additive transitivity
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property [Tanino 1984]. In the first step we use an iterative complete proce-
dure to estimate missing information in the case of incomplete FLPRs. It is
based on the linguistic extension of Tanino’s consistency principle and it car-
ries out the completion of a particular expert’s incomplete FLPRs using only
the information he/she provides. The, following the choice scheme proposed in
[Fodor and Roubens 1994], aggregation following by exploitation, this new selec-
tion process is completed. Furthermore, we use the additive consistency measure
to propose a new IOWA operator, which we call the additive-consistency 2-tuple
linguistic IOWA operator. The aggregation step of a selection process consists
in combining the experts’ individual preferences into a collective one, in such a
way, that it summarizes or reflects the properties contained in all the individual
preferences. This aggregation is carried out by using that new linguistic IOWA
operator. The exploitation phase transforms the global information about the al-
ternatives into a global ranking of them. To do this, two quantifier guided choice
degrees of alternatives are used: the dominance and non-dominance degrees. The
main improvements of this new selection process is that it supports the man-
agement of incomplete fuzzy linguistic information and allows the aggregation
of the experts’ preferences, in such a way, that more importance is given to the
most consistent ones.

The rest of the paper is set out as follows. Section 2 deals with the prelimi-
naries necessary to develop the new selection process. Section 3 presents the new
selection process based on additive consistency to deal with incomplete FLPR.
Section 4 shows an example as to how to apply it. Finally, in Section 5, we draw
our conclusions.

2 Preliminaries

In this section, we present those tools necessary to design the new selection
process, that is, the concept of incomplete 2-tuple FLPR, consistency measures
and the iterative procedure to estimate missing values.

2.1 Incomplete 2-tuple FLPRs

A preference relation is defined as P h ⊂ X×X , where the value μP h(xi, xk) = ph
ik

is interpreted as the preference degree of the alternative xi over xk for the ex-
pert eh. According to the nature of the information expressed for every pair
of alternatives, there exist many different representation domains of prefer-
ence relations. As aforementioned, we use the 2-tuple fuzzy linguistic model
[Herrera and Mart́ınez 2000] to represent experts’ preferences.

Definition 1. Let S = {s0, . . . , sg} be a linguistic term set and β ∈ [0, g] a
value representing the result of a symbolic aggregation operation, being g + 1
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the cardinality of S, then the 2-tuple that expresses the equivalent information
to β is obtained with the following function:

Δ : [0, g] −→ S × [−0.5, 0.5)

Δ(β) = (si, α), with
{

si, i = round(β)
α = β − i, α ∈ [−0.5, 0.5),

(1)

where round(·) is the usual round operation, si has the closest index label to
“β”, and “α” is the value of the symbolic translation.

Proposition2. Let S = {s0, . . . , sg} be a linguistic term set and (si, α) be a
2-tuple. There is always a Δ−1 function such that from a 2-tuple it returns its
equivalent numerical value β ∈ [0, g].

Δ−1 : S × [−0.5, 0.5) −→ [0, g]

Δ−1(si, α) = i + α = β. (2)

A 2-tuple linguistic computational model to combine linguistic information
is composed of following operators: h

1. A 2-tuple comparison operator. The comparison of linguistic information
represented by linguistic 2-tuples is carried out according to an ordinary
lexicographic order (see [Herrera and Mart́ınez 2000] for more details).

2. A 2-tuple negation operator.

Neg(si, α) = Δ(g − (Δ−1(si, α))). (3)

3. 2-tuple aggregation operators. Extending the classical aggregation opera-
tors, such as the Linguistic Ordered Weighted Averaging (LOWA) operator
[Herrera et al. 1996], the weighted average operator, the Ordered Weighted
Averaging (OWA) operator, etc., (see [Herrera and Mart́ınez 2000]).

A linguistic term si ∈ S can be seen as a linguistic 2-tuple by adding to it
the value 0 as symbolic translation, i.e., si ∈ S ≡ (si, 0).

Definition 3. A 2-tuple FLPR P h on a set of alternatives X = {x1, . . . , sn} is
a fuzzy set defined on the product set X ×X , whic is characterized by a 2-tuple
linguistic membership function

μP h : X × X −→ S × [−0.5, 0.5). (4)
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When cardinality of X is small, the preference relation may be conveniently
represented by a n × n matrix P h = (ph

ik), being ph
ik = μP h(xi, xk), ∀i, k ∈

{1, . . . , n} and ph
ik ∈ (S × [−0.5, 0.5)).

Usual models to solve GDM problems assume that experts are always able to
provide all the preferences required. However, this situation is not always possible
to achieve. Experts could have some difficulties in giving all their preferences due
to lack of knowledge about part of the problem, or simply because they may not
be able to quantify some of their degree of preference. It must be clear then that
when an expert eh is not able to express the particular value ph

ik, this does not
mean that he/she prefers both options with the same intensity.

In order to model these situations, in the following definitions we express the
concept of an incomplete 2-tuple FLPR:

Definition 4. A function f : X×Y is partial when not every element in the set
X necessarily maps to an element in the set Y . When every element from the
set X maps to one element of the set Y then we have a total function.

Definition 5. A 2-tuple FLPR P h on a set of alternatives X with a partial
2-tuple linguistic membership function is an incomplete 2-tuple FLPR.

Obviously, a 2-tuple FLPR is complete when its membership function is
totally defined. Clearly, definition (3) includes both definitions of complete and
incomplete 2-tuple FLPRs.

2.2 Consistency measures

The previous definition of a 2-tuple FLPR does not imply any kind of consistency
property. In fact, preference values of a preference relation can be contradictory.
Obviously, an inconsistent source of information is not as useful as a consistent
one and, thus, it would be quite important to be able to measure the consistency
of the information provided by experts for a particular problem.

To make a rational choice, properties to be satisfied by such preference re-
lations have been suggested. One of these properties is the transitivity prop-
erty, which represents the idea that the preference value obtained by directly
two alternatives should be equal to or greater than the preference value be-
tween those two alternatives obtained using an indirect chain of alternatives.
There are several possible characterizations for the transitivity property (see
[Herrera-Viedma et al. 2004]). In this paper, we make use of the additive tran-
sitivity property, which can be seen for fuzzy preference relations as the parallel
concept of Saaty’s consistency property for multiplicative preference relations
[Saaty 1980]. The mathematical formulation of the additive transitivity was given
by Tanino in [Tanino 1984]:
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(ph
ij − 0.5) + (ph

jk − 0.5) = (ph
ik − 0.5), ∀i, j, k ∈ {1, . . . , n}. (5)

Using the transformation functions Δ and Δ−1, we define the linguistic ad-
ditive transitivity property for 2-tuple FLPR as follows:

Δ[(Δ−1(ph
ij) − Δ−1(sg/2, 0)) + (Δ−1(ph

jk) − Δ−1(sg/2, 0))] =
Δ[(Δ−1(ph

ik) − Δ−1(sg/2, 0)], ∀i, j, k ∈ {1, . . . , n}. (6)

As in the case of additive transitivity, the linguistic additive transitivity
implies linguistic additive reciprocity. Indeed, because ph

ii = (sg/2, 0), ∀i, if we
make k = i in (6), then we have: Δ(Δ−1(ph

ij) + Δ−1(ph
ji)) = (sg, 0), ∀i, j ∈

{1, . . . , n}. Then, expression (6) could be rewritten as:

ph
ik = Δ(Δ−1(ph

ij) + Δ−1(ph
jk) − Δ−1(sg/2, 0)), ∀i, j, k ∈ {1, . . . , n}. (7)

A 2-tuple FLPR will be considered “additive consistent” when for every three
options, xi, xj , xk ∈ X , their associated 2-tuple fuzzy linguistic preference de-
grees, ph

ij , p
h
jk, ph

ik, fulfil (7). An additive consistent 2-tuple FLPR will be referred
as consistent throughout the paper, as this is the only transitivity property we
are considering.

Expression (7) could be used to calculate an estimated value of a preference
degree using other preference degrees. Indeed, the preference value ph

ik (i �= k)
can be estimated using an intermediate alternative xj in three different ways:

1. From ph
ik = Δ(Δ−1(ph

ij) + Δ−1(ph
jk) − Δ−1(sg/2, 0)) we obtain the estimate

(cph
ik)j1 = Δ(Δ−1(ph

ij) + Δ−1(ph
jk) − Δ−1(sg/2, 0)). (8)

2. From ph
jk = Δ(Δ−1(ph

ji) + Δ−1(ph
ik) − Δ−1(sg/2, 0)) we obtain the estimate

(cph
ik)j2 = Δ(Δ−1(ph

jk) − Δ−1(ph
ji) + Δ−1(sg/2, 0)). (9)

3. From ph
ij = Δ(Δ−1(ph

ik) + Δ−1(ph
kj) − Δ−1(sg/2, 0)) we obtain the estimate

(cph
ik)j3 = Δ(Δ−1(ph

ij) − Δ−1(ph
kj) + Δ−1(sg/2, 0)). (10)

The overall estimated value cph
ik of ph

ik is obtained as the average of all
possible (cph

ik)j1, (cph
ik)j2 and (cph

ik)j3 values:

cph
ik = Δ

(∑n
j=1;i�=k �=j (Δ−1((cph

ik)j1) + Δ−1((cph
ik)j2) + Δ−1((cph

ik)j3))
3(n − 2)

)
.

(11)
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We should point out that in expressions (8), (9) and (10), we could find that
the value of argument of the function Δ could lie outside the interval [0, g]. In
order to avoid this problem, the following function is used on the arguments of
Δ:

f(y) =

⎧⎨
⎩

0, if y < 0
g, if y > g

y, otherwise,
(12)

When the information provided is completely consistent, then (cph
ik)jl = ph

ik,

∀j, l. The error between a preference value and its estimated one is defined as
follows.

Definition 6. The error between a preference value and its estimated one in
[0, 1] is computed as:

εph
ik =

|Δ−1(cph
ik) − Δ−1(ph

ik)|
g

. (13)

Thus, it can be used to define the consistency level of the preference degree ph
ik.

Definition 7. The consistency level associated to ph
ik is defined as:

clhik = 1 − εph
ik. (14)

When clhik = 1, then εph
ik = 0 and there is no inconsistency at all. The lower the

value of clhik, the higher the value of εph
ik and the more inconsistent is ph

ik with
respect to the rest of information.

In the following, we define the consistency levels associated with individual
alternatives and the whole 2-tuple FLPR:

Definition 8. The consistency level, clhi ∈ [0, 1], associated to a particular al-
ternative xi of a 2-tuple FLPR, P h, is defined as:

clhi =

∑n
k=1;i�=k (clhik + clhki)

2(n − 1)
. (15)

Definition 9. The consistency level, clh ∈ [0, 1], of a 2-tuple FLPR, P h, is
defined as follows:

clh =
∑n

i=1 clhi
n

. (16)

When working with an incomplete 2-tuple FLPR, expression (11) cannot be
used to obtain the estimate of a known preference value. In these cases, the
following sets can be defined [Herrera-Viedma et al. 2007]:
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A = {(i, j) | i, j ∈ {1, . . . , n} ∧ i �= j}
MV h = {(i, j) ∈ A | ph

ij is unknown}
EV h = A \ MV h

Hh1
ik = {j �= i, k | (i, j), (j, k) ∈ EV h}

Hh2
ik = {j �= i, k | (j, i), (j, k) ∈ EV h}

Hh3
ik = {j �= i, k | (i, j), (k, j) ∈ EV h}

EV h
i = {(a, b) | (a, b) ∈ EV h ∧ (a = i ∨ b = i)},

(17)

where MV h is the set of pairs of alternatives whose preference degrees are not
given by expert eh, EV h is the set of pairs of alternatives whose preference
degrees are given by the expert eh; Hh1

ik , Hh2
ik , Hh3

ik are the sets of intermediate
alternative xj (j �= i, k) that can be used to estimate the preference value ph

ik

(i �= k) using (8)–(10), respectively; and EV h
i is the set of pairs of alternatives

whose preference degrees involving the alternative xi are given by the expert eh.
Then, the estimated value of a particular preference degree ph

ik ((i, k) ∈ EV h)
can be calculated as [Herrera-Viedma et al. 2007a, Herrera-Viedma et al. 2007]:

if (#Hh1
ik + #Hh2

ik + #Hh3
ik ) �= 0 ⇒

cph
ik = Δ

 P

j∈Hh1
ik

Δ−1((cph
ik)j1)+

P

j∈Hh2
ik

Δ−1((cph
ik)j2)+

P

j∈Hh3
ik

Δ−1((cph
ik)j3)

(#Hh1
ik

+#Hh2
ik

+#Hh3
ik

)

!
.

(18)

An important factor to take into account when analyzing the consistency
in decision making situations with incomplete information is the notion of com-
pleteness. Clearly, the higher the number of preference values provided by an ex-
pert the higher the chance of inconsistency [Herrera-Viedma et al. 2007]. There-
fore, a degree of completeness associated with the number or preference values
provided should also be taken into account to produce a fairer measure of con-
sistency of an incomplete 2-tuple FLPR.

Given an incomplete 2-tuple FLPR, we can easily characterize two complete-
ness levels, the completeness level of a relation and the completeness level of an
alternative. For an incomplete 2-tuple FLPR P h, its completeness level, Ch, can
be defined as the ratio of the number of preference values known, #EV h, to the
total possible number of preference values, n2 − n:

Ch =
#EV h

n2 − n
. (19)

For an alternative xi, we can define its completeness level according to the
preferences provided by the expert eh, Ch

i , as the ratio between the actual num-
ber of preference values known for xi, #EV h

i , and the total number of possible
preference values in which xi is involved with a different alternative, 2(n − 1):
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Ch
i =

#EV h
i

2(n − 1)
. (20)

So, we can define the consistency level associated to a preference value in an
incomplete 2-tuple FLPR as follows.

Definition 10. The consistency level clhik associated to ph
ik (i, k) ∈ EV h is de-

fined as a linear combination of its associated error and the average of the com-
pleteness values associated to the two alternatives involved in that preference
degree

clhik = (1 − αh
ik) · (1 − εph

ik) + αh
ik · Ch

i + Ch
k

2
; αh

ik ∈ [0, 1], (21)

where αh
ik is a parameter to control the influence of completeness in the evalua-

tion of the consistency levels for eh defined as:

αh
ik = 1 − #EV h

i + #EV h
k − #(EV h

i ∩ EV h
k )

4(n − 1) − 2
. (22)

Clearly, expression (21) is an extension of expression (14), because when P h

is complete both EV h and A coincide and αh
ik = 0, ∀i, k.

Definition 11. The consistency level of an incomplete 2-tuple FLPR is defined
as follows:

clh =

∑
(i,k)∈EV h clhik

#EV h
. (23)

2.3 Estimation procedure of missing values for incomplete 2-tuple
FLPRs

We use an iterative complete procedure to estimate the missing values in an
incomplete 2-tuple FLPR, which it is based on the linguistic additive consistency
property. This procedure estimates missing values in an expert’s incomplete 2-
tuple FLPR using only the preference values provided by that particular expert.
The procedure estimates missing values by means of two different tasks:
A) Choose those elements to be estimated in each iteration of the
procedure

The subset of missing values MV h that can be estimated in step t of our
procedure is denoted by EMV h

t and defined as follows:

EMV h
t =

{
(i, k) ∈ MV h \

t−1⋃
l=0

EMV h
l | i �= k ∧ ∃j ∈ {Hh1

ik ∪ Hh2
ik ∪ Hh3

ik }
}

,

(24)
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and EMV h
0 = ∅ (by definition). When EMV h

maxIter = ∅, with maxIter > 0, the
procedure will stop as there will not be any more missing values to be estimated.
Furthermore, if

⋃maxIter
l=0 EMV h

l = MV h, then all missing values are estimated,
and, consequently, the procedure is said to be successful in the completion of the
incomplete 2-tuple FLPR.
B) Estimate a particular missing value

In order to estimate a particular value ph
ik with (i, k) ∈ EMV h

t , the following
function estimate p(h, i, k) is proposed:

function estimate p(h,i,k)

1) (cph
ik)1 = (s0, 0), (cph

ik)2 = (s0, 0), (cph
ik)3 = (s0, 0), K = 0.

2) if #Hh1
ik �= 0, then (cph

ik)1 = Δ((
∑

j∈Hh1
ik

Δ−1((cph
ik)j1))/#Hh1

ik ), K++.
3) if #Hh2

ik �= 0, then (cph
ik)2 = Δ((

∑
j∈Hh2

ik
Δ−1((cph

ik)j2))/#Hh2
ik ), K++.

4) if #Hh3
ik �= 0, then (cph

ik)3 = Δ((
∑

j∈Hh3
ik

Δ−1((cph
ik)j3))/#Hh3

ik ), K++.

5) Calculate cph
ik = Δ

(
Δ−1(cph

ik)1+Δ−1(cph
ik)2+Δ−1(cph

ik)3

K
)
.

end function

Then, the complete iterative estimation procedure is the following:

0. EMV h
0 = ∅

1. t = 1
2. while EMV h

t �= ∅ {
3. for every (i, k) ∈ EMV h

t {
4. estimate p(h,i,k)

5. }
6. t + +
7. }

3 A selection process based on additive consistency to deal
with incomplete fuzzy linguistic information

In this section, we present a new selection process based on additive consis-
tency to deal with incomplete fuzzy linguistic information. It consists of three
phases: (1) estimation of missing information, (2) aggregation and (3) exploita-
tion. The estimation of missing information completes the opinions provided
by the experts. To do so, it uses the consistency based procedure to estimate
missing information shown in Section 2.3. The aggregation phase defines a col-
lective 2-tuple FLPR indicating the global preference between every ordered pair
of alternatives, while the exploitation phase transforms the global information
about the alternatives into a global ranking of them, from which a choice set of
alternatives is derived.
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3.1 Estimation of missing information

In this phase, each incomplete 2-tuple FLPR is completed following the con-
sistency based procedure to estimate missing information shown in Section 2.3.
In such a way, we allow to solve GDM situations with incomplete information
because of if the missing information is not completed, we could find that some
preference degrees of the collective preference relation cannot be computed in the
aggregation phase and, consequently, the ordering of some alternatives cannot
be computed in the exploitation phase. Therefore, for each incomplete 2-tuple
FLPR, P h, we obtain its corresponding complete 2-tuple FLPR, P̄ h.

3.2 Aggregation

Once we have estimated all the missing values in every incomplete 2-tuple FLPR,
we have a set of m individual 2-tuple FLPRs {P̄ 1, . . . , P̄m}. From this set, a col-
lective 2-tuple FLPR, P c = (pc

ik), must be obtained by means of an aggregation
procedure. In our case, each value pc

ik ∈ S × [−0.5, 0.5) will represent the pref-
erence of alternative xi over alternative xk according to the majority of the
most consistent experts’ opinions. To do that, we use a 2-tuple linguistic OWA
operator to aggregate the experts’ opinions.

Definition 12. A 2-tuple linguistic OWA operator of dimension n is a function
φ : (S × [−0.5, 0.5))n −→ S × [−0.5, 0.5), that has a weighting vector associated
with it, W = (w1, . . . , wn), with wi ∈ [0, 1],

∑n
i=1 wi = 1, and it is defined

according to the following expression:

φW (p1, . . . , pn) = Δ(
n∑

i=1

wi · Δ−1(pσ(i))), pi ∈ S × [−0.5, 0.5), (25)

being σ : {1, . . . , n} −→ {1, . . . , n} a permutation defined on 2-tuple linguistic
values, such that pσ(i) ≥ pσ(i+1), ∀i = 1, . . . , n − 1, i.e., pσ(i) is the i-highest
2-tuple linguistic value in the set {p1, . . . , pn}.

A natural question in the definition of the OWA operator is how to obtain
the associated weighting vector. In [Yager 1988], it was defined an expression to
obtain W that allows to represent the concept of fuzzy majority [Kacprzyk 1986]
by means of a fuzzy linguistic non-decreasing quantifier Q [Zadeh 1983]:

wi = Q(i/n) − Q((i − 1)/n), i = 1, . . . , n. (26)

The 2-tuple linguistic OWA operator does not take into account the impor-
tance of the experts. However, a rational assumption in the resolution process
of a GDM problem is that of associating more importance to the experts who
provide the most “consistent” information. This assumption implies that GDM
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problems should be viewed as heterogeneous. Indeed, in any GDM problem with
incomplete information, each expert eh can have an importance degree associated
with him/her, which, for example, can be his/her own consistency level of the
relation clh or consistency levels of the preference values clhik in each preference
value ph

ik.
Usually, procedures for the inclusion of these importance values in the ag-

gregation process involve the transformation of the preference values, ph
ik, un-

der the importance degree Ih, to generate a new value, p̃h
ik [Herrera et al. 1998,

Herrera and Herrera-Viedma 1997]. Usually, this process is carried out by means
of a transformation function g, p̃h

ik = g(ph
ik, Ih) [Herrera et al. 1998, Yager 1978].

One alternative possibility could consist of using importance degrees or consis-
tency levels as the order inducing values of the IOWA operator to be applied
in the aggregation phase of the selection process. Yager and Filev defined the
IOWA operator as an extension of the OWA operator [Yager 1988] to allow a
different reordering of the values to be aggregated [Yager and Filev 1999].

Definition 13. A 2-tuple linguistic IOWA operator of dimension n is a function

ΦW (〈u1, p1〉, . . . , 〈un, pn〉) = Δ(
n∑

i=1

wi · Δ−1(pσ(i))), pi ∈ S × [−0.5, 0.5), (27)

being σ a permutation of {1, . . . , n} such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . , n −
1, i.e., 〈uσ(1), pσ(1)〉 is the 2-tuple with uσ(i) the i-th highest value in the set
{u1, . . . , un}.

In the above definition, the reordering of the set of values to be aggregated,
{p1, . . . , pn}, is induced by the reordering of the set of values {u1, . . . , un} associ-
ated with them, which is based upon their magnitude. Due to this use of the set of
values {u1, . . . , un}, Yager and Filev called them the values of an order inducing
variable {p1, . . . , pn} the values of the argument variable [Yager and Filev 1999].

In this case, to obtain the associated weighting vector, in [Yager 1996], Yager
also proposed a procedure to evaluate the overall satisfaction of Q important
(uk) criteria (or experts) (ek) by the alternative xj . In this procedure, once the
satisfaction values to be aggregated have been ordered, the weighting vector
associated with an IOWA operator using a linguistic quantifier Q are calculated
following the expression

wi = Q

(∑i
k=1 uσ(k)

T

)
− Q

(∑i−1
k=1 uσ(k)

T

)
, (28)

being T =
∑n

k=1 uk the total sum of importance, and σ the permutation used
to produce the ordering of the values to be aggregated. This approach for the
inclusion of importance degrees associates a zero weight to those experts with a
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zero importance degree. In our case, the consistency levels of the 2-tuple FLPRs
are used to obtain the importance degrees associated with the experts.

Definition (13) allows the construction of many different operators. Indeed,
the set of consistency levels of the preference values, {cl1ik, . . . , clmik}, may be used
to define an IOWA operator, i.e., and the ordering of the preference values to be
aggregated {p̄1

ik, . . . , p̄m
ik} can be induced by ordering the experts from the most

to the least consistent one. In such a way, we obtain an IOWA operator that we
call the additive-consistency 2-tuple IOWA operator, which can be viewed as an
extension of the AC-IOWA operator [Chiclana et al. 2007, Chiclana et al. 2004,
Chiclana et al. 2004a, Herrera-Viedma et al. 2007a].

Definition 14. The additive-consistency 2-tuple linguistic IOWA operator of
dimension m, ΦAC

W , is a 2-tuple linguistic IOWA operator whose set of order
inducing values is {cl1ik, . . . , clmik}.

Then, the collective 2-tuple FLPR is obtained as follows:

pc
ik = ΦAC

Q (〈cl1ik, p̄1
ik〉, . . . , 〈clmik, p̄m

ik〉), (29)

where Q is the fuzzy quantifier used to implement the fuzzy majority concept
and, using (28), to compute the weighting vector of the additive-consistency
2-tuple IOWA operator, ΦAC

Q .

3.3 Exploitation

In this phase, in order to select the “best” alternative(s) acceptable for the
majority of the most consistent experts, we can use two different quantifier-
guided choice degrees of alternatives [Herrera-Viedma et al. 2007a]:

– QGDDi: This quantifier guided dominance degree quantifies the dominance
that one alternative has over all the others in a fuzzy majority sense and is
defined as follows:

QGDDi = φQ(pc
i1, p

c
i2, . . . , p

c
i(i−1), p

c
i(i+1), . . . , p

c
in). (30)

– QGNDDi: This quantifier guided non-dominance degree gives the degree in
which each alternative is not dominated by a fuzzy majority of the remaining
alternatives and is defined as follows:

QGNDDi = φQ(Neg(ps
1i), Neg(ps

2i), . . . , Neg(ps
(i−1)i),

Neg(ps
(i+1)i), . . . , Neg(ps

ni)),
(31)

where
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ps
ki =

{
(s0, 0), if pc

ki < pc
ik

Δ(Δ−1(pc
ki) − Δ−1(pc

ik)), if pc
ki ≥ pc

ik,

represents the degree in which xi is strictly dominated by xk.

The application of the above choice degrees of alternatives over X may be
carried out according to two different policies: sequential policy and conjunctive
policy [Herrera-Viedma et al. 2007a]. Thus, in a complete selection process, the
choice degrees can be applied in three steps:

1. Step 1. The application of each choice degree of alternatives over X to
obtain the following sets of alternatives:

XQGDD = {xi ∈ X | QGDDi = supxj∈XQGDDj}, (32)

XQGNDD = {xi ∈ X | QGNDDi = supxj∈XQGNDDj}, (33)

whose elements are called maximum dominance elements on the fuzzy ma-
jority of X quantified by Q and maximal non-dominated elements by the
fuzzy majority of X quantified by Q, respectively.

2. Step 2. The application of the conjunction selection policy, obtaining the
following set of alternatives:

XQGCP = XQGDD ∩ XQGNDD. (34)

If XQGCP �= ∅, then End. Otherwise, continue.

3. Step 3. The application of the one of the two sequential selection policies,
according to either a dominance or non-dominance criterion, i.e.:

– Dominance based sequential selection process QG-DD-NDD. To apply
the quantifier guided dominance degree over X , and obtain XQGDD.
If #(XQGDD) = 1, then End, and this is the solution set. Otherwise,
continue obtaining

XQG−DD−NDD = {xi ∈ XQGDD |QGNDDi =
supxj∈XQGDD QGNDDj}. (35)

This is the selection set of alternatives.

– Non-dominance based sequential selection process QG-NDD-DD. To ap-
ply the quantifier guided non-dominance degree over X , and obtain
XQGNDD. If #(XQGNDD) = 1, then End, and this is the solution set.
Otherwise, continue obtaining

XQG−NDD−DD = {xi ∈ XQGNDD |QGDDi =
supxj∈XQGNDDQGDDj}. (36)

This is the selection set of alternatives.
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4 Example of application

Let X = {x1, x2, x3, x4} be a set of four alternatives and S = {N, MW, W, E, B,

MB, T } a set of seven linguistic labels with the following meaning:

N = Null MW = Much Worse W = Worse E = Equally Preferred
B = Better MB = Much Better T = Total

Let us suppose that three different experts E = {e1, e2, e3} provide the fol-
lowing incomplete FLPRs using the linguistic expression domain S:

P 1 =

0
B@

− x W x
x − x MW

MB x − E
x B E −

1
CA ; P 2 =

0
B@

− W B B
T − B T
W W − MW
N W MB −

1
CA ; P 3 =

0
B@

− MW x x
B − MB B
W x − W
W MW B −

1
CA .

Then, the respective 2-tuple FLPRs are the following:

P 1 =

0
B@

− x (W, 0) x
x − x (MW,0)

(MB,0) x − (E,0)
x (B,0) (E,0) −

1
CA ;

P 2 =

0
B@

− (W, 0) (B,0) (B,0)
(T,0) − (B,0) (T,0)
(W, 0) (W, 0) − (MW,0)
(N,0) (W, 0) (MB,0) −

1
CA ;

P 3 =

0
B@

− (MW,0) x x
(B,0) − (MB,0) (B,0)
(W, 0) x − (W,0)
(W, 0) (MW,0) (B,0) −

1
CA .

(A) Estimation of missing information
As we observe two 2-tuple FLPRs are incomplete {P 1, P 3}. As an example,

we show how to complete P 1 using the consistency based procedure to estimate
missing information shown in Section 2.3:
Step 1: The set of elements that can be estimated are:

EMV 1
1 = {(1, 4), (2, 3), (3, 2), (4, 1)}.

After these elements have been estimated, we have:

P 1 =

0
B@

− x (W,0) (W,−0.33)
x − (MW, 0.33) (MW,0)

(MB,0) (B, 0.33) − (E,0)
(MB,−0.33) (B,0) (E,0) −

1
CA .

As an example, to estimate p1
14 the procedure is as follows:

H11
14 = {3} ⇒ (cp1

14)1 = Δ(Δ−1(cp1
14)31) = Δ(Δ−1(Δ(Δ−1(p1

13) + Δ−1(p1
34) −

Δ−1(sg/2, 0)))) = Δ(Δ−1(Δ(2 + 3 − 3))) = Δ(Δ−1(Δ(2))) = (W, 0).

76 Cabrerizo F.J., Heradio R., Perez I.J., Herrera-Viedma E.: A Selection ...



H12
14 = {3} ⇒ (cp1

14)
2 = Δ(Δ−1(cp1

14)
32) = Δ(Δ−1(Δ(Δ−1(p1

34) − Δ−1(p1
31) +

Δ−1(sg/2, 0)))) = Δ(Δ−1(Δ(3 − 5 + 3))) = Δ(Δ−1(Δ(1))) = (MW, 0).
H13

14 = {3} ⇒ (cp1
14)

3 = Δ(Δ−1(cp1
14)

33) = Δ(Δ−1(Δ(Δ−1(p1
13) − Δ−1(p1

43) +
Δ−1(sg/2, 0)))) = Δ(Δ−1(Δ(2 − 3 + 3))) = Δ(Δ−1(Δ(2))) = (W, 0).

cp1
14 = Δ

(
Δ−1(cp1

14)
1 + Δ−1(cp1

14)
2 + Δ−1(cp1

14)
3

3

)
= Δ

(
2 + 1 + 2

3

)
=

(W,−0.33).
Step 2: The set of elements that can be estimated are:

EMV 1
2 = {(1, 2), (2, 1)}.

After these elements have been estimated, we have the following complete 2-tuple
FLPR:

P̄ 1 =

0
B@

− (E, 0) (W,0) (W,−0.33)
(E, 0) − (MW, 0.33) (MW,0)

(MB,0) (B, 0.33) − (E,0)
(MB,−0.33) (B,0) (E,0) −

1
CA .

As an example, to estimate p1
12 the procedure is as follows:

H11
12 = {3, 4} ⇒ (cp1

12)
1 = Δ

(
Δ−1(cp1

12)
31 + Δ−1(cp1

12)
41

2

)
= (E, 0).

H12
12 = {3, 4} ⇒ (cp1

12)
2 = Δ

(
Δ−1(cp1

12)32 + Δ−1(cp1
12)42

2

)
= (W, 0.33).

H13
12 = {3, 4} ⇒ (cp1

12)
3 = Δ

(
Δ−1(cp1

12)33 + Δ−1(cp1
12)43

2

)
= (B,−0.33).

cp1
12 = Δ

(
Δ−1(cp1

12)1 + Δ−1(cp1
12)2 + Δ−1(cp1

12)3

3

)
= Δ

(
3 + 2.33 + 3.67

3

)
=

(E, 0).
For P 3 we get:

P̄ 3 =

0
B@

− (MW, 0) (B,−0.25) (E,−0.33)
(B,0) − (MB,0) (B,0)
(W,0) (N, 0.33) − (W, 0)
(W,0) (MW, 0) (B,0) −

1
CA .

The corresponding consistency level matrix associated with the incomplete
2-tuple FLPR P 1 is:

CL1 =

⎛
⎜⎜⎝

− 0.80 0.70 0.76
0.80 − 0.78 0.70
0.70 0.80 − 0.90
0.80 0.70 0.90 −

⎞
⎟⎟⎠ .

As an example, to compute cl113, the following calculations are needed:

EV 1
1 = {(1, 3), (3, 1)} ⇒ C1

1 = 2/6.

EV 1
3 = {(1, 3), (3, 1), (3, 4), (4, 3)} ⇒ C1

3 = 4/6.

EV 1
1 ∩ EV 1

3 = {(1, 3), (3, 1)} ⇒ α1
13 = 1 − 2+4−2

10 = 0.6.
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For p1
13 we have that there is no intermediate alternative to calculate an

estimated value and consequently we have:

εp1
13 = 0 ⇒ cl113 = (1 − 0.6) · (1 − 0) + 0.6 ·

2
6 + 4

2

2
= 0.7.

For P 2 and P 3 we get:

CL2 =

⎛
⎜⎜⎝

− 0.83 0.92 0.80
0.50 − 0.53 0.75
0.92 0.70 − 0.50
0.36 0.92 0.50 −

⎞
⎟⎟⎠ ; CL3 =

⎛
⎜⎜⎝

− 0.80 0.81 0.81
0.77 − 0.82 0.75
0.78 0.81 − 0.80
0.87 0.97 0.80 −

⎞
⎟⎟⎠ .

(B) Aggregation
Once the incomplete 2-tuple FLPRs are completed, we aggregate them by

means of the additive-consistency 2-tuple linguistic IOWA operator and using
the consistency level of the preference values as the order inducing variable.
We make use of the linguistic quantifier “most of”, defined as Q(r) = r1/2,
which applying (28), generates a weighting vector of three values to obtain each
collective preference value pc

ik.
As example, the collective preference value pc

12 is obtained as follows:

cl112 = 0.80, cl212 = 0.83, cl312 = 0.80.

p̄1
12 = (E, 0), p̄2

12 = (W, 0), p̄3
12 = (MW, 0).

σ(1) = 2, σ(2) = 1, σ(3) = 3.

T = cl112 + cl212 + cl312.

Q(0) = 0; Q
(

cl312
T

)
= 0.33; Q

(
cl312+cl212

T

)
= 0.67; Q

(
cl312+cl212+cl112

T

)
= 1.

w1 = 0.33; w2 = 0.34; w3 = 0.33.

pc
12 = Δ(w1 · Δ−1(p̄2

12) + w2 · Δ−1(p̄1
12) + w3 · Δ−1(p̄3

12)) = (W, 0.01).

Then, the collective 2-tuple FLPR is:

P c =

0
B@

− (W, 0.01) (E, 0.32) (E,−0.20)
(MB,−0.13) − (B,−0.29) (B,−0.28)
(E,−0.10) (W, 0.11) − (W, 0.36)
(W,−0.30) (W, 0.09) (B, 0.05) −

1
CA .

(C) Exploitation
Using again the same linguistic quantifier “most of” and (26), we obtain the

weighting vector W = (w1, w2, w3):

w1 = Q(1/3)− Q(0) = 0.58 − 0 = 0.58.

w2 = Q(2/3)− Q(1/3) = 0.82 − 0.58 = 0.24.

w3 = Q(1) − Q(2/3) = 1 − 0.82 = 0.18.

and the following quantifier guided dominance and non-dominance degrees of all
the alternatives:
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x1 x2 x3 x4

QGDDi (E,-0.04) (B,0.38) (W,0.21) (E,0.16)
QGNDDi (MB,0.48) (T,0.00) (MB,0.01) (MB,0.26)

To calculate the quantifier guided non-dominance degree the following matrix
P s is obtained:

P c =

0
B@

− (N, 0.00) (N, 0.42) (MW, 0.10)
(E,−0.14) − (W,−0.40) (E,−0.37)
(N, 0.00) (N, 0.00) − (N, 0.00)
(N, 0.00) (N, 0.00) (W,−0.31) −

1
CA .

Clearly, the maximal sets are:

XQGDD = {x2} and XQGNDD = {x2}.

Finally, applying the conjunction selection policy we obtain:

XQGCP = XQGDD ∩ XQGNDD = {x2}.

which means that alternative x2 is the best alternative according to “most of”
the most consistent experts.

5 Conclusions

In this paper we have presented a new selection process based on additive consis-
tency to deal with GDM problems under incomplete fuzzy linguistic information.
This new selection process is composed of three phases: estimation of missing
values, aggregation and exploitation. The main improvements of this selection
process is that it supports the management of incomplete fuzzy linguistic infor-
mation and it allows the aggregation of the experts’ preferences in such a way
that more importance is given to the most consistent ones.

In the future we think to research two new challenges: i) Study new strate-
gies to compute the missing value, for example by using consensus criteria
[Herrera et al. 1997a, Herrera-Viedma et al. 2005, Mata et al. 2009], and ii) de-
sign new selection process for GDM problems under unbalanced fuzzy linguis-
tic information [Cabrerizo et al. 2009, Herrera-Viedma and López-Herrera 2007,
Herrera et al. 2008].
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[Herrera-Viedma and López-Herrera 2007] Herrera-Viedma, E., López-Herrera, A. G.:
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