
Integrating Semantic Web and Object-Oriented
Programming for Cooperative Design

Po-Huan Chiu
(Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan

bohachu@gmail.com)

Chi-Chun Lo
(Institute of Information Management, National Chiao Tung University, Hsinchu, Taiwan

cclo@faculty.nctu.edu.tw)

Kuo-Ming Chao
(DSM Research Group, Department of Computing and the Digital Environment

Coventry University, Coventry, United Kingdom
csx240@coventry.ac.uk)

Abstract: Object-oriented programming (OOP) is a mainstream paradigm for engineering
design software tool development. An emerging requirement is the introduction of semantics to
achieve heterogeneous information sharing, but many challenges exist. Examples include using
object methods to manipulate an RDF data, automatically converting data into RDF format, and
supporting various programming languages. In addition, limitations to description capabilities
for relationships among object-oriented classes exceed those of RDF, thus hindering direct
mapping between object-oriented and Semantic Web classes. Our proposed semantic object
framework (SOF) combines object-oriented design and Semantic Web features. SOF utilizes
embedded comments in source code to describe semantic relationships between classes and
attributes. We use a mobile phone design case study to illustrate how the proposed system
operates.

Keywords: Semantic Web, Object-oriented programming, Cooperative design
Categories: D.1.5, D.2.2, D.2.13

1 Introduction

As an evolving extension of the World Wide Web, the Semantic Web [Bemers-Lee,
01] uses semantic relationships among data to perform automated sharing and
processing functions. Applications focus on process automation, data searches, data
integration, and data reuse. Resource description frameworks (RDFs) [Lassila, 99] are
used to represent Semantic Web data models. A basic RDF document contains
statements consisting of a subject, predicate, and object. Engineers use this powerful
representation tool to design processes and products to maximize knowledge and
information sharing. Most existing engineering design tools are based on an object-
oriented (O-O) paradigm, but the mismatch between O-O and the Semantic Web
hinders the seamless integration of current design tools into Semantic Web based data
models. Most software developers utilize the object-oriented programming (OOP)

Journal of Universal Computer Science, vol. 15, no. 9 (2009), 1970-1990
submitted: 15/8/08, accepted: 24/4/09, appeared: 1/5/09 © J.UCS

software design paradigm, but OOP is clearly unsuitable for processing Semantic
Web data [Koide, 05] [Koide, 06].

The most widely used function-dividing architecture for designing OOP classes is
the model-view-controller (MVC) [Krasner, 88]. There are several object-relational
mapping tools that can convert model objects associated with model classes into
record formats for relational databases. Since RDF utilizes triple-oriented statements
for data formatting, it differs significantly from MVC model classes. Furthermore,
object-oriented classes cannot be used to describe semantic relationships among class
attributes, thus making the task of converting model objects into RDF format for
semantic queries more complex. Engineers have learned that the greater the amount of
existing data requiring conversion into triple-oriented format, the greater the
challenges in terms of performance and costs.

O-O technology hides semantic relationships in source code function data. Pure
O-O technologies do not support data reasoning or inference as in Semantic Web
technology. It is also hard for O-O to handle heterogonous data sources without
Semantic Web technology. Object-oriented programming is mature, and many design
patterns exist that can help programmers write reusable source code. The Semantic
Web can publish information to the Internet as reusable data sources. It is a powerful
means for integrating benefits from O-O (programmer-friendly coding style) and
Semantic Web technology (machine readable web pages).

In this paper we will describe a semantic object framework (SOF) for integrating
O-O design with Semantic Web features. Our main goals are simplifying the tasks of
(a) publishing model objects in RDF format via object-oriented design methods, and
(b) making heterogeneous data queries in accordance with semantic relationships
between classes and attributes. We use a mobile phone design case study to illustrate
how the proposed system operates.

2 Survey

Before providing details of our SOF proposal, we will describe four Semantic Web
solutions currently being used by developers and briefly review their positive and
negative features.

2.1 Jena

Currently the most popular solution, Jena uses triple-oriented APIs to read/write and
query RDF data [McBride, 02][Carroll, 04]. Jena's main advantages are its full
support for low-level RDF operations and the fact that it is already in wide use, thus
simplifying the task of obtaining sample code. Owing to the current lack of OOP
integration, each operational step must be described in detail during its use phase.

2.2 ActiveRDF

This RDF object-oriented API is based on the Ruby language [Oren, 06] [Oren, 07].
To perform the task of abstracting triple-oriented APIs, it uses O-O methods to
manipulate RDF documents so as to simplify low-level API calling. Due to

1971Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

implementation limitations, this solution does not support the use of more than one
programming language.

2.3 D2R

D2R directly converts relational database records to RDF format in order to facilitate
RDF read/write and query functions [Bizer, 03] [Bizer, 04]. Since the manipulated
target is a database, D2R can be applied to any programming language and
automatically perform format conversion (relieving programmers of this task) as long
as the mapping relationship between database tables and RDF is clearly specified.
Having a database as a manipulated target means that D2R does not support object-
oriented encapsulation, thereby eliminating any possibility of data manipulation using
objects.

2.4 EClass

This solution changes Java syntax to embed semantic descriptions into source code.
[Liu, 04] [Liu, 07]. EClass allows developers to define semantic relationships
between attributes. However, an obstacle occurs when changing a widely used
programming syntax, since syntax definitions affect existing programming tools such
as compilers and virtual machines. Current programming tools need to be rewritten to
support new syntaxes. Furthermore, the EClass solution currently lacks a query
function for heterogeneous model objects.

3 Semantic Web Development Problems

As shown in Table 1, there are at least seven problems associated with the integration
of Semantic Web and O-O design:

Problem Jena Active
RDF

D2R EClass SOF

Use object methods to manipulate
RDFs.

X O X O O

Automatically convert data into
RDF format.

X X O O O

Support various programming
languages.

X X O X O

Use statements to describe class and
attribute semantics.

X X X O O

Maintain semantic description files
and class definition synchronization.

X X X O O

Support inheritance queries and
heterogeneous data between classes
and attributes.

X X X X O

Verify consistency in data and
semantics.

X X X X O

Table 1: A comparison of functions for five Semantic Web development schemes. X
denotes “unsolvable” and O “solvable”.

1972 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

3.1 Using object methods to manipulate RDFs

Even though low-level RDF APIs provide complete RDF read/write and query
functions, developers lack tools for utilizing objects to manipulate RDF data. As a
result, development durations are longer, program codes relatively larger, and
maintenance more difficult. Our proposed SOF system uses O-O design to abstract
RDF APIs to support the writing of program codes. Specifically, the system supports
the use of O-O APIs for making queries, with corresponding query results returned in
the form of model objects.

3.2 Automatically converting data into RDF format

Although some RDF APIs are capable of storing triple-oriented data for semantic
query purposes, developers must convert model objects into triple-oriented format
[Carroll, 03]—a detailed and time-consuming task. Thus, any development
architecture capable of automatically converting model objects into RDF format will
save developers significant amounts of time and effort. In addition, we have included
an embedded web server that allows third-party software programs to use HTTP
protocol to read RDF format data.

3.3 Supporting various programming languages

Instead of binding SOF syntax to a specific object-oriented programming language,
we adopted a strategy of utilizing comments that describe class and attribute
semantics to support the use of the SOF parser (with minimum modifications) with
multiple programming languages [Kramer, 99] [Leslie, 02]. Accordingly,
programmers will only be required to learn SOF in order to develop applications.

3.4 Using statements to describe class and attribute semantics

The most straightforward way to combine Semantic Web and O-O design features is
to describe class or attribute semantics, preferably at the same time that classes are
defined. However, defining class and attribute semantics usually requires modifying
programming language syntax. To address this modification issue without adversely
affecting the original programming syntax, our proposed SOF system allows for
embedded comments that support the limited use of RDF and OWL [McGuinness, 04]
syntaxes.

3.5 Maintaining semantic description files and class definition
synchronization

Some Semantic Web implementation solutions provide independent semantic
description files that further modify relationships in existing data. This requires
momentarily maintaining synchronous updates between files to prevent
inconsistencies. Note that program API document and program code files are
mutually independent and description document updates are frequently overlooked,
resulting in obsolete and erroneous descriptions. JavaDoc uses embedded comments
to prevent inconsistencies between API documents and program codes, which makes
it easier for programmers to maintain consistency. Our SOF solution is to apply

1973Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

similar principles to maintain program code and semantic description
synchronization.

3.6 Supporting inheritance queries and heterogeneous data between classes
and attributes

Inconsistencies in column names across different databases are common (e.g.,
database A may use the term “Email” and database B “email”). To perform consistent
queries involving all e-mails stored in two databases, the semantics of both terms
must be clearly defined so that computers recognize them as equal. No architecture
currently exists for defining semantic relationships between classes and attributes in
OOP codes that allows a system to automatically acknowledge different attribute
names with identical meanings. Problems also arise when performing unified queries
of heterogeneous data sources. Our proposed SOF system allows for the utilization of
comments to maintain an inheritance relationship between attributes, and lets
developers make unified queries of heterogeneous model objects.

3.7 Verifying consistency in data and semantics

Conflicts can occur between model objects and semantics. For instance, assigning an
Email value to one unique account in an account management system can result in a
later conflict when two accounts have the same Email value. Our proposed SOF
system provides APIs for querying objects that developers can use to make semantic
consistency checks.

4 SOF Architecture

4.1 SOF modules

The five modules of our SOF architecture that address the above-listed problems are
illustrated in Figure 1. The SOF data adapter reads data sources (i.e., CSV format files
[Shafranovich, 05], database records, or proprietary data APIs) for conversion into
model objects. Model objects that represent SOF data adapter output include all data
content (e.g., attribute values). Those objects later serve as input parameters for the
SOF query engine and SOF RDF generator.

1974 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Figure 1: Five primary SOF modules

As its name implies, the function of the SOF parser is to parse SOF statements from
comment lines in source code for the purpose of generating ontology objects, which
include all information about semantic relationships between classes and attributes.
The parser supports several of the most popular O-O languages, using a syntax that
overcomes comment and descriptor variation problems. Module output consists of
ontology objects in which semantic class and attribute relationships are represented as
objects. Ontology objects also serve as input parameters for the SOF RDF generator
and SOF query engine.

The purpose of the SOF RDF generator module is to output model objects in
RDF format so that third-party software programs can read RDF format data.
Semantic relationships among model objects are recorded in the form of ontology
objects that support RDF format file generation.

The SOF query engine module supports unified object-oriented API queries
involving multiple heterogeneous data sources. Query results are presented as unified
object arrays. Since returned model objects may be matched with different classes,
APIs that are suitable for specific conversion types must be provided to address
format conversion issues.

Finally, the SOF web server module provides an entry point for HTTP protocol
so that third party programs can read RDF documents. Since our proposed SOF
system utilizes dynamic conversion processes, all model object changes are updated
to RDF documents in real time, thus eliminating data consistency concerns.

4.2 Module Design

4.2.1 Data adapter

The input terminal of this adapter is capable of handling several types of data sources.
After performing model object format output conversions, object-oriented APIs are
used to read and write model objects. The four SOF data adapters are a
DatabaseAdapter for reading records via database APIs, an RdfAdapter for reading
data files in RDF format, a GmailContactAdapter for reading address book data via

1975Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Gmail APIs, and a ThunderBirdContactAdapter for reading address books in
ThunderBird data file format. Since these adapters are inherited from the
SofDataAdapter class, they share common operation methods. Adapter output format
is presented as MVC model objects, which generally provide operation methods for
reading and writing object attributes.

4.2.2 Parser

We have included three SOF parsers: PythonSofParser for reading Python code [Van
Rossum, 03] [Vrandecic, 05] [Babik, 06], JavaSofParser for reading Java code, and
RdfSofParser for reading class semantics in RDF file format. Since they are all
inherited from the SofParser class, program code sharing is supported. Ontology
objects generated by the SOF parser contain semantic relationships between classes
and attributes. If ontology and model objects are used concurrently, heterogeneous
data source semantic queries [Prud'Hommeaux, 06] [Ying, 07] can be performed.

4.2.3 Query engine

Inputs consist of model and ontology objects. Our engine is capable of accepting
query statements and outputting results in the form of model objects. The three SOF
query engines are a FilterSofQueryEngine for conditionally filtering semantic queries,
a ValidSofQueryEngine for querying model objects that coincide with semantic rules,
and an InvalidSofQueryEngine for querying model objects associated with illegal
semantics. Since all are inherited from SofQueryEngine, all output results are
presented as model objects.

For results generated as model objects by the FilterSofQueryEngine, only those
that match query conditions are listed. During a query, developers can input object
arrays for various classes, meaning that query results can also include different object
classes. Our proposed SOF system supports the use of APIs to obtain original model
object class types; special processes can be used for different model object classes as
necessary. For query results generated by the InvalidSofQueryEngine, model objects
also include explanations for illegal objects—a useful tool for making corrections.

4.2.4 RDF generator

Generator inputs are model and ontology objects. The generator is capable of
combining the two and outputting RDF strings. final RDF string output can be stored
in file format and accessed by other HTTP applications via the SOF web server. Since
strings are expressed in standard W3C format and include model object data content
as well as ontology object semantic relationships.

5 Examples

5.1 Adding semantic relationships to classes and attributes

The address book data used in the following examples are supported by Gmail.
Taking Python language as a specific example, our SOF approach is to add semantic
relationships to classes and attributes when they are declared. Before making a unified
query across various address books, a user must first define a class named “Contact”

1976 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

for sharing common attributes. From a semantics perspective, this class is inherited to
GContact (Gmail Contact) and TContact (ThunderBird Contact).
class Contact(Model):
 partOfName=''
 partOfAddress=''
 #owl:InverseFunctionalProperty Contact_email
 email=''
 phoneNumber=''
 #Contact_officePhoneNumber rdfs:subClassOf Contact_phoneNumber
 officePhoneNumber=''
 #Contact_homePhoneNumber rdfs:subClassOf Contact_phoneNumber
 homePhoneNumber=''
 #Contact_mobilePhoneNumber rdfs:subClassOf Contact_phoneNumber
 mobilePhoneNumber=''
 #Contact_faxPhoneNumber rdfs:subClassOf Contact_phoneNumber
 faxPhoneNumber=''

According to the MVC design model, Contact class belongs to the Model data
class, therefore class Contact(Model) is declared as representing a Contact inherited
to the Model class.

The presentation meaning of the “partOfName” attribute is a contact person's
name, which contains a surname/middle name/full name/nickname, etc. Here we
allow partOfName to represent a full name or any name segment. If the semantics of
any other attribute are inherited to partOfName, the attribute is used to identify one
contact person’s name string.

In Python, the pound sign (#) designates a comment. Since SOF syntax is
embedded in comments, any instance of ‘owl:’ or ‘rdfs:’ included in a comment
means the statement is SOF-specific. For example, ‘#owl:InverseFunctionalProperty
Contact_email’ utilizes OWL syntax to modify its semantics, meaning that
Contact_email string values must be unique. This should not occur in cases where two
different Contact objects have the same email attribute value. In situations where they
have the same email string, our proposed SOF system identifies conflicting Contact
objects and notifies programmers, who can apply various strategies to resolve the
illegal semantics. OWL statements are helpful for programmers in terms of applying
rich syntaxes to limit relationships between model objects.

E-mail attribute names differ across various applications. Examples in address
book software programs include Email, email, mail, Mail, emailAddress, and
EmailAddress—all with identical semantics. In order to display all attribute values for
all emails across heterogeneous address books, all E-mail-related attributes must be
inherited to Contact_email.

The next topic is the process through which GContact is inherited to well-defined
Contact attributes.
#GContact rdfs:subClassOf Contact
class GContact(Model):
 #GContact_name rdfs:subClassOf Contact_partOfName
 name=''
 #GContact_email rdfs:subClassOf Contact_email
 email=''

1977Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

 #GContact_phone rdfs:subClassOf Contact_officePhoneNumber
 #GContact_phone rdfs:subClassOf Contact_homePhoneNumber
 phone=''
 #GContact_mobile rdfs:subClassOf Contact_mobilePhoneNumber
 mobile=''
 #GContact_fax rdfs:subClassOf Contact_faxPhoneNumber
 fax=''
 company=''
 title=''
 #GContact_address rdfs:subClassOf Contact_partOfAddress
 address=''

The representative meaning of “#GContact rdfs:subClassOf Contact” is that the
GContact class is semantically inherited to the Contact class, therefore if any object
query commands are used to query all Contact model objects, the GContact object
inherited to the Contact class will remain within the scope of the queried targets. In a
later section we will show that TContact is also semantically inherited to Contact.
Accordingly, when developers want to query model objects from two different
address books (e.g., Gmail or ThunderBird), SOF automatically recognizes that both
GContact and TContact objects must be involved within the query scope if Contact
class is the target being queried. In this manner, the goal of querying heterogeneous
address books can be easily accomplished.

According to the comment line “#GContact_name rdfs:subClassOf
Contact_partOfName,” the name attribute in the GContact class is semantically
inherited to the partOfName attribute of the Contact class. Thus, if developers specify
the string value of the Contact_partOfName attribute that is being queried at a later
time, our SOF system will also automatically query the string value of the
GContact_name attribute.

GContact_phone refers to a multiple inheritance relationship. The attribute
represented by GContact_phone can be a business or residence telephone. Since RDF
syntax supports multiple inheritance relationships, SOF still allows for semantic
multiple inheritance descriptions for classes or attributes. This is true even if the
programming language (e.g., Java) does not support multiple inheritance
relationships. Using GContact_phone as an example, regardless of whether a
developer chooses Contact_officePhoneNumber or Contact_homePhoneNumber as a
query target at a later time, SOF will always automatically query GContact_phone
attributes.

5.2 Implementation Details

Sequence diagram (Figure 2) showing how SOF supports the automatic conversion of
data into RDF format.

1978 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Figure 2: How SOF supports the automatic conversion of data into RDF format

We use a sequence diagram to help readers understand how SOF automatically
generates RDF files from a data source. We use Gmail API as our data source for
reading gmail contact information.

Request ontology object: SofRdfGenerator is responsible for initializing the
RDF generation process. It sends initial requests to PythonSofParser and attempts to
get ontology objects as return values.

Read class GContact source code and comment: To produce ontology objects,
PythonSofParser needs to parse python source code containing GContact (Google
contact) class definitions and semantic descriptions.

Create ontology object: Ontology objects are dynamically created by
PythonSofParser and preserved in Python run-time memory. Semantic relationships
(represented by ontology objects) are like a directed graph data structure.

Return ontology object: After transforming embedded comments to ontology
objects, PythonSofParser returns them to SofRdfGenerator.

Request GContact objects: SofRdfGenerator needs two input parameters to
generate RDF files—ontology objects and model objects such as GContact.
GmailContactAdapter receives requests from SofRdfGenerator and tries to return
GContact model objects.

Read Gmail contacts data: Google gmail provides a Google data API to read
contact information from its distributed network storage. GmailContactAdapter needs
to call the Google data API. GmailContactAdapter sends a user’s account name and
password to the Google data API; after authentication, it can read the user’s contact
data.

1979Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Transform contact data into GContact objects: GmailContactAdapter
transforms data from a Google data API to a GContact object. Data field names are
mapped one-to-one. It is easy to transform data values as strings in GContact objects.

Return GContact objects: GContact objects are returned to SofRdfGenerator.
Generate RDF file by ontology object and GContact objects: After

SofRdfGenerator receives both ontology and GContact objects, it gets all necessary
information for generating RDF schema and RDF data formatting. The Django
framework for our development tool provides a template architecture to dynamically
generate files in any format. SofRdfGenerator transforms ontology and GContact
objects as string variables in a hashtable data structure, and then uses the Django
template architecture to produce RDF files.

6 Case Study

Mobile phone design and manufacturing managers must work with component
suppliers to create new products and systems. They must address such issues as
component costs, compatibility, functionality, and capability. In this section we will
discuss real and potential problems encountered in mobile phone design, show how
our proposed SOF can be used to develop a mobile phone assisted design system
(MPADS) to address them, and evaluate MPADS performance.

Mobile phone companies regularly manufacture and market multiple products
concurrently. Product managers delay the need to design completely new mobile
phones by referencing the component combinations of existing models—in other
words, most successful designs can be reused and repackaged to create new phones
with incremental specification changes. However, doing so raises challenges in terms
of efficient information exchanges among independent design teams so as to achieve
the greatest benefits from their different knowledge bases.

Here we will describe the case of a company using Excel files for purposes of
documenting and sharing mobile phone specifications with design teams working in
Taiwan, China, and Germany. According to current limitations, product managers
wanting information for a specific component must manually open all Excel files and
combine the required data into a new Excel spreadsheet. To support efficient
knowledge sharing, we designed our proposed MPADS to produce efficient semantic
queries without having to manually merge and edit files.

6.1 MPADS Goals

A mid-level mobile phone consists of between 50 and 60 components. During the
design process, product managers must repeatedly perform design information queries
based on previous experiences and product success. An efficient query system [Vega-
Gorgojo, 08] allows product managers to make quick but informed decisions about
new components and compositions. We therefore designed our proposed MPADS
according to six goals: performing heterogeneous data queries; converting data to
RDF format; converting component measurement units (e.g., speaker component
dimensions) to fit query statements; analyzing mobile phone models and
specifications based on required conditions; analyzing individual component
specifications; and reviewing component defect reports.

1980 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

During the mobile phone design process, a product manager will generally want
to use the lowest price components that are sufficiently compatible. To accomplish
this they must constantly perform data queries according to a complex mix of
parameters. MPADS can help product managers perform such queries quickly and
more efficiently than Excel files by using SOF development tools to define
component classes and attributes in order to identify semantic relationships [Burger,
08] [Burkard, 08] [Valkeapaa, 08]. This process requires the conversion of Excel files
(also referred to as comma separated values, or CSV) to model objects so that a
programming language can directly read the information. Our SOF data adapter is
capable of performing this reading/conversion task.

Figure 3: Primary MPADS modules

After creating classes and attributes from heterogeneous data sources, MPADS
uses SOF syntax to define semantic relationships for further queries. Data adapters
use Excel CSV records as input and generate model objects as output for semantic
queries. Readable outputs require a Customized Web GUI to convert text strings from
SOF Web Server output format to HTML table format to help product managers
compare component attributes. Figure 3 shows modules requiring developer
implementation (grey background) and modules provided by SOF without additional
programming requirements (white background).

6.2 Cooperative Design

Our goal for MPADS is to help mobile phone designers working on a single sign on
computer-supported cooperative system. We integrated MPADS with subversion
(open source version control system) and mantis (open source issue tracking system)
projects. The following Table 2 presents the cooperative design features of MPADS:

1981Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Feature Description
1. Knowledge
sharing and semantic
querying.

Product managers can perform conditional semantic
queries to reference previous mobile phone design
documents. Product managers can upload new designs to
MPADS for sharing.

2. Structured
component database
sharing.

Mobile phone component specifications are originally
stored in Excel or Word files without structure. MPADS
allows designers to store structured information on
component attributes in databases for spec. sharing
purposes.

3. Design document
co-editing.

Design documents can be uploaded, shared, opened, and
edited by multiple users.

4. Online discussion. MPADS users can post questions or share opinions
online. Replies are collected in thread form and emailed
to participating users.

5. Access control for
user groups.

Users are divided into different groups. Each group has
flexible access control as determined by an administrator.
Design specifications are categorized to assist with
controlling access.

6. Task assignments. Managers can divide large design tasks into several
subtasks and assign them to different developers.
Priorities and task statuses can be monitored online by
team members.

7. Merge
modifications by
version control.

If there are multiple users editing the same document, the
version control feature can be used to solve collision
problems via the automatic or manual merging of
modification results.

Table 2: Cooperative design features of MPADS

For example, there are multiple roles [Aqqal, 08] in mobile phone design
processes. MPADS allows for collaboration among various roles as shown in the
following Table 3:

1982 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Role Description Cooperative

Design
Feature

Sales team Collects customer feedback and new feature
requirements from mobile phone markets. Posts
market feedback on MAPDS and discusses
feedback online with product manager.

4,5,7

Product
manager (PM)

Coordinates business and technical teams with
help from MAPDS. Responsible for tracking
progress for new design and providing design
specifications. Can use MPADS to perform
semantic queries for hardware or software
components.

1,2,3,4,5,6,7

Man-machine
interface
(MMI) team

Responsible for designing high-level software
applications.

1,3,4,5,6,7

Layer 1 team Provides application programming interface
(API) for MMI team to control hardware
functions.

1,2,3,4,5,6,7

Baseband team In charge of mobile phone hardware layout and
physical components. Can upload hardware
component images and specifications to
MPADS for users to perform queries.

1,2,3,4,5,6,7

Table 3: Multiple roles in mobile phone design process

6.3 Flexibility Evaluation

We evaluated differences among Excel files, relational database management system
(RDBM), and MPADS in terms of query flexibility (Table 4) and efficiency (Table
5). Regarding the first parameter, product managers generally specify component
attribute values to perform conditional semantic queries. A drawback of Excel is the
tendency for design teams to use different formats; this is especially true when those
teams work in different countries, but it is not unusual among teams working for the
same firm. As stated above, this requires the manual merging of query results into a
new Excel datasheet, a time-consuming task. Developers who use RDBM cannot
query heterogeneous data by simply applying SQL commands, since semantic
relationships among database table fields require definitions.

MPADS allows for the easy processing of heterogeneous data by simplifying the
task of defining semantic relationships for a body of data. As a result, product
managers are only required to input single-line query commands to perform design
information searches. MPADS automatically combines and presents search results in
HTML.

1983Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

 Excel RDBM MPADS
Query heterogeneous data. O (manually) X O
Convert data to RDF format. X O (D2R) O
Convert component measurement
units to fit query statement.

O (manually) X O

Table 4: A comparison of Excel, RDBM, and MPADS in terms of conditional query
flexibility. X, unsolvable; O, solvable

Regarding RDF format conversion, a D2R system is available for automatically
converting database records stored in RDBM format into RDF. While D2R is a
convenient tool, it does not allow developers to manipulate data in an O-O fashion;
lack of integration with OOP programming is its most significant drawback. The
absence of OOP translates into more time required for product development tasks.
MPADS lets developers define semantic relationships between classes and attributes,
convert Excel files into model objects, and use an SOF Web Server to publish output
in RDF format for reading by third party applications. It is equipped with OOP to
reduce coding efforts, thereby releasing developers from having to write additional
code for conversion tasks.

In the next area of comparison, mobile phone component attributes are frequently
expressed in different measurement units—for example, costs may be expressed in
US dollars or Euros, dimensions may be expressed in millimeters or inches, and chip
memory may be expressed in MB or KB. Data stored in Excel format must be
converted manually; RDBM is also incapable of supporting automatic conversions for
measurement units. Our proposed MPADS allows developers to define conversion
formulas prior to performing queries. For example, Money class can be defined as
class Money:
 intAmount
 strMoneyType

Here intAmount represents quantity and strMoneyType a chosen currency. Using
Usd, Eur or Gbp as Money subclasses, MPADS allows for value comparisons using a
MoneyConverter class:
def getConverted(strSourceType,strTargetType,intAmount)

This method returns a converted currency quantity, strSourceType (representing
the original currency type), intAmount (representing the original quantity), and
strTargetType (representing the converted currency type). Once the MoneyConverter
class is implemented, MPADS uses a SOF query command to perform a search—for
example:
Speaker.objects.get(“price < Usd(0.22)”)

This query finds all speaker components costing less than $0.22 US, with prices
for components manufactured in other countries automatically converted into a
designated currency.

6.4 Efficiency Evaluation

Locating sources of less expensive components is a common product manager
responsibility. An example of HTML query output is shown in Figure 4. Product

1984 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

managers can use this feature to compare component attributes from various suppliers
by reading user-friendly HTML output. Efficiency comparisons for three related tasks
are shown in Table 5. Note that RDBM was not considered, since SQL commands
cannot be used to perform queries based on heterogeneous data.

Figure 4: Search results for speaker components priced below $0.22 USD

 Excel MPADS
Analyze mobile phone models and
specifications based on required conditions.

1,219.46 secs 37.69 secs

Analyze single component specifications. 97.94 secs 13.88 secs
Review component defect reports. 46.28 secs 11.42 secs

Table 5: Query efficiency comparisons between Excel and MPADS

Using Excel files to perform manual queries requires locating strings in existing
datasheets and cutting-and-pasting all matching data to a new datasheet. To determine
the time required to complete this task, we performed each example query 3 times to
obtain an average speed for finding information on 22 existing mobile phones and 140
components. For tests involving Excel, time was measured from the first opening of
an Excel file to the completion of a datasheet. For MPADS, time was measured from
the inputting of query strings in a customized Web GUI to the complete loading of a
HTML result page into a browser.

Our tests were based on the knowledge that product managers are frequently
required to perform conditional queries and to check component attributes. For
example, in order to design a mobile phone that highlights multimedia functionalities,
a product manager will likely perform at least three conditional queries regarding
display size, camera resolution, and memory size. An example of a MPADS query
command is
MobilePhone.objects.get('display.size > Pixels(120,160) and camera.megaPixels >
MegaPixels(3) and internalMemory.size > MegaBytes(64)')

For designing and manufacturing a very slim mobile phone, an example of a
MPADS query for MIC components is
Mic.objects.get(‘dimension < DimensionInMm(6.5,2.3)’)

An example of results for such a query is shown in Figure 5.

1985Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Figure 5: Search results for MIC components

Another common product manager function is checking defect reports as a means
of avoiding unreliable components. In this case study, a defect was found in the
handwriting display—it was incapable of capturing the correct coordination following
a penDown event. To perform a MPADS query for defective component reports, a
project manager would write
DefectReport.objects.get('component=Display')

An example of query results is shown in Figure 6.

Figure 6: Results from defect report query

6.5 Costs and Benefits Evaluation

Table 6 addresses tasks for which implementation costs of MPADS are larger than a
simple Excel file. The two cost types are (a) static (one-time efforts during
development cycle); and (b) dynamic (to integrate a new data source format into
MPADS, developers must implement new classes).

1986 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

Task Description Cost Type
SOF adapter New data sources need new SOF adapters for

reading and parsing into model objects.
Dynamic

Model class
definition

New data formats need to define new model
classes to represent them.

Dynamic

Semantic definition New data sources need new semantic
definitions in source code.

Dynamic

Customized web
GUI

Web GUI differs according to the application
being used.

Dynamic

SOF parser Individual programming languages need
specific SOF parsers to process semantic
definitions in source code. Once a SOF parser
is implemented, it can be reused in all
projects.

Static

SOF query engine Can be reused in all projects. Static
SOF web server Provides HTTP access; can be reused in all

projects.
Static

Training Users need to be trained only one time to use
SOF-based system.

Static

Server hardware SOF system needs server hardware to provide
web-based service to users.

Static

Server maintenance SOF system needs an administrator to
maintain proper function.

Static

Table 6: Tasks for which Implementation costs of MAPDS are larger than a simple
Excel file

Excel files and MPADS have their individual benefits and drawbacks as follows
(Table 7):

Benefit Favored
Low static and dynamic costs for implementation. Excel
Different departments can use unique data formats without extra
communication, reducing overhead.

Excel

Low user-training costs. Excel
No need for a hardware server to provide web-based service. Excel
Ease and efficiency in querying heterogeneous data. MPADS
Provides standard RDF formats for third-party data exchanges. MPADS
Automatically transforms different semantic query units (e.g., USD,
Euro).

MPADS

Various cooperative design features. MPADS

Table 7: Benefits and drawbacks of Excel and MPADS

1987Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

7 Conclusion and Future Work

The focus of this paper was on the publication of model objects to RDF documents
that provide SOF solutions for automatic conversion tasks, as opposed to existing
methods that require the manual conversion of model objects to a triple-oriented
format. Our proposed SOF system can be used to modify class and attribute semantics
embedded in program code as well as to enhance descriptions of relationships
between classes and attributes in object-oriented languages. In addition to preserving
the synchronization of relationship descriptions between classes and program codes,
our proposed system may support multiple programming languages. SOF provides a
direct publication flow for the Semantic Web, allowing users to conduct queries
across heterogeneous data sources and to incorporate positive features from both O-O
programming and the Semantic Web.

Our main contributions are embedding semantic descriptions in source code
without changing programming language syntax. Although EClass can also put
semantic descriptions in class definitions, it changes the Java syntax and requires the
rewriting of compilers. In a computer-supported cooperative work environment, it is
very important to use developing tools with interoperability. SOF provides a better
solution for developers to extend semantic features for existing object-oriented
compilers or interpreters without rewriting them.

The development tools associated with the SOF are insufficient, especially in
terms of automation support for integrated development environment (IDE). An IDE
development environment for various languages is required to support autocomplete,
dynamic syntax checking, and mutual synchronization between semantic diagrams
and program codes [Astels, 02]. In cases where illegal SOF statement syntax occurs
or where a semantic conflict between SOF statements emerges, a more powerful tool
is needed to automatically analyze the problem and to report results in a form that
developers can use. In future projects we will work on IDE development tools to
support the SOF system.

References

[Aqqal, 08] Aqqal, A., Rensing, C., Steinmetz, R., Elkamoun, N., Berraissoul, A.: Using
taxonomies to support the macro design process for the production of Web Based Trainings,
Journal of Universal Computer Science, (2008)

[Astels, 02] Astels, D.: Refactoring with UML, In Proceedings of 3rd International Conference
on eXtreme Programming and Flexible Processes in Software Engineering (XP2002), (2002)
67-70

[Babik, 06] Babik, M., Hluchy, L.: Deep Integration of Python with Web Ontology Language,
2nd Workshop on Scripting for the Semantic Web (ESWC 2006), (2006)

[Bemers-Lee, 01] Bemers-Lee, T., Hendler, J., Lassila, O.: The Semantic Web, Scientific
American, 284, 5, (2001) 34-43

[Bizer, 03] Bizer, C.: D2R MAP-A Database to RDF Mapping Language, Proceedings of the
12th International World Wide Web, (2003)

1988 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

[Bizer, 04] Bizer, C., Seaborne, A.: D2RQ-Treating Non-RDF Databases as Virtual RDF
Graphs, Proceedings of the 3rd International Semantic Web Conference, (2004)

[Burger, 08] Burger, T.: The need for formalizing media semantics in the games and
entertainment industry, Journal of Universal Computer Science, (2008)

[Burkard, 08] Burkard, B., Vogeler, G., Gruner, S.: Informatics for historians: Tools for
medieval document XML markup, and their impact on the history-sciences, Journal of
Universal Computer Science, (2008)

[Carroll, 03] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web Recommendations, Technical Report HPL-2003-146,
HP Laboratories, (2003)

[Carroll, 04] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations, Proceedings of the 13th international
World Wide Web conference on Alternate track papers & posters, (2004) 74-83

[Koide, 05] Koide, S., Aasman, J., Haflich, S.: OWL vs. Object Oriented Programming,
International Workshop on SemanticWeb Enabled Software Engineering (SWESE), (2005)

[Koide, 06] Koide, S., Takeda, H.: OWL-Full Reasoning from an Object Oriented Perspective,
Asian Semantic Web Conf., ASWC2006, 4185, (2006) 263-277

[Kramer, 99] Kramer, D.: API documentation from source code comments: a case study of
Javadoc, Proceedings of the 17th annual international conference on Computer documentation,
(1999) 147-153

[Krasner, 88] Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user
interface paradigm in Smalltalk-80, Journal of Object-Oriented Programming, 1, 3, (1988) 26-
49

[Lassila, 99] Lassila, O., Swick, R.R.: Resource Description Framework (RDF) Model and
Syntax Specification, W3C Recommendation, (1999)

[Leslie, 02] Leslie, D.M.: Using Javadoc and XML to produce API reference documentation,
Proceedings of the 20th annual international conference on Computer documentation, (2002)
104-109

[Liu, 04] Liu, F.F., Wang, J., Dillon, T.S.: An Object-oriented Approach on Web Information
Representation and Derivation, Proceedings of the 2004 IEEE International Conference on e-
Technology, e-Commerce and e-Service, (2004) 309-314

[Liu, 07] Liu, F.F., Wang, J., Dillon, T.S.: Web Information Representation, Extraction, and
Reasoning based on Existing Programming Technology, Web Information Representation,
Extraction and Reasoning based on Existing Programming Technology, Studies in
Computational Intelligence, 37, (2007) 147-168

[McBride, 02] McBride, B.: Jena: A Semantic Web Toolkit, IEEE Internet Computing, 6,
(2002) 55-59

[McGuinness, 04] McGuinness, D.L., Van Harmelen, F.: OWL Web Ontology Language
Overview, W3C Recommendation, (2004)

[Oren, 06] Oren, E., Delbru, R.: Object-oriented RDF in Ruby, Scripting for Semantic Web
(ESWC), (2006)

1989Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

[Oren, 07] Oren, E., Delbru, R., Gerke, S., Haller, A., Decker, S.: ActiveRDF: object-oriented
semantic web programming, Proceedings of the 16th international conference on World Wide
Web, (2007) 817-824

[Prud'Hommeaux, 06] Prud'Hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF,
W3C Working Draft, (2006)

[Shafranovich, 05] Shafranovich, Y.: Common Format and MIME Type for Comma-Separated
Values (CSV) File, Internet Eng. Task Force draft, (2005)

[Valkeapaa, 08] Valkeapaa, O., Alm, O., Hyvonen, E.: An adaptable framework for ontology-
based content creation on the semantic web, Journal of Universal Computer Science, (2008)

[Van Rossum, 03] Van Rossum, G., Drake Jr, F.L.: Python Language Reference Manual,
Network Theory Ltd, (2003)

[Vega-Gorgojo, 08] Vega-Gorgojo, G., Bote-Lorenzo, M.L., Gomez-Sanchez, E., Asensio-
Perez, J.I., Dimitriadis, Y.A., Jorrin-Abellan, I.M.: Ontoolcole: Supporting educators in the
semantic search of CSCL tools, Journal of Universal Computer Science, 14, 1, (2008) 27-58

[Vrandecic, 05] Vrandecic, D.: Deep integration of scripting language and semantic web
technologies, ESWC Workshop on Scripting for the Semantic Web, (2005)

[Ying, 07] Ying, P., Tianjiang, W., Xueling, J.: Building Intelligent Information Retrieval
System Based on Ontology, Electronic Measurement and Instruments, 2007. ICEMI '07. 8th
International Conference, 4, (2007) 612-615

1990 Chiu P.-H., Lo C.-C., Chao K.-M.: Integrating Semantic Web ...

