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Abstract: Manufacturing planning is crucial for the quality and efficiency of product 
development. Process planning and scheduling are the most important and challenging tasks in 
manufacturing planning. These two processes are usually arranged in a sequential way. 
Recently, a significant trend is to make the processes to work more concurrently and 
cooperatively to achieve a globally optimal result. In this paper, several intelligent strategies 
have been developed to build up Cooperative Process Planning and Scheduling (CPPS). Three 
Game Theory-based strategies, i.e., Pareto strategy, Nash strategy and Stackelberg strategy, 
have been introduced to analyze the cooperative integration of the two processes in a 
systematic way. To address the multiple constraints in CPPS, a fuzzy logic-based Analytical 
Hierarchical Process (AHP) technique has been applied. Modern heuristic algorithms, including 
Particle Swarm Optimization (PSO), Simulated Annealing (SA) and Genetic Algorithms (GAs), 
have been developed and applied to CPPS to identify optimal or near-optimal solutions from 
the vast search space efficiently. Experiments have been conducted and results show the 
objectives of the research have been achieved. 
 
Keywords: Collaborative system, Game Theory, Analytical Hierarchical Process, Particle 
Swarm Optimization, Simulated Annealing, Genetic Algorithms 
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1 Introduction  

Product development is comprised of various stages, such as conceptual design, 
detailed design, prototyping, manufacturing planning, manufacturing and testing, etc. 
The task of manufacturing planning is to interpret product models created by a design 
team in terms of manufacturing processes, and associate the manufacturing 
equipments and resources in shop floors with the interpretation. The major tasks of 
manufacturing planning are process planning and scheduling. For a model of design 
(e.g., models for vehicles and aircraft), it needs a series of manufacturing operations 
(operations in the following content) to make it. For example, to make a hole, it could 
include a drilling operation and reaming operation. The task of process planning is 
more a product model-oriented. It interprets a model into some detailed operations, 
such as primary operations (e.g., forging or casting to generate the rough shape), 
rough machining, semi-finish machining, finish machining, surface treatment, 
painting, etc. When many models are made together, there is a competition of 
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manufacturing resources such as machines, cutting tools, operators, etc. The task of 
scheduling is to assign suitable resources to a batch of models to achieve global 
optimization. A good schedule should utilize the full potential of resources while time 
and cost should be as short and low as possible. Process planning is usually arranged 
prior to scheduling in practice. The two functions could have different objectives and 
there might be many routes to choose from, especially when the number of models is 
large and the models are complex in terms of geometry and technical specifications. 
On the other hand, process planning and scheduling are naturally linked. It will 
simplify the multiple decision-making processes and provide a globally optimal 
viewpoint if the two functions are well integrated. 

In this paper, a novel approach has been developed to establish Collaborative 
Process Planning and Scheduling (CPPS) in manufacturing planning. The Game 
Theory-based strategies, a fuzzy logic algorithm, and the modern heuristic algorithms, 
have been applied to solve the collaborative problem. Experiment results to verify the 
effectiveness of the approach are presented. 

The rest of the paper is organized as follows. In Section 2, the related work is 
reviewed. In Section 3, the CPPS problem is modelled. In Section 4, discussions on 
the application of the game theory for the CPPS problem are given. Section 5 presents 
the constraint representation and handling. In Section 6, intelligent algorithms to solve 
the CPPS problem are introduced. Experiment results are presented in Section 7. 
Section 8 concludes the work. 

2 Related Work 

To develop a collaborative working environment is an important research area in 
computer-based applications. To enable it, modern computing and artificial 
intelligence technologies have been widely used [Schrum, 06] [Tomek, 01] [Lukosch, 
08] [Wurdel, 08]. 

In the past decade, a few of research works have been reported to integrate 
process planning and scheduling to optimize decisions. Some earlier works of the 
integration strategy have been summarized in [Tan, 00]. The most recent works are 
summarized in [Zhang, 03] [Li, 07] according to two general categories: the 
enumerative approach and the simultaneous approach. In the enumerative approach 
([Tonshoff, 89] [Huang, 95] [Aldakhilallah, 99] [Sormaz, 03] [Zhang, 03]), multiple 
alternative process plans are first generated for each part. A schedule can be 
determined by iteratively selecting a suitable process plan from alternative plans of 
each part to replace the current plan until a satisfactory performance is achieved. The 
simultaneous approach ([Li, 07] [Moon, 02] [Kim, 03] [Yan, 03] [Moon, 05] [Zhang, 05]) 
is based on the idea of finding a solution from the combined solution space of process 
planning and scheduling. In this approach, the process planning and scheduling are 
both in dynamic adjustment until specific performance criteria can be satisfied. 
Although this approach is more effective and efficient in integrating the two 
functions, it also enlarges the solution search space significantly. For this complex 
decision-making process, further studies are still required, especially in complex 
situations. To minimize the research gap, in this paper, research has been carried out 
from the following three aspects: 
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• It is imperative to develop a strategy to make the two functions to work together in 
a more cooperative way, that is, CPPS. With the CPPS strategy, different 
objectives can be prioritized flexibly, and the two functions can be adjusted in a 
cooperative way to meet both of the targets. In this research, game theory, which 
is the formal study of decision-making processes where several players (e.g., 
functions) make choices that potentially affect the interests of each other, has been 
introduced to analyze the cooperation of the functions in a systematic way;  

• In practical situations, it might be impossible to satisfy all constraints in a process 
plan. For example, a high accuracy hole as a datum surface should be machined 
with a high priority according to the primary surfaces constraint, but it may be in 
conflict with the constraint of planes prior to holes and slots. Therefore, a fuzzy 
logic-based Analytical Hierarchical Process (AHP) technique has been applied to 
handle the complex constraints effectively; 

• The complexity of manufacturing planning brings forth a vast search space when 
identifying good solutions. Three modern heuristic algorithms, i.e., Particle 
Swarm Optimization (PSO), Simulated Annealing (SA), and Genetic Algorithm 
(GA), have been developed and benchmarked in this research to facilitate the 
search process with optimal or near-optimal solutions. Essential performance 
criteria, such as makespan, the balanced level of machine utilization, job tardiness 
and manufacturing cost, have been defined in the algorithms to address the various 
practical requirements. 

3 Modelling of CPPS 

The CPPS problem can be defined as follows: 
• Given a set of design models, each with a number of operations and set-up plans, 

to be processed on a set of manufacturing resources (machines and tools) in a job 
shop floor;  

• Alternative process plans and schedules can be generated through process 
planning and scheduling flexibility strategies [2]. The processing planning 
flexibility refers to the possibility of performing an operation on alternative 
machines with alternative tools or set-up plans, and the possibility of 
interchanging the sequence in which the operations are executed. The scheduling 
flexibility corresponds to the possibility of generating alternative schedules for 
jobs by arranging the different sequences of parts to be machined [2]; 

• Through selecting suitable manufacturing resources and sequence the operations, 
process plans and schedules, in which constraints among operations are satisfied 
and pre-defined objectives are achieved, can be generated. 

 
This problem is illustrated in Figure. 1. For example, there are 3 parts that can be 

machined by 3, 2 and 3 operations on 3 machines, respectively. For different parts, 
there are constraints among the operations to make them (Part1: Oper1 → Oper2 → 
Oper3; Part2: Oper4 → Oper5; Part3: Oper6 → Oper7 → Oper8). When all these 8 
operations are sequenced as (Oper1 → Oper4 → Oper2 → Oper6 → Oper3 → Oper7 
→ Oper8 → Oper5 as shown in Figure 1) and manufacturing resources (machine, tool 
and set-ups) are specified, the schedule can be determined accordingly. The CPPS 
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problem is to optimize the operation sequence and select the manufacturing resources 
so as to achieve the optimal or near-optimal process planning and scheduling 
objectives while maintain the manufacturing feasibility with the satisfactory of 
constraints. 

 

 
Figure 1: Illustration of the CPPS problem 

The CPPS problem can be modeled as an extension of the operation sequencing 
optimization problem relating to a single model [Li, 02] [Guo, 06] into multiple 
models with the CPPS objectives. When the process plans of all models are generated 
and the manufacturing resources are specified, it is required to determine the schedule 
based on this information and calculate the makespan, total tardiness, etc. Here, four 
evaluation criteria of the CPPS problem can be calculated as follows. 

(1) Makespan: )_].[(
1

timeAvailablejMachineMaxMakespan
m

j=
= . 

(2) Total job tardiness: The due date of a part is denoted as DD , and the completion 
moment of the part is denoted as CM . Hence, 
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(3) Balanced level of machine utilization: the Standard Deviation concept is 
introduced here to evaluate the balanced machine utilization (assuming there are 
m  machines, and each machine has n  operations).  
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(4) Manufacturing cost for the process plan of a part: In [Guo, 06], the manufacturing 
cost associated with the process plan of a part has been defined in terms of machine 
utilization, tool utilization, set-up changes, machine changes and tool changes. The 
relevant computations are elaborated in [Guo, 06]. 

4 Applications of Game Theory on CPPS 

Game theory is a good tool to analyze the interaction and cooperation of decision 
makers with various objectives [Rasmusen, 01] [Xiao, 05]. For example, economists 
have used it as a tool to examine the actions of firms in a market. Recently, it has 
been applied to some complex engineering problems, such as communications and 
networks, power systems, collaborative product design, etc. Game theory consists of a 
series of strategies that are applicable for various situations. Here, three popular 
strategies in the game theory have been applied to CPPS, i.e., Pareto strategy, Nash 
strategy and Stackelberg strategy. The concepts for the three strategies are briefed 
below. 
• Pareto strategy. A full cooperative solution between two players. Players in the 

game theory can represent a person, a team or a functional module. The strategy 
is to combine the objectives of two players as a single goal through weights.  

• Nash strategy. Each player must make a set of decisions that is rational to 
him/her by assuming another player’s reaction. If there is an overlap between 
these players’ reactions, the result can be selected from the overlap.  

• Stackelberg strategy. A leader-follower solution, which is well suitable for a 
situation in which one player dominates the decision-making process.  
 
For the CPPS problem, the objectives of process planning and scheduling need to 

be considered from the cooperative point of view to achieve a balanced and overall 
target. In many cases, objectives from process planning and scheduling could be 
conflicted. For example, a lower manufacturing cost for making a part can be 
achieved through the intensive utilization of cheap machines, but it could be 
conflicted with the criterion for the balanced utilization of machines. Through 
applying the above three game theory-strategies, the solution of CPPS is flexible and 
adjustable according to various practical situations and users’ specific requirements. 

The application of the Pareto strategy is to combine the objectives from process 
planning and scheduling respectively with weights. The strategy is illustrated in 
Figure 2(a). The major characteristic of the strategy is that the objective of process 
planning is closely associated with that of scheduling. With the combined 
consideration, the strategy equals a single level decision-making process so that 
iteratively empirical process can be avoided. However, a serious problem is that it is 
difficult to determine a reasonable combination weight with engineering meanings. 

1911Li W., Gao L., Li X.: Application of Intelligent Strategies ...



Therefore, the strategy is more suitable for the purpose of comparison and trend 
studies.  

A usual practice to use the Nash strategy in the CPPS problem is to apply the 
following procedure to the two functions. Process planning (or scheduling) is invoked 
to produce a number of alternative plans with the satisfaction of the process planning 
(or scheduling) objective and constraints, from which scheduling (or process 
planning) can choose and further decide a group of satisfactory solutions (denoted as 
Solutions) according to the scheduling (or process planning) objective. The 
overlapped set of the above two Solutions is the final solution of the CPPS problem. 
The process is illustrated in Figure 2(b). The strategy is characterized as a more 
independent decision-making process for each functional module, and both the 
objectives can be considered in a reasonable way. The Nash strategy is the same 
effect as the Pareto strategy when the objectives of process planning and scheduling 
are harmonious. When the objectives are contradictive, the results of the Nash 
strategy is more rational compared with that of the Pareto strategy, which much 
depends upon the setting of the weight.  

In the application of the Stackelberg strategy to the CPPS problem, for the 
dominate function (process planning or scheduling), a number of alternative plans 
with the satisfaction of the function’s objective and constraints are generated, from 
which another function can choose and further decide a satisfactory solution 
(illustrated in Figure 2(c)). This strategy is different from the Nash strategy in that the 
latter creates a larger computation space while the computation of the former is 
mainly constrained by the dominant function. The characteristic of the Stackelberg 
strategy is that it can fully satisfy the most important objective while the minimum 
conditions of other objectives can be met. However, the value of one function could 
be discounted in another module. For instance, to schedule parts based on generated 
process plans sometimes causes some machines to be overloaded to restrict the 
capabilities of the machines.  

In this research, the CPPS model is equipped with the above three strategies for 
users to choose to meet their requirements. 

5 Handling of Constraints in CPPS 

Manufacturing processes are complex [Kalpakjian, 03]. There are many technical 
specifications and requirements. In CPPS, a number of constraints, which arise from 
geometric shapes of parts, technical restrictions, best practices, etc., are represented. 
A feasible solution of CPPS must comply with the constraints. These constraints can 
be summarized below [Ding, 05]. 
 
(1) Precedence constraints 
• A parent feature should be processed before its child features. 
• Rough machining operations should be done before semi-finish and finish 

machining operations. 
• Primary surfaces should be machined prior to secondary surfaces. Primary 

surfaces are usually defined as surfaces with high accuracy or having a high 
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impact on the design specifications, such as a datum plane. The rest of the 
surfaces are regarded as secondary surfaces, e.g., a threaded hole. 

• Planes should be machined prior to holes and slots. 
• Edge cuts should be machined last. 
 
 
 

 

 

 

 

 

 

 

 

(2) Successive constraints 
• Features or operations, which can be machined within the same set-up should be 

machined successively. 
• Features to be machined with the same cutting tool should be machined 

successively. 
• Operations of the same type, such as rough, semi-finish and finish machining, 

should be executed successively. 
• Features with similar tolerance requirements should be machined successively on 

the same machine tool. 
 
(3) Auxiliary constraints 
• Annealing, normalizing and ageing operations of ferrous metal component should 

be arranged before rough machining or between rough and semi-finish 
machining.  

• Quenching for ferrous metal workpieces should be arranged between semi-finish 
and finish machining or between rough and semi-finish machining if it is 
followed by high temperature tempering. 

• Quenching for non-ferrous metals should be arranged between rough and semi-
finish machining or before rough machining.  

• Carburizing would be arranged between semi-finish and finish machining. 
 

To address the complexity of constraints, the AHP technique [Golden, 89], which 
specifies a set of fuzzy logic-based numerical weights to represent the relative 
importance of the constraints of CPPS with respect to a manufacturing environment, 
has been applied to evaluate the satisfaction degree of the constraints. The relevant 
computation is depicted below. 

  

PP S 

f(PP+S) 

Solutions 

PP S 

PP S 

Solutions 

PP S 

Solutions 

S 

PP 

(a) Pareto strategy                   (b) Nash strategy                      (c) Stackelberg strategy 
 

Figure 2: Illustration of the game theory strategies 

PP – Process planning ; S - Scheduling

1913Li W., Gao L., Li X.: Application of Intelligent Strategies ...



Step 1: The constraints are organized in a hierarchy structure, which includes an 
overall objective (Level 1), three general constraint groups (Level 2) and 
rules under each constraint group (Level 3). This situation is illustrated in 
Figure 3. For Level 2, a 33×  pair-wise matrix (R0-matrix) is created, 
where the number in the ith row and jth column, rij, specifies the relative 
importance of the ith group of constraints as compared with the jth group 
of constraints. For Level 3, three pair-wise matrices are created for each 
group of constraints (R1-matrix ( 55× ) for Precedence constraints, R2-
matrix ( 44× ) for Succession constraints, and R3-matrix ( 33× ) for 
Auxiliary constraints). Similarly, the number in the matrix (rij) specifies 
the relative importance of rules within each category of constraints. A R-
matrix can be described as: 

⎥
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where  i = 1, 2, …, m (m is the number of groups of constraints in Level 2 
or the number of rules for each constraint group in 
Level 3), 

rii = 1, and 
rij = 1/rji. 

Step 2: Evaluating criteria based on a 1-9 scale for the R-matrices, which are used 
to indicate the relative importance of two elements, are defined in Table 1. 
In order to get more neutral results, a group of experts is invited to fill in 
the four R-matrices according to their experience and knowledge.  

   
For instance, considering two rules in the category of Precedence constraints 

- Rule 2 and Rule 4: 
 

Rule 2: Primary surfaces should be machined prior to secondary surfaces. 
Rule 4: Planes should be machined prior to holes and slots. 

 
From the perspective of an individual expert, if he thinks Rule 2 is much 

more important than Rule 4, a weight of '7' is inserted in the juncture cell (r24) of 
his filled R1-matrix.  On the contrary, the value in the juncture cell (r42) is set to 
'1/7'. 

Step 3:   For Level 2 and Level 3, four weight vectors 30 WW − , which correspond 
to the four R-matrices respectively, are computed. The computation 
process consists of the following three steps. 

 
(1) Multiplication ( M ) of all elements in each row of a R-matrix is 

computed as: 

∏
=

=
n

j
iji rM

1
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where j is the column index of elements, j =1, 2, …, n, 
   i is the index row of elements, i =1, 2, …, n, and 
   n is the number of the rows (columns) in a R-matrix. 
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Figure 3: A three-level hierarchy structure for the constraints 

Table 1: Evaluation criteria for R-matrices 

Definition Intensity of 
importance (rij) 

Intensity of 
importance (rji) 

The ith rule and the jth rule 
have equal importance 1 1 

The ith rule is slightly more 
important than the jth rule 3 1/3 

The ith rule is more important 
than the jth rule 5 1/5 

The ith rule is much more 
important than the jth rule 7 1/7 

The ith rule is absolutely more 
important than the jth rule 9 1/9 

Intermediate values between 
adjacent scale values 2, 4, 6, 8 1/2, 1/4, 1/6, 1/8 
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(2) The nth root of M  is calculated, that is: 
n ii Mw =  

where i is the row (column) number in a R-matrix, and i =1, 2, …, n. 
 
Therefore, the relative importance weight vector can be built as follows: 

nwwwW ...,,, 21=  

Each element of the weight vector W  )...,,,( 21 nwww is finally generated 
through a normalization operation. 

∑
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= n

j
j
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ww

1

 

For each W , it should be eventually denoted as 30 WW −  according to the 
individual computation process. 

Step 4: There are totally 12 rules defined in this system (5 rules from Precedence 
constraints + 4 rules from Succession constraints + 3 rules from Auxiliary 
constraints). The element of a total weight vector for each rule - tW  

)...,,,( 1221 ttt www  can be generated as: 

5111051 * −− = wwwt , 4122096 * −− = wwwt , 313301210 * −− = wwwt  

Step 5:  A series of V-matrices are designed to record the situation of violating 
constraints for a process plan. For instance, for Rule k, its V-matrix is 
defined as: 
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where  n is the number of operations in a process plan, 

  
k        Ruleobey  jOperation  prior to iOperation  if

k Ruleagainst  is jOperation  prior to iOperation  if
      

0
1

{=ijv , and 

  ijji vv −= 1 . 
Step 6: The value to evaluate the manufacturability of a process plan is 

determined. mf  is finally calculated as: 
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= = =
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j
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t
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1 1 1
 

where m is the total rule number of the constraints (here m =12). 

6 Applications of Modern Heuristic Algorithms 

The CPPS problem usually brings forth a vast search space. Conventional algorithms 
are often incapable of optimizing non-linear multi-modal functions. To address this 
problem effectively, some modern optimization algorithms, such as GA and SA, have 
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been developed recently to quickly find a solution in a large search space through 
some evolutional or heuristic strategies. In this research, three modern algorithms, i.e., 
PSO, SA and GA, have been applied to facilitate the search process. In [Li, 02] [Guo, 
06], the three algorithms have been successfully applied to process planning 
optimization problems. Here, the algorithms have been developed further to solve the 
CPPS problem. The application of an improved PSO process is explained here for 
illustration. More details of SA and GA can refer to [Li, 02] [Li, 07].  

A standard PSO algorithm was inspired by the social behavior of bird flocking 
and fish schooling [Kennedy, 95]. Three aspects will be considered simultaneously 
when an individual fish or bird (particle) makes a decision about where to move: (1) 
its current moving direction (velocity) according to the inertia of the movement, (2) 
the best position that it has achieved so far, and (3) the best position that its neighbor 
particles have achieved so far. In the algorithm, the particles form a swarm and each 
particle can be used to represent a potential solution of a problem. In each iteration, 
the position and velocity of a particle can be adjusted by the algorithm that takes the 
above three considerations into account. After a number of iterations, the whole 
swarm will converge at an optimized position in the search space. 

A traditional PSO algorithm can be applied to optimize CPPS in the following 
steps: 
(1) Initialization 

• Set the size of a swarm, e.g., the number of particles “Swarm_Size” and the 
max number of iterations “Iter_Num”. 

• Initialize all the particles (a particle is a CPPS solution) in a swarm. 
Calculate the corresponding criteria of the particles (a result is called fitness 
here). 

• Set the local best particle and the global best particle with the best fitness. 
(2) Iterate the following steps until Iter_Num is reached 

• For each particle in the swarm, update its velocity and position values. 
• Decode the particle into a CPPS solution in terms of new position values and 

calculate the fitness of the particle. Update the local best particle and the 
global best particle if a lower fitness is achieved. 

(3) Decode global best particle to get the optimized solution 
 
However, the traditional PSO algorithm introduced above is still not effective in 

resolving the operation sequencing problem. There are two major reasons for it:  
• Due to the inherent mathematical operators, it is difficult for the traditional PSO 

algorithm to consider the different arrangements of machines, tools and set-ups 
for each operation, and therefore the particle is unable to fully explore the entire 
search space.  

• The traditional algorithm usually works well in finding solutions at the early 
stage of the search process (the optimization result improves fast), but is less 
efficient during the final stage. Due to the loss of diversity in the population, the 
particles move quite slowly with low or even zero velocities and this makes it 
hard to reach the global best solution. Therefore, the entire swarm is prone to be 
trapped in a local optimum from which it is difficult to escape. 
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To solve these two problems and enhance the ability of the traditional PSO 
algorithm to find the global optimum, new operations, including mutation, crossover 
and shift, have been developed and incorporated in an improved PSO algorithm. 
Meanwhile, considering the characteristics of the algorithm, the initial values of the 
particles have been well planned. Some modification details are depicted below. 

 
(1) New operators in the algorithm 

• Mutation. In this strategy, an operation is first randomly selected in a 
particle. From its candidate machining resources (machines, tools, set-ups), 
an alternative set (machine, tool, set-up) is then randomly chosen to replace 
the current machining resource in the operation. 

• Crossover. Two particles in the swarm are chosen as Parent particles for a 
crossover operation. In the crossover, a cutting point is randomly 
determined, and each parent particle is separated as left and right parts of the 
cutting point. The positions and velocities of the left part of Parent 1 and the 
right part of Parent 2 are reorganized to form Child 1. The positions and 
velocities of the left part of Parent 2 and the right part of Parent 1 are 
reorganized to form Child 2. 

• Shift. This operator is used to exchange the positions and velocities of two 
operations in a particle so as to change their relative positions in the particle. 

(2) Escape method 
• During the optimization process, if the iteration number of obtaining the 

same best fitness is more than 10, then the mutation and shift operations are 
applied to the best particle to try to escape from the local optima. 

7 Experimental Results 

A group of 8 parts taken from [Li, 02] [Guo, 06] have been used for experiments. The 
relevant specifications of the parts are given in Table 2. The results of the following 
two conditions are taken first to demonstrate the performances of the chosen criteria: 
(1)  The criteria are manufacturing cost and makespan according to the Pareto 

strategy.  
(2) The criteria are manufacturing cost and the balanced utilization of machines 

according to the Pareto strategy. 
   

All of the results are prone to stabilization after several hundreds of iterations. 
Figure 4 indicates clearly that the manufacturing cost and the makespan follow the 
similar trends since the reduced numbers of set-ups, machine changes, and tool 
changes contribute to both of the lower manufacturing cost and the shorter makespan. 
Therefore, the effects of the three game theory strategies are the same. For the 
situation with conflicting objectives of CPPS like Figure 5, when the Stackelberg 
strategy is applied, the satisfactory results are within the highlighted region A (The 
balanced utilization of machines is the leader criteria. Higher values means 
unbalanced level) or B (Manufacturing cost is the leader criteria). When the Nash 
strategy is applied, the satisfactory results are within the highlighted region C, and 
both the objectives, i.e., manufacturing cost and the balanced utilization of machines, 
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are discounted. Therefore, the developed method provides the flexibility to choose the 
suitable strategy according to the real practical requirement. The three optimization 
algorithms have been further compared under the same condition (the above 
Condition 1). To make the diagrams clearly, only the makespan has been chosen and 
the results are shown in Figure 6. 

Table 2: The technical specifications for 8 parts 

 
Part  Number of operations  Number of constraints  

1  7 (9, 9, 27, 8, 8, 9, 36)  11  

2  8 (9, 9, 36, 18, 27, 8, 27, 18)  11  

3  7 (9, 9, 36, 36, 18, 6, 6)  10  

4  9 (9, 9, 27, 6, 36, 36, 6, 18, 18)  18  

5  7 (9, 9, 36, 36, 36, 18, 6)  13  

6  9 (9, 9, 36, 27, 18, 6, 27, 6, 18)  20  

7  5 (9, 27, 27, 18, 9)  5  

8  7 (9, 9, 27, 36, 36, 6, 6)  13  

 
 

 

Figure 4: Case 1 of applying three strategies 
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Figure 5: Case 2 of applying three strategies 

 

Figure 6: Comparisons of three algorithms 

It can be observed that all of the approaches can reach good results, while there 
are different characteristics due to the inherent mechanisms of the algorithms. The 
SA-based algorithm usually takes shorter time to find good solutions but it is vigilant 
to its parameters (such as the starting temperature and the cooling parameter) and the 
problems to be optimized. The GA- and PSO-based algorithms are slow in finding 
good solutions but they are robust for optimization problems. Meanwhile, the SA-
based approach is much “sharper” to find optimal or near-optimal solutions, and the 
common shortcoming of the GA- and PSO-based approaches is that they are prone to 
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pre-maturity in some cases (converge too early and difficult to find the optimal 
solutions). 

8 Conclusions 

Manufacturing planning, which mainly include process planning and scheduling, is an 
important stage in product development. The decision will play a crucial role for the 
performance of the final products. Usually, process planning and scheduling are 
arranged in a sequential way. With this arrangement, it is difficult to adjust them in a 
cooperative way to achieve global optimization. To identify good solutions in 
manufacturing planning, in this research, CPPS has been developed. The 
contributions of this research include: 
• To address CPPS effectively, three game theory-based strategies, i.e., Pareto 

strategy, Nash strategy and Stackelberg strategy, have been used to analyze and 
facilitate the cooperation of the two processes in a systematic way.  

• AHP has been introduced to resolve the multiple constraints in the CPPS problem. 
The technique is effective in solving the complex and even conflicting constraints 
in manufacturing planning.   

• To find optimal or near-optimal solutions from the vast search space efficiently, 
modern intelligent algorithms, including PSO, SA and GAs, have been developed 
and applied to the CPPS problem. Experiments have been conducted and 
computational results have shown the effectiveness of applying these intelligent 
strategies. Comparisons have been given to show the characteristics of the 
algorithms. 
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