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Abstract: In real-time systems, temporal behaviour is as important as functional
behaviour, so several techniques have been especially developed for these systems.
Stochastic analysis techniques model the execution time of tasks as random variables
and constitute a very powerful tool to study the temporal behaviour of real-time sys-
tems. However, as they can not avoid all the timing bugs in the implementation, they
must be combined with measurement techniques in order to gain more confidence in
the implemented system. This paper presents a monitoring tool which can measure
real-time systems developed using POSIX. The corresponding analysis and a visualiza-
tion tool that makes it possible to find errors easily is also introduced. In order to find
bugs in the timing behaviour of the system when an stochastic analysis technique is
used, two metrics, called “pessimism” and “optimism”, are proposed. They are based
on two random variables, the optimistic and the pessimistic execution time, which are
also introduced in this paper. These metrics are used in the debugging tools to compare
the model and the measured system in order to find errors. The metrics are examined
in four case studies.
Key Words: Debugging aids, Real-time Systems, Monitors
Category: C.3, D.2.4, D.2.5

1 Introduction

What makes real-time systems different from other types of systems is that
the temporal behaviour is as important as the functionality. This begins with
the clear definition of timing constraints, usually in the form of deadlines and
periods for the different tasks that the system must carry out. Thus, special
techniques are needed to guarantee the timing constraints and to debug the
temporal behaviour of real-time systems.
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For the first goal, guaranteeing the timing constraints, several analytical
methods have been proposed. Traditional techniques, such as the processor uti-
lization analysis [Liu and Layland 1973, Lehoczky 1990] and response time anal-
ysis [Tindell et al. 1994], use a model of the system where the execution time of
the tasks is represented by their worst case execution time (WCET). Using this
value, these analyses can obtain an upper bound for the response time of the
tasks. Thus, it is possible to determine if all of the tasks will fulfill their dead-
lines even in the worst circumstances. However, in modern systems, the great
variability of the execution times, due to caches, out of order execution, etc.,
results in excessively pessimistic WCETs, that is, the WCET is much greater
than the average case and its frequency of occurrence is negligible, which leads
to oversized systems.

To overcome this problem, another set of techniques for guaran-
teeing the timing behaviour of real-time systems have been developed
[Abeni and Buttazzo 2001, Manolache et al. 2001, López et al. 2008]. These
techniques, called probabilistic techniques, analyse the timing properties of the
system based on a stochastic model of its timing properties. Rather than us-
ing only the WCET, these techniques model execution time with a probability
function which assigns probabilities to each possible execution time. From these
execution times, the analysis computes the response time for each task, which is
also a probability function. The response time is computed taking into account
the fact that the tasks share a CPU. The probability of fulfilling the deadlines
can be obtained from the probability distributions of the response time.

In addition to analytical methods, measuring and debugging the temporal
behaviour of the system is needed, because any mistake in the model or in the
application of the techniques can lead to an error in the system.

One important step in removing the errors from a system, i.e., debugging it,
is finding where the errors lie. In the context of timing analysis, there is a model
that guarantees the absence of errors, so if there is an error in the system, there
must be an error in the model. Thus, identifying where the error lies means
finding which parameter or parameters of the model do not reflect reality. In
order to find errors in probabilistic parameters, probability functions must be
compared. In this paper the problems involved in this process are explored and
two metrics are proposed to solve them.

The rest of the paper is organized as follows: Section 2 presents related work;
Section 3 gives a general vision of the debugging strategy, including the system
model and the toolset where the metrics are used; in Section 4 the problems
of debugging a system analyzed with stochastic models are introduced and the
metrics to solve them are defined; Section 5 examines the metrics through case
studies; and finally, Section 6 summarizes the most important contributions of
this paper.
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2 Related Work

Much work has been done dealing specifically with monitoring and debugging
real-time systems. A compilation of the most significant work up to 1995 can be
found in [Tsai and Yang 1995] and [Tsai et al. 1996].

[LeBlanc and Mellor-Crummey 1987] proposed a technique called Instant Re-
play, that was used later in [Dodd and Ravishankar 1992] and [Thane et al. 2003].
This technique is used to debug functional errors, not temporal errors like the
ones addressed in this paper. [Tokuda et al. 1988] is focused in detecting dead-
line misses, but it does not relate them with other parameters of the model.
[Chodrow et al. 1991] analyses how to check the temporal specifications in run-
time, but it uses a time-driven approach in the gathering of events that, as
[Petters 2002] and [Stewart and Arora 2003] point out, is not well-suited to real-
time systems. The monitoring system presented in [Raju et al. 1992] has a simi-
lar goal to the one in [Chodrow et al. 1991], but using an event-driven approach.
Its main drawback is that it uses a specification based on RTL (Real-Time
Logic), a technique scarcely used in practice. This is the same problem with
JRMT [Mok and Liu 1997], which extends their previous work.

[Timmerman et al. 1993] introduces the problem of detecting temporal errors
in real-time systems when a trace can have a huge amount of data. In order to
overcome this problem, an expert system is proposed, but it requires expressing
the requirements in Prolog, which reduces its usability.

[Wilner 1995] describes WindView, a commercial tool developed by Wind
River for their operating system VxWorks. It is a tool that gathers a
great amount of data, but does not provide an automatic analysis to
find errors. Furthermore, it does not relate its measurements with the
model used for schedulability analysis, a problem also present in Jew-
elNT [Gergeleit and Nett 1999], a monitoring system for real-time systems in
Windows NT; and in [Yaghmour 2000], which explains an instrumentation
system in a Linux Kernel extension for real-time systems, RTAI (Real-Time
Application Interface). [Petters 2002] measures blocks of code in order to
feed stochastic models, but is not aimed at debugging a working system.
[Terrasa and Bernat 2003] shows how to obtain metrics from a trace, but does
not take stochastic techniques into account. [Stewart and Arora 2003] aims to
find bugs comparing measurements and models, but uses a non-stochastic model,
with a very restricted implementation.

None of the previous work addresses the main contribution of
[Entrialgo et al. 2007]: debugging systems analyzed with stochastic metrics. Fur-
thermore, none of the above papers propose a portable implementation in
POSIX. This paper extends [Entrialgo et al. 2007] with an improved introduc-
tion, more analysis of related work, an extended description of the monitoring
tool, including data about intrusiveness, and a new case study.
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3 Debugging Strategy

3.1 Overview

In order to understand how the metrics presented in this paper work, it is nec-
essary to know the general debugging strategy in which they are included. The
strategy addresses timing —not functional— errors. These are defined as follows:

Definition 1. A timing error is a non-fulfillment of the timing requirements
of the system, or an optimistic deviation from the model which guarantees the
requirements.

Notice that this definition emphasizes two different kind of errors. On the
one hand, there are errors that are non-fulfillments of the specifications. On the
other hand, there are errors that are differences between the timing behaviour
of the system and of the model in a way that makes the model optimistic, that
is, makes the model obtain higher probabilities of fulfilling the deadline than the
real probability, so there is a false security of fulfilling the specifications.

As shown in Figure 1, the proposed debugging strategy works by measuring
an implementation of the system and comparing the values obtained with the
values in the model. In order to make this comparison, three elements must be
available: a model of the system, an implementation, and a monitoring tool. In
addition, to make debugging easier, the measurements obtained from the monitor
should be analyzed and presented with a graphical tool. The final goal of the
strategy to find errors and pinpoint in which tasks and in which parameters of
the tasks they occur. The metrics presented in this paper, which are calculated
by the analysis and visualization tool, help in making the comparison between
the measurements and the model in order to find the errors.

Although the basic principles of the strategy are applicable to any real-time
system, in order to test it and demonstrate its capabilities a definition of the
model, the implementation, the monitor, and the analysis and visualization tool
must be chosen. In the following sections these elements are described.

3.2 System model

Stochastic analysis techniques are used as a base for analysing the measurements,
so one of them must be chosen. The one presented in [Kim et al. 2005] has been
selected because it provides the most exact analysis without needing strong
restrictions, as shown in [Dı́az et al. 2002].

The system is composed of a set of n independent periodic tasks Γ =
{τ1, τ2, . . . , τn}. Without loss of generality, we assume that the tasks are
sorted in decreasing order of priority. Each task, τi, is defined by the tuple
(Ti, Φi, Ji,Ci,Di,Mi), where Ti is the period of the task, Φi is its initial phase,
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Figure 1: Overview of the debugging strategy

Ji is its release jitter, Ci is its execution time, Di is its deadline and Mi is its
maximum allowable ratio of deadline misses.

The execution time, Ci, is a discrete random variable which assigns prob-
abilities to the possible execution times of the task. It can be defined with a
probability function denoted by fCi

(·), where fCi
(c) = P{Ci = c}, i.e., fCi

(c) is
the probability of the execution time being c. Alternatively, the execution time
distribution can also be defined using its cumulative distribution function (CDF),
denoted by FCi

, where

FCi
(c) � P{Ci ≤ c} =

c∑

i=−∞
fCi

(i) (1)

FCi
is a monotone increasing and right-continuous function. Furthermore,

lim
c→∞FCi

(c) = 1.
For example, consider the model of task τ0 presented in Table 1. Figure 2

shows a Gantt diagram representing four activations of the task. The arrows
indicate the arrivals of the task. The time between the beginning of the system
execution and the first arrival of the task is its phase, Φ0. The time between
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two arrivals is the period of the task, T0. Triangles are used to represent the end
of the deadline of each task arrival; thus, the interval between a task activation
and a triangle is its deadline, D0. Grey rectangles represent the execution of
the task. The interval between an arrival and the moment the task begins to
execute is the release jitter for that activation; the maximum of all these jitters
is J0. Finally, the interval from the start of a task execution to its end is the
computation time of that activation, c.

Task Ti Di Φi Ji Mi c fCi
(c)

τ0 40 35 20 10 0.1 10 0.8
15 0.2

Table 1: Task model example. All times are in ms

0 20 40 60 80 100 120 140 160 Time (ms)

Φ0

T0

D0

J0 c

Figure 2: Gantt diagram of an example task

Using the equations in [Dı́az et al. 2002], the probability function of the re-
sponse time of each task can be computed. From this probability function, the
probability of missing the deadline according to the model can be computed. If
this probability is greater than the corresponding maximum allowable ratio of
deadline misses for all tasks, the system is feasible according to the model, i.e.,
the model guarantees that the system will fulfill its requirements. A summary
of how the analysis works, along with a step-by-step example of a calculation of
a job random response time can be found in [Kim et al. 2005].
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3.3 System Implementation

An implementation based on POSIX [IEEE 2004] has been chosen because it is
the most common standard in real-time operating systems, so it provides a wide
applicability of the ideas presented in this paper.

In order to identify all the elements of the model in the measured system,
some constraints must be applied to the implementation. Firstly, in POSIX the
most common ways to implement a real-time system that follows the model
presented in the previous section are several processes with one thread or one
process with several threads. We have chosen the second alternative because
POSIX has protocols to avoid priority inversion problems that arise when the
model is extended to share resources between tasks.

In the proposed implementation there is a master thread that creates a thread
for each task in the model and then goes to sleep. Each of the created threads
mounts a timer with its period that generates a signal when it expires. Each
thread waits for its signal and, when it is received, the thread carries out the
computation corresponding to one of its jobs.

3.4 Monitoring tool

In order to measure the system implementation presented in the previous sec-
tion, a monitoring tool has been developed. Portability across POSIX real-time
operating systems was one of its main objectives. There is a tracing standard
in POSIX, but it does not standardize what to trace; it simply standardizes the
interface to event handling functions. For example, it provides a function for
opening a log, but it does not determine which events must be captured in every
POSIX compliant operating system.

Furthermore, as the section dedicated to tracing in POSIX is optional and
it has not been widely implemented by real-time operating systems, it was not
selected for use in this work. The proposed monitoring tool works at source-code
level, as this is standardized by POSIX. In this way, the monitoring tool can be
used for any application written for any POSIX compliant operating system.

The monitoring tool instruments the source code by adding instructions
which capture the occurrence of the events needed to debug the system. The
events always have an associated timestamp and may have some other parame-
ters depending on their type. The instrumentation is carried out by means of C
macros which must be included in the source code of the application.

An important point in order to give meaningful results to the analyst is
relating the information gathered with the analysis model. Typically, in analysis
the tasks are assigned a name, for example, Check Sensor. This information is
lost when the system is executed, as POSIX uses its own numerical identifiers for
threads. These identifiers can be different in each execution, so task Check Sensor
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can be thread 4 in one execution and thread 12 in another. In order to relate the
events in each thread with the data of a task in the model, an instrumentation
function indicating the task associated with each thread has to be inserted.

To avoid inserting new context switches in the system, which would increase
the monitoring overhead, the monitoring tool does not introduce more threads
in the application. Its instructions are executed in the thread where events are
gathered. In addition, in order to avoid a shared resource between all the threads,
which would significantly change the system model, there is an independent event
buffer for each thread.

At the end of the system execution, the events from all the threads are saved
to disk, thus becoming traces that can be analyzed and visualized by the tool
described in the next section.

The timestamps associated with each event are gathered with the POSIX
function clock gettime(). The maximum error in a timestamp depends on the
precision of the clock available with this function, which is implementation de-
pendent. In the test platform described in Table 3, it is 0.499504 milliseconds.

The intrusiveness of the monitoring tool is implementation dependent, but it
also depends on the characteristics of the measured system: the higher the event
rate, the higher the intrusiveness. As task activations are the most important
event that must be gathered in order to measure computation times and the
start and end of tasks, the event rate is directly related to the frequency of task
activations, which is the inverse of their period. Therefore, for systems where
the tasks have small periods, the intrusiveness is bigger. In the test platform
described in Table 3, the maximum time taken by the monitoring system to
gather an event is 0.03878 milliseconds.

The monitoring system also introduces overhead in the form of memory con-
sumption, and it is also implementation dependent. It has a constant value that
arises from the code of the instrumentation functions. In the test platform, it
was found to be 9.85 KBytes. Additionally, there is a variable factor which de-
pends on the number of tasks and the number of measured events. In the test
platform, 28 bytes are needed for the basic information of each task and each
measured event requires 20 bytes.

3.5 Analysis and visualization tool

The analysis and visualization tool reads both the traces generated by the mon-
itoring tool and the model used in the schedulability analysis. With this infor-
mation, the analysis and visualization tool carries out an analysis looking for
errors and then presents information to the user in order to help debug them.

In order to address the problem of showing the analyst the great amount
of data contained in the trace, a hierarchical approach is used. First, the tool
shows a summary of the system state in the “Metrics Windows” (an example for
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a case study can be seen later in Figure 6), which, for each task, provides a series
of metrics, based on the system model, the measurements and a comparison of
both. One of the main areas of the window shows a list of the problems found.
The user can further investigate these problems with the help of the metrics and
by using supplementary windows with other graphs, such as Gantt diagrams or
probability functions. Gantt diagrams are extended to present the main events
related to the computing model, as shown in [Entrialgo et al. 2003].

In order to find errors, the tool compares the values in the model, which
include the specifications, and values obtained from the trace. This comparison
is easy to carry out when the analysis is used with deterministic techniques. For
instance, in order to find an error in the WCET just two values, the WCET
in the model and the WCET in the measurements, must be compared. When
stochastic models are used in the analysis, the comparison becomes more diffi-
cult, as probability functions must be compared. The following section addresses
this issue.

4 Comparison of stochastic values

When a stochastic model is used to analyze a real-time system, the exe-
cution time of each task is characterized as a random variable. As proved
in [Dı́az et al. 2004], the analysis guarantees the deadline miss ratio as long as
this random variable follows a distribution which is more pessimistic than the
real distribution of the execution time. In order to compare the pessimism in
two distributions, the “worse than” relationship must be introduced:

Definition 2. Given two random variables, X and Y, we state that “X is worse
than Y”, and denote it as X � Y if FX(x) ≤ FY(x) for all x.

If X and Y are two distributions of execution time and X � Y, this means,
intuitively, that X assigns lower probabilities to lower times than Y, thus X is
more pessimistic as it assigns greater probabilities for longer times, meaning it
will take longer to complete the task. Graphically, X � Y means that the curve
of FX(·) is always below the curve of FY(·).

In a real-time system, there will be a timing error as defined in Definition 1
when the model distribution is not more pessimistic than the real one. It must
be noted that when a system is measured for a limited amount of time, the mon-
itor obtains a series of values for the execution time of each task. A distribution
function can be built from these values, but rather than the real distribution of
the execution time, it will only be a sample. What the analysis and visualiza-
tion tool must do is to infer from this sample distribution whether the model
distribution is more pessimistic than the (unknown) real distribution.
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Task Ti = Di Φi Ji Mi c fCi
(c)

τ0 200 0 0 0.1 20 0.8
100 0.2

Table 2: Example model. All times are in ms

In order to show this problem, an example will be introduced. Let us consider
the model presented in Table 2.

Figure 3 shows the plot of three example CDFs (Cumulative Distribution
Functions) for task τ0: the model distribution, the measured distribution ob-
tained from a measurement session, and the real distribution. As can be seen,
the model is more pessimistic than the real distribution, as the model CDF is
always below the real CDF. Therefore, there is no error. On the other hand, the
measurements CDF is not equal to the real CDF, as it is a sample of finite size.
The decision as to whether there is error is made by comparing the CDF of the
measurements and the model CDF, because the real CDF is unknown. In this
example, the model is not more pessimistic than the CDF of the measurements
— there are parts of the model curve that go above the measurement curve.
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Figure 3: Probability distribution example
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What this example shows is that the decision as to whether there is an error
can not be made by simply assessing whether the model CDF is always below
the CDF of the measurements : the sampling error can make the CDF of the
measurements go below the model CDF even when the real CDF is always above
the model CDF. In spite of this, with a high enough number of measurements,
the CDF of the measurements and the real CDF should be very close; thus, in
a system without timing errors there should be few intervals where the CDF of
the measurements is below the model CDF.

The classic solution to this problem —which appears in other fields such
as economics— is to use the Kolmogorov-Smirnov test. Unfortunately, this test
requires the distributions to be continuous and the sample, independent. In our
case the distributions are discrete and, due to caches and other architectural
components, the sample is not independent.

Instead of a statistical test, in this work we propose using heuristic metrics.
The goals pursued in defining these metrics are as follows:

– The metrics should have threshold values that indicate when an error is
found.

– When there is an error, the metrics should help in determining in which task
the error lies. In order to accomplish this goal, the metrics for different tasks
should be comparable.

– The metrics should have a graphical interpretation that is easily understand-
able for the analyst.

– The metrics should have a simple formulation.

After testing several metrics with different case studies (see Section 5), two
complementary metrics, pessimism and optimism, have been chosen. They are
based on comparing the mean value of the CDF of the measurements and the
model CDF, but this comparison must take into account the fact that optimism
for some execution times can not be compensated for with pessimism for other
execution times. In order to avoid this compensation, two new random variables
must be introduced.

Let C be the random variable which characterizes the execution time in the
model for a task and let S be the random variable which characterizes the exe-
cution time according to the measurements.

Definition 3. The optimistic execution time CO is defined as the random
variable which has the following CDF:

FCO(x) = max{FC(x), FS(x)} (2)
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Definition 4. The pessimistic execution time CP is defined as the random
variable which has the following CDF:

FCP(x) = min{FC(x), FS(x)} (3)

Figures 4 and 5 show a graphical interpretation of the CDF of these vari-
ables by means of an example. As seen in Figure 4, the CDF of the optimistic
execution time is the curve that always follows the highest of the CDF of the
measurements and the model CDF. Similarly, as seen in Figure 5, the CDF of
the pessimistic execution time is the curve that follows the lowest of the CDF
of the measurements and the model CDF.

0 20 40 60 80 100 120

Execution time (ms)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

FCO(·) (Optimistic)

FS(·) (Measurements)

FC(·) (Model)

Figure 4: Optimistic execution time example

To obtain a metric of the optimism in the model, the differences between the
mean of the optimistic execution time and the measured execution time are used.
By using the optimistic execution time, there is no compensation of optimism
with pessimism. In a similar way, pessimism is defined as the difference between
the mean of the pessimistic execution time and the measured execution time.

Next, the metrics are formally defined.

Definition 5. Optimism is defined as:
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Figure 5: Pessimistic execution time example

O =
S̄ − C̄O

S̄
(4)

Definition 6. Pessimism is defined as:

P =
C̄P − S̄

S̄
(5)

In the previous equations, S̄, C̄O y C̄P are the mean of the random variables
S, CO and CP respectively.

As seen in Equations 4 and 5, the difference between means is divided by the
mean of the measured execution time. This is done in order to obtain a relative
metric which can be easily understood by the analyst and comparable between
different tasks. Multiplying by 100 to convert the values to percentages, it can
be said, for instance, that in a task there is a pessimism of 15% and an optimism
of 3%.

When pessimism is positive and optimism is zero, the model CDF is always
below the CDF of the measurements. This is good, as it indicates that the model
is based on pessimistic estimations of the execution times. Conversely, finding a
low pessimism and a high optimism is bad, as it indicates the model is based on
optimistic estimations of the execution time and, therefore, the analysis can not
guarantee the temporal specifications.
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5 Case studies

In order to show the utility of the metrics and to test if they fulfill the goals
previously stated, this section provides four case studies. All of the case studies
have been implemented in a platform with the characteristics shown in Table 3.
The platform uses QNX as its operating system, which is one of the main real-
time operating systems and follows the POSIX standard. In order to implement
a controlled set of tasks for the case studies, synthetic tasks have been used.
Computation times are emulated with loops, and probabilities with conditional
statements using random numbers.

Hardware

Processor Pentium III

Processor Frequency 800 MHz

Front Side Bus Frequency 133 MHz

Cache L1 16KB/16KB

Cache L2 256KB

Main memory 256MB

Software

Operating System QNX 6.2.1

Compiler gcc 2.95.3

Table 3: Test platform

5.1 Case study 1: Determining which task contains the error

This case study shows how the metrics work within the complete debugging
strategy and how they help in finding in which task the error lies. A system
made up of four tasks has been implemented in the test platform detailed in
Table 3. Table 4 shows the model of this system. In the model, the execution
times have been increased by 10% in order to emulate the pessimism of the
models. The 0.499504 ms of jitter is due to the precision of the operating system
clock. Although the phase, Φi, is useful in order to have different reference points
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for the periods of each task, which might control processes with different offsets,
in all the case studies the phase will be zero, as it does not affect the metrics.

As seen in Table 5, according to the analysis of the model with the tech-
niques presented in [Dı́az et al. 2002], all of the tasks will fulfill their maximum
allowable ratio of missed deadlines.

Task Ti = Di Φi Ji Mi c fCi
(c)

τ0 100 0 0.499504 0.1 11 1

τ1 200 0 0.499504 0.1 22 0.8
110 0.2

τ2 300 0 0.499504 0.1 33 0.1
55 0.9

τ3 400 0 0.499504 0.1 11 0.1
33 0.5
121 0.39

121.1 0.01

Table 4: Model for the case study 1. All times are in ms

Task Mi Probability of
missing the deadline

τ0 0.1 0

τ1 0.1 0

τ2 0.1 0

τ3 0.1 0.05697

Table 5: Model analysis results for the case study 1

An error in the implementation of the system was deliberately introduced.
The two possible execution times of task τ1 come from a conditional statement
and its condition was reversed. This case study assesses whether the debugging
tools are able to find the error.

The implementation was measured for two hours using the monitor described
in Section 3.4. The measurement interval was selected after assessing that the
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metrics converge to a steady value, using the window from the analysis and
visualization tool with the evolution of pessimism and optimism presented later,
in Section 5.2. The size of the resulting trace was 8.54MB.

After opening the corresponding trace with the analysis and visualization
tool described in Section 3.5, the “Metrics Window” shown in Figure 6 presents
a summary of the system behaviour.

Figure 6: Metrics of Case Study 1

The Metrics Window is divided in to two main panels. The top panel contains
a table with metrics of each task. The bottom panel presents warning and error
messages obtained from an automatic analysis of the traces. One of the problems
of performance debugging is finding the relevant data from among a huge amount
of information. An automatic analysis searching for bugs is carried out and, as a
result, the cells with data that pinpoint errors are highlighted in the table, and
messages guiding the analyst to further inspection of the problem are generated.

In this case study, the analysis and visualization tool highlights the cell with
the missed deadline ratio for task τ3 (called “T3” in the tool) and the optimism
in task τ1. The missed deadline ratio for task τ3 is more than double its specified
maximum allowable ratio of deadline misses (0.1, as shown in Table 4).

The analysis predicted that, according to the model, all the tasks would fulfill
their specifications, so the cause of the problem must be related to differences
between the model and the measured system. The challenge is to find where. The
metrics help in this regard by pointing not to task τ3, which is where the problem
appears, but to task τ1. As can be seen, the pessimism in all the tasks except in
τ1 is close to 10% which was to be expected. Furthermore, the optimism in all
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the tasks is zero or very close to zero except in task τ1, where it is 55.70%.
This very high value can be further inspected with another window of the

analysis and visualization tool that presents the CDFs of the model and the
measurements. Figure 7 shows this window for task τ1.

Figure 7: CDFs of task τ1 of Case Study 1

In this figure the error that was introduced is evident: the two probabilities in
task τ1 are interchanged. Thus, the tool has helped in finding an error otherwise
very difficult to locate.

5.2 Case study 2: Analysis of a system without errors

In the previous case study the model was designed to have 10% pessimism.
However, as seen in Figure 6, the pessimism in the tasks that have no errors
is not exactly 10%. In fact there is a small degree of optimism in task τ3. In
order to understand why this happens, and also to show the influence of sample
size in the metrics, another case study has been developed. In this case study,
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the model aims to emulate the implementation, so that neither pessimism nor
optimism is introduced. The model is shown in Table 6.

Task Ti = Di Φi Ji Mi c fCi
(c)

τ0 100 0 0.499504 0.1 10 1

τ1 200 0 0.499504 0.1 20 0.8
100 0.2

τ2 300 0 0.499504 0.1 30 0.1
50 0.9

τ3 400 0 0.499504 0.1 10 0.1
30 0.5
100 0.39
300 0.01

Table 6: Model for the case study 2. All times are in ms

A system with these parameters was measured for two hours. Figure 8 shows
a window from the analysis and visualization tool with the evolution of pessimism
and optimism for task τ0 computed when the number of measured releases of
the task increases. Two issues arise from this figure:

– The values do not change as the sample size grows. The reason for this is
that, both in the model and in the measurements, the task has only one
execution time.

– Optimism is zero, as expected; however, pessimism is not zero but close to
0.1%. This is caused by the measurement error. The execution time in the
model is 10 ms. However, the clock resolution of the test platform is 0.499504
ms, so that the closest measurable values to 10 ms are 9.99008 and 10.489584
ms (resulting from measurements of 20 and 21 clock ticks, respectively). In
this case the value obtained is the former, so the measured execution time
is slightly under 10 ms. Consequently, some pessimism appears.

Figure 9 shows the evolution of the metrics for task τ1, which is very different
from that of task τ0. Firstly, there is a variation of the metrics as the sample
size grows. When few releases have been measured, the values of the metrics
obtained are very different from the true value, zero. However, after measuring
more than a thousand releases, the metrics have values very close to zero. After
the 2000th release, pessimism is constantly zero and optimism varies slightly at
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Figure 8: Evolution of the metrics for τ0 of Case Study 2

a value close to 0.1%. As shown in the analysis for task τ0, this is due to the
measurement error.

The evolution of the metrics for tasks τ2 and τ3 (which is not included in
this paper for the sake of brevity) is similar to that of task τ1. Thus, this case
study has shown that the measurement error has an influence on the value of
the metrics, and that it is necessary to study the window with the evolution of
the metrics in the analysis and the visualization in order to assess whether the
metrics have reached a stable value.

5.3 Case study 3: Analysis of distributions with the same mean

As the metrics are based on the mean of the distribution, it is important to
observe what happens when the model and the real distribution have the same
mean, but different shapes. It must be noted that in this case there is an error,
as the model and the real distribution curves will cross. Therefore, the model
distribution can not always be below the real distribution, i.e., the model can
not be pessimistic.
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Figure 9: Evolution of the metrics for τ1 of Case Study 2

In order to test the metrics in these circumstances, a case study with only
one task has been used. The execution time of the task has been chosen so that
it follows a beta distribution, as this can be easily modified to have the same
mean, but different shape. Furthermore, with the right parameters, it is well
suited to model execution times. The beta distribution is originally a continuous
distribution between 0 and 1. In order to make the experiments, a beta distri-
bution with parameters α = 2.5 and β = 5 has been discretized in 20 values and
scaled so that its range is [200, 300] ms.

The system was measured for two hours. In order to test the metrics, ten
models have been generated, each one with a different beta distribution. These
beta distributions were obtained by varying the β parameter between 1 and 10
in steps of 1, and computing the corresponding α parameter so that the mean of
the distribution did not change. Figure 10 shows the probability function of the
original beta function (α = 2, beta = 5) and of two additional models. As can
be seen, the shapes of the function vary; however, their means are the same.

In order to test the metrics, the ten different models have been analyzed
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Figure 10: Beta functions used in case study 3

with the analysis and visualization tool using the same trace obtained with the
original beta function. Figure 11 shows the values of the metrics as the difference
between the variation coefficient of the model and the measurements changes.
The variation coefficient has been chosen because it expresses the relationship
between the standard deviation and the mean of the distribution. This figure
shows that, even with the same mean, a small variation with respect to the
mean has a significant impact on the metrics. For a difference of 0 between the
variation coefficient of the model and the measurements, both metrics have a
value very close to 0. When the variation coefficient differs from zero, the metrics
increase its value, indicating the difference and, thus, the error. Therefore, the
case study shows that the metrics are able to capture differences in the shape of
the function in any direction.

5.4 Case study 4: Analysis of errors in conditional statements

This case study explores the behaviour of the metrics when the probability of
different branches in a conditional statement is incorrectly estimated.

A system has been implemented with only one task. Its parameters are shown
in Table 7. The task has two execution times: 20 ms, which corresponds to a
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branch of a conditional statement that will be dubbed “short branch”; and 100
ms, which correspond to the other branch of the conditional statement, which
will be called “long branch”.

Task Ti = Di Φi Ji Mi c fCi
(c)

τ0 200 0 0.499504 0.1 20 0.5
100 0.5

Table 7: Tasks in case study 4. All times are in ms

Both branches have the same probability in order to test what happens when
the model estimates them incorrectly in any direction.

The system was measured for two hours, generating a trace that has been
compared to eleven different models where the probability of the short branch
was varied between 0 and 1 in steps of 0.1; consequently, the probability of the
long branch had the same variation but from 1 to 0. The first model assigned a
probability of 0 for the short branch and 1 for the long one, the second model
assigned a probability of 0.1 to the short branch and 0.9 to the long one, and so
on.

The results can be seen in Figure 12. When there is no error in the model
(both branches have a probability of 0.5), pessimism and optimism are zero,

1584 Entrialgo J., Garcia J., Diaz J.L., Garcia D.F.: Tools and Stochastic ...



0 0.2 0.4 0.6 0.8 1
Probability of the short branch

0

20

40

60

80

P
er

ce
nt

ag
e

Pessimism

Optimism

Figure 12: Behaviour of pessimism and optimism related to errors in the proba-
bility of a conditional statement

as expected. When the model incorrectly assigns less probability to the short
branch (which can be seen moving to the right in the abscissas), pessimism
grows linearly because the model is assigning less probability to shorter times
and, thus, more probability to longer times. Similarly, when the probability of
the short branch increases from 0.5 in the model, optimism grows linearly.

This case study shows that the metrics behave in a reasonable way for condi-
tional statements: when the same error is introduced in different directions, the
values in the metrics are symmetrical.

6 Conclusions and future work

This paper has presented the problem of debugging the timing behaviour of
real-time systems when they are analyzed with stochastic techniques. As these
techniques provide a more powerful analysis of real-time systems than traditional
non-stochastic techniques, the problem addressed will be of great importance in
the future.

After defining a timing error, two tools for debugging the timing behaviour
of real-time systems have been presented. First, a monitoring tool which can
measure POSIX systems in a portable way has been introduced, with its in-
trusiveness analyzed. Then, the visualization and analysis tool that, using the
traces generated by the monitoring tool, carries out an analysis of the system
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and presents the results has been described.
The main contribution of the paper is the introduction of two metrics, named

“pessimism” and “optimism”, which deal with the problem of finding timing
errors in the characterization of the computation time as a random variable.
They are based on two new random variables, the optimistic and the pessimistic
computation time, generated from information contained both in the model and
in the measurements. As four case studies have shown, the metrics are useful in
finding timing errors in stochastic systems.

The greatest limitation of the metrics is that they are heuristic and hence,
do not provide a statistic confidence value depending on the sample size. This
problem is very difficult to address because the samples are not independent.
However, the analysis and visualization tool provides a window showing the
evolution of the metrics that can be used to asses whether they have reached a
steady state.

The metrics can also help in contexts different from debugging; for instance,
instead of comparing a model distribution and a measurement distribution, they
can be used to compare two different models or two different analysis techniques.

Future work will focus on extending the debugging approach to other param-
eters of stochastic systems such as the blocking time.
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