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Abstract: Computing as a discipline is often characterized as a combination of three
major traditions: theoretical, scientific, and engineering tradition. Although the three
traditions are all considered equally necessary for modern computing, the engineering
tradition is often considered to be useful but to lack intellectual depth. This article
discusses the basic intellectual background of the engineering tradition of computing.
The article depicts the engineering aims manifest in the academic field of computing,
compares the engineering tradition with the other traditions of computing as a disci-
pline, and presents some epistemological, ontological, and methodological views con-
cerning the engineering tradition of computing. The article aims at giving the reader
an overview of the engineering tradition in computing and of some open questions
about the intellectual foundations and contributions of the engineering tradition in
computing.
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1 Introduction

The juxtaposing of science and technology is perhaps nowhere else as marked
as in the computing disciplines. The division of computing into its mathemat-
ical/theoretical, scientific/empirical, and design/engineering traditions ([Weg-
ner, 1976], [Denning et al., 1989]) has spurred fiery debates about the merits
and shortcomings of each tradition. In those debates, the theoretical tradition
leans on the recognition of mathematics and logic as the theoretical cornerstones
of computing, the scientific tradition draws support from arguments from the
philosophy of science, but the design/engineering tradition is usually only rec-
ognized for its utility and not for its intellectual foundations. The intellectual
foundations and intellectual contributions of the engineering tradition are often
ignored.

This dismissal of the intellectual basis of engineering tradition in comput-
ing might derive from the focus of epistemology in the philosophy of science in
the 20th century. The scientific tradition rides on the crest of the deductive-
nomological wave fueled by Hempel and Popper, and it utilizes vocabulary
familiar from Kuhn, Popper, and other philosophers of science. The logico-
mathematical roots of computing are rarely challenged, as mathematics is gener-
ally seen as the language of science and technology. However, the public image of
engineering is vague and poor, and often secondary to even technology research

Journal of Universal Computer Science, vol. 15, no. 8 (2009), 1642-1658
submitted: 14/3/09, accepted: 27/4/09, appeared: 28/4/09 © J.UCS



[Malpas, 2000]. There is a widespread recognition of the societal significance of
technology, and scientific findings frequently grab the headlines. However, when
engineers do their job well, the engineers and their intellectual accomplishments
usually disappear from public association, and only the successful artifacts re-
main in the public [Malpas, 2000].

It is not the case that engineering would generally be considered unimpor-
tant in computing: it is usually agreed that production of useful, efficient, and
reliable computational tools is a well-justified aim that is societally important.
Rather, it seems to be the case that the engineering aspects of computing are
considered to be based on rules of thumb and anecdotal evidence, to be less
intellectually challenging than scientific and mathematical branches of comput-
ing, to be theoretically vague, and to be philosophically shallow. Those kinds of
critique of engineering, however, often miss the target, as they are done from
the viewpoint of science or mathematics, where evaluation criteria are largely
incommensurable with evaluation criteria in engineering.

This article is aimed at depicting some of the intellectual background of
engineering in the field of computing; a background often ignored by the crit-
ics of engineering in computing. This article is not a critique of the scien-
tific/empirical tradition or the mathematical/theoretical tradition of computing.
Those traditions occupy a very important place in the discipline of computing.
Instead, this article describes and defends the intellectual foundations of the
design/engineering tradition of computing.

2 Aims of Engineering in the Field of Computing

Most accounts of the engineering tradition of computing share the view that
unlike mathematicians, engineers, who design working computer systems, have
to cater to material resources, human constraints, and laws of nature [Tedre
& Sutinen, 2008]. Unlike natural scientists who deal with naturally occurring
phenomena, engineers deal with artifacts, which are created by people. In com-
puting disciplines engineers design complex, cost-effective systems with minimal
resource consumption ([Hamming, 1969], [Loui, 1995], [Wegner, 1976]). Indeed,
what seems to be common to all the different engineering branches is that they
all aim at producing useful things that are directed towards some social need or
desire [Mitcham, 1994, 146–147]. Carl Mitcham, who is a philosopher of technol-
ogy, wrote:

Engineering as a profession is identified with the systematic knowl-
edge of how to design useful artifacts or processes, a discipline that [. . . ]
includes some pure science and mathematics, the “applied” or “engineer-
ing sciences” (e.g., strength of materials, thermodynamics, electronics),
and is directed toward some social need or desire. But while engineering
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involves a relationship to these other elements, artifact design is what
constitutes the essence of engineering, because it is design that estab-
lishes and orders the unique engineering framework that integrates other
elements. [Mitcham, 1994, 146–147]

The purposes of engineering and technology are practical; to manipulate and
control the world [Skolimowski, 1972]. Engineers “invent useful things or, at
least, add to our knowledge of how to do it” [Davis, 1998, 7–8]. Michael Davis
distinguished engineers from applied scientists when he wrote that whereas en-
gineers are primarily committed to human welfare, applied scientists are primar-
ily committed to theoretical or applied knowledge [Davis, 1998, 15–16]. Unlike
mathematicians and scientists, who embrace the precision and rigor of their
disciplines and who can infinitely hone their products, engineers must come
up with working solutions within some time limits (e.g., [Florman, 1994, 178],
[Kidder, 1981]). That creates intellectual challenges of a unique kind. In addition
to usefulness, usability and reliability are also crucial to computing disciplines.

The practical aims of engineering are often underlined by emphasizing the
role of computing machinery in the discipline of computing. In his 1968 Tur-
ing Award lecture, Richard Hamming argued that at the heart of computing
disciplines lies a technological device, the computing machine [Hamming, 1969].
Without it, Hamming argued, almost everything that professionals in comput-
ing fields do would become idle speculation, hardly different from that of the
notorious Scholastics of the Middle Ages. In Hamming’s opinion, much of what
computing professionals do is “not a question of can it be done as it is a question
of finding a practical way” [Hamming, 1969]. That is, the question for computing
professionals is usually not whether there can exist a monitor system, algorithm,
or compiler, but usually the professionals work on creating one with reasonable
expenditure and effort. The theoretician’s question “Can there be x?” is less
frequent than the practitioner’s question, “What is the most cost-effective way
of building x?” Therefore, in Hamming’s vision, the focus should not be on
the abstract ideas about computation, but on the practical implementations of
computing systems.

Also the kinds of questions that computing professionals ask reveal the deep
rooted engineering aims in computing disciplines. In his 1993 Turing Award lec-
ture, Juris Hartmanis argued that generally speaking, researchers in computing
disciplines concentrate more on the how than the what [Hartmanis, 1993]. He
wrote that natural scientists concentrate more on questions of what, and that
computing fields, with their bias on how, reveal their engineering concerns and
considerations. Hartmanis further argued that whereas the advancements in nat-
ural sciences are typically documented by dramatic experiments, in computing
disciplines the advancements are typically documented by dramatic demonstra-
tions. In some branches of computing the scientists’ slogan “publish or perish”
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indeed has turned into the engineers’ slogan “demo or die.” Engineering aims
are also visible in Hartmanis’ view that whereas the physical scientists ask what
exists, computer scientists ask what can exist [Hartmanis, 1993]. Notably, Hart-
manis characterized automatic computing as the “engineering of mathematics”
[Hartmanis, 1993].

The role of knowledge acquisition in computing also gives a hint about the
nature of the discipline. In his ACM Allen Newell Award lecture Frederick P.
Brooks, Jr., argued that although scientists and engineers both may spend most
of their time building and refining their apparatus, the scientist builds in order
to study, and the engineer studies in order to build [Brooks, 1996]. Brooks wrote
that unlike the disciplines in the natural sciences, computing is a synthetic, engi-
neering discipline. He noted that science is concerned with the discovery of facts
and laws, whereas engineering is concerned with making things, be they com-
puters, algorithms, or software systems. The human-made nature of computing
has been noted by a number of prominent figures in computing. For instance,
Donald Knuth called computing an unnatural science [Knuth, 2001, 167] and
Herbert A. Simon called it an artificial science [Simon, 1981].

Already in the 1960s a number of prominent figures in computing started to
refer to computing as a combination of art and science (e.g., [Forsythe, 1967],
[Knuth, 1968]). The argument was that “science is knowledge which we under-
stand so well that we can teach it to a computer; and if we don’t fully under-
stand something, it is an art to deal with it” [Knuth, 1974]. Donald Knuth de-
scribed the scientific approach with terms such as logical, systematic, impersonal,
calm, and rational, and described the artistic approach with terms such as æs-
thetic, creative, humanitarian, anxious, and irrational ([Knuth, 1974], see also
[Snow, 1964]). For Knuth, both of those apparently contradictory approaches
are valuable to computer programming. The lack of insight to artistic aspects of
programming was also noted by Hamming: “To parody our current methods of
teaching programming, we give beginners a grammar and a dictionary and tell
them that they are now great writers. We seldom, if ever, give them any serious
training in style” [Hamming, 1969, 10]. Concerns about excessive emphasis of
theory led Knuth later to urge computing practitioners to turn some of their at-
tention to theoretical things and computing theoreticians to turn some of their
attention to practical things [Knuth, 1991].

The line between theoretical and practical aspects of computing is sometimes
drawn following the “physical vs. nonphysical” lines (e.g., [Arden, 1980, 7]).
Engineers, who work with practical things, are supposed to work with physical
things (like hardware or machinery), whereas computer scientists work with
abstract things (like algorithms and programs). But that distinction is vague
and difficult. Firstly, programs have a dual nature: they are at the same time
physical and abstract ([Colburn, 2000], [Fetzer, 2000, 267], [Smith, 1998, 29–
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32]). And secondly, establishing a strict line between hardware and software is
also difficult [Moor, 1978].

The engineering-oriented branches of computing can also be further subdi-
vided. In his review of the three traditions of computing—mathematical, scien-
tific, and engineering traditions—Peter Wegner underscored the goal-orientation
of the engineering-oriented aspects of computing, yet he divided the engineer-
ing part of computing into two parts: practical engineering and research-based
engineering [Wegner, 1976]. Wegner wrote:

[The problem-solving paradigm of the practicing engineer] generally
involves a sequence of systematic selection of design decisions which pro-
gressively narrow down alternative options for accomplishing the task un-
til a unique realization of the task is determined. [The research engineer]
may use the paradigms of mathematics and physics in the development
of tools for the practicing engineer, but is much more concerned with
the practical implications of his research than the empirical scientist or
mathematician [Wegner, 1976].

It seems that the interest in producing useful things is a necessary condition
of engineering. That is, an activity cannot be considered to be engineering un-
less the person’s aim or goal is to produce useful things. But certainly interests
(goals or aims) are not a sufficient condition of engineering. In most accounts of
engineering, not all activities that aim at building things are considered to be
engineering. Most accounts of engineering impose a number of necessary condi-
tions, such as how the work is done (methodology) or what the outcomes of the
work are (e.g., innovations, processual knowledge, or artifacts).

3 Pure Science, Applied Science, Engineering, and
Technology

One view that emerges often in the philosophy of engineering and technology is
the division between pure science, applied science, engineering, and technology
(e.g., [Vincenti, 1990]). Unfortunately, each of those terms is vague. Especially
the term science is exceedingly vague and can refer to many different things
[Tedre, 2007], and to make matters even more complex, science is further divided
into pure and applied. Research in pure science is often called basic research; it
is research that is performed without thought of practical ends, and it yields
general knowledge and knowledge about how the world works [Bush, 1945]. In
other words, pure science seeks knowledge for its own sake [Malpas, 2000]. Ap-
plied science is usually connected with design, engineering [Arden, 1980], and
technology. It is often argued that the focus of research projects is narrower in
applied science than in pure science [Gruender, 1971], and that applied science
extends scientific knowledge with a specific purpose in mind [Malpas, 2000].
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Similar to the term science, in computing disciplines also engineering is a
broad and ambiguous term: it can be considered to encompass a plethora of
things such as requirements engineering, software development, interface de-
sign, computer engineering, robotics, operating systems, signal processing, soft-
ware / hardware testing, maintenance, and project management. Epistemolog-
ically speaking, engineering commonly refers to both “the knowledge required,
and the process applied, to conceive, design, make, build, operate, sustain, recy-
cle or retire, something of significant technical content for a specified purpose”
[Malpas, 2000]. That is, engineering concerns facts (“know-that”), experience,
and skills, and it concerns the ability to use science, engineering, experience,
and contextual knowledge to implement a solution to a problem (“know how”)
[Malpas, 2000].

Some consider technology to be still a bit more practical endeavor than engi-
neering is [Feibleman, 1961]. However, similar to terms science and engineering,
the term technology is used in a diversity of meanings. Stephen Kline distin-
guished between four meanings of the term: artifacts, which are objects made
by people; sociotechnical systems of production, which are systems that include
people, machinery, resources, processes, economic, and other aspects of produc-
tion; knowledge, technique, or know-how, which refers to technology as a field or
discipline similar to terms like psychology, sociology, and geology; and sociotech-
nical systems of use, which refers to using artifacts and knowledge about them to
extend human capabilities [Kline, 1985]. In addition, the term technology is used
to refer to things, actions, processes, methods, systems, working procedures, and
progress [Kline, 1985].

The meaning of the term technology is often ambiguous in the language of
computing professionals. In computing fields the term is used for referring to
artifacts (“The new MacBook is a nice piece of technology”), sociotechnical sys-
tems of use (“Technology can eradicate poverty”), and knowledge (“With our
current technological knowledge we can map the human genome”). Finally, tech-
nological research is sometimes distinguished from engineering research. Whereas
engineering research emphasizes the development of processes, technological re-
search emphasizes the quality of the outcomes [Malpas, 2000]. Among computing
practitioners the term technology is most commonly used to refer to artifacts.

But even if one considered computing to be a kind of science or a kind of engi-
neering, it is still hard to tell exactly where on the map of sciences or engineering
fields does computing belong. Juris Hartmanis argued that computing differs so
fundamentally from the other sciences that it has to be viewed as a new species
among the sciences, especially because it deals with human-made phenomena
that are explored by human-made paradigms and methods [Hartmanis, 1994].
Hartmanis noted that theory and experimentation in computing are focused
“more on the how than the what” [Hartmanis, 1994]. He believed that the re-
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sults of theoretical computer science are judged, for instance, by the insights they
reveal about various models of computing, and that the results of experimen-
tation are judged by demonstrations that show the possibility or feasibility of
doing things that were earlier thought to be impossible or unfeasible. Hartmanis’
view portrayed computing as a combination of science and engineering. Indeed,
Michael C. Loui [Loui, 1995] in response to Hartmanis, noted that instead of a
new species of science, it would be more appropriate to call computing a new
species of engineering.

As long as the juxtaposition between applied science, pure science, engineer-
ing, and technology is purely descriptive, the main question is about where the
dividing lines are drawn. But when the juxtaposition becomes normative—for
instance, when it is implied that theoretical and scientific aspects of comput-
ing are intellectually superior to applied and engineering-oriented aspects of
computing—then justification for that normative assessment should be given.
That issue was addressed in the 1990s, when the Computer Science and Tech-
nology Board (CSTB) of the National Research Council of the U.S. published a
report where they argued that in computing fields the traditional separation of
basic research, applied research, and development is dubious [Hartmanis, 1992].
They argued that both basic and applied research call for the exercise of the same
kinds of judgment, creativity, skill, and talent. The committee recommended that
academic computing disciplines should abandon artificial distinctions among ba-
sic research, applied research, and engineering. In addition, the committee urged
the discipline of computing to earn its governmental support by showing that
computing research will have significant societal benefits [Rice, 1993].

It is hard to find a convincing argument for the argued intellectual superiority
of pure science over applied science and engineering. Especially recently, many
modern philosophers and sociologists have argued that the old idea that “tech-
nology is applied science” is no longer true (if it ever was). Many argue that the
inverse direction might be even stronger: most of the progress in modern science
can be attributed to technological development. For example, astronomy took gi-
ant leaps after the invention of the telescope. The theoretical progress in particle
physics is inextricably linked with the development of instruments such as differ-
ent kinds of particle detectors and particle accelerators [Pickering, 1995]. Similar,
thermodynamics followed the invention of the steam engine [Malpas, 2000]. In
computing it is often difficult to separate theoretical from technological progress.

Some authors have even begun to use the term technoscience instead of the
phrase science and technology because they believe that the two have become in-
separable ([Haraway, 1999], [MacKenzie & Wajcman, 1999]). In the idealist atti-
tude towards technology, technology is considered to be applied science, whereas
in the materialist attitude towards technology, science is considered to be the-
oretical technology [Mitcham, 1994, 76]). It must be remembered, though, that
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technological and engineering knowledge are not subsets of scientific knowledge.
Technology and engineering both have distinct cognitive content separate from
scientific knowledge [Frey, 1991].

Rather than seeing pure science, applied science, engineering, and technology
as separate categories, one could see technology as a new cognitive method for sci-
ence, and see science as a source of new principles for technology [Mitcham, 1994,
86]. But although science and engineering share some similarities—for instance,
they both have to conform to the laws of nature, they both are cumulative,
and they both share the scaling problem—they still utilize and produce different
kinds of knowledge and employ different methodologies [Tedre & Sutinen, 2008].
Whereas scientific knowledge consists of a set of observations, laws, and theories;
engineering and technological knowledge consist of actions, rules, and theories
(cf. [Mitcham, 1994, 193–194,197]).

4 Knowledge of Engineers

In the engineering branches of computing there is abundance of implicit meta-
physical, epistemological, ethical, and methodological views. For an example
about metaphysics, artificial intelligence research has reawoken the debate be-
tween the Ancient skeptic view (artifacts are less real than natural objects) and
Enlightenment optimism (nature and artifacts operate by the same mechanical
principles) [Mitcham, 1994, 298]. In epistemology, the debates about the na-
ture of computing as a discipline bring up the 2500 years old debates between
those who argue that technical information is not true knowledge and those
who argue that technical engagement with the world produces true knowledge
[Mitcham, 1994, 298]. Yet, the characteristics of typical epistemological questions
in the engineering tradition of computing are markedly different from those in the
mathematical and scientific traditions of computing. Questions about technolog-
ical and engineering knowledge discussed in this section are familiar to philoso-
phers of technology (e.g., [de Vries, 2003], [Herschbach, 1995], [Layton, 1974]).

4.1 Engineering Methodology

Denning et al. wrote that engineers share the methodological notion that progress
is achieved primarily by posing problems and systematically following the design
process to construct systems that solve them [Denning et al., 1989]. The engi-
neering method, as seen by Denning et al., is a cycle that consists of defining
requirements, defining specifications, designing and implementing, and testing.
In their work, engineers often follow the method of parameter variation—that
is, they repeatedly measure the performance of a device or process, while they
systematically adjust the parameters of the device or its conditions of operation
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Figure 1: Generic Engineering Process ([Malpas, 2000], Reprinted with the per-
mission of the Royal Academy of Engineering, UK)

[Vincenti, 1990, 139]. An engineer should have good skills in design, construc-
tion, testing, planning, quality assurance, problem solving, decision-making, and
communication [Malpas, 2000]. The engineering method can be described as it-
erative cycles of analysis, synthesis, and evaluation and execution (Figure 1; see
[Malpas, 2000]).

The generic engineering process portrayed in Figure 1 starts from require-
ments and proceeds through cycles of analysis, synthesis, and evaluation and ex-
ecution. The engineering process draws from available resources and all kinds of
available knowledge. Engineers often integrate many competing demands, theo-
ries, data, ideas, and knowledge from several fields and domains [Malpas, 2000].
The process typically works to meet the requirements within some time and
budget constraints. The engineering process is aimed at good decisions and opti-
mized solutions instead of conclusions [Malpas, 2000]. The knowledge gained in
the process (experience) adds to the common knowledge about the phenomenon,
process, theory, or domain.

One of the main activities of engineering is to compare solutions and select
alternatives. In engineering, those comparisons are often made in terms of costs
and efficiency. Interestingly, a lot of theoretical computer science, which one
might describe as one of the least engineering-oriented branches of computing,
is focused on the cost and efficiency of algorithms (the costs are expressed in re-
sources such as time and storage) (cf. [Arden, 1980, 7]). But although branches of
theoretical computer science study optimization of resources and cost/efficiency
concerns, the focus of theoretical computer science is not on producing useful,
cost-effective things, but on understanding properties of algorithms—properties
that are expressed in terms such as cost and efficiency.

Timothy R. Colburn, who is a philosopher of computing, portrayed the engi-
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neering approach in computing in form of solution engineering [Colburn, 2000,
167]. In some branches of computing the usual scenario includes rigorous re-
quirements, and the task of the computing professional is to engineer an algo-
rithmic solution. Colburn portrayed an analogy between the scientific method
and the problem-solving approach in computing (see Table 1; adapted from
[Colburn, 2000, 168]).

Table 1: Analogy Between the Scientific Method and Problem-Solving in Com-
puting

The Scientific Method Problem-solving in Computing

1. Formulate a hyphothesis for explain-
ing a phenomenon

1. Formulate an algorithm for solving
a problem

2. Test the hypothesis by conducting
an experiment

2. Test the algorithm by writing and
running a program

3. Confirm or disconfirm the hypothe-
sis by evaluating the results of the ex-
periment

3. Accept or reject the algorithm by
evaluating the results of running the
program

In Colburn’s analogy portrayed in Table 1, what is being tested with the sci-
entific method is not the experiment, but the hypothesis [Colburn, 2000, 168].
The experiment is a tool for testing the hypothesis. Similar, what is being tested
in problem-solving in computing is not the program, but the algorithm. The pro-
gram is written in order to test the algorithm. In this analogy, writing a program
is analogous to constructing a test situation. Similar, Khalil and Levy argued,
“Programming is to computer science what the laboratory is to the physical sci-
ences” [Khalil & Levy, 1978]. Although Colburn noted that his analogy does not
hold very far, that analogy displays another view of engineering in computing
disciplines.

The aim of engineering in computing—producing useful things within the
boundaries of available resources—sets some significant constraints on engineers’
work. Engineers often have to work relying on information that scientists would
not consider adequate for scientific purposes (cf. [Vincenti, 1990]). Scientists,
on the other hand, are loath to make conclusions without adequate informa-
tion about the phenomenon under study. In addition, for the scientist, natural
phenomena are not desirable or undesirable—they “just are”, but for engineers
natural phenomena can be desirable or undesirable [Frey, 1991]—for instance,
in the field of electronic communication thermal noise is an unwanted natural
phenomenon. Unlike theoreticians, engineers cannot abstract away aspects of the
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physical world.

4.2 Ontology and Epistemology

The meaning and status of knowledge differ between science and engineering. Sci-
entific knowledge is about description, explanation, prediction, and understand-
ing of natural (or artificial) phenomena, and scientists are concerned whether
their knowledge is true. Engineering knowledge is about heuristic prescriptions
(best practices) of how things should be done, and engineers are concerned
whether their knowledge works (cf. [Mitcham, 1994, 197]). Mitcham divided
technological knowledge into four kinds of knowledge: (1) sensorimotoric skills
of making (“know-how”), (2) technical maxims (“rules of thumb” or “recipes”,
which offer heuristic strategies for successfully completing tasks), (3) descriptive
laws (that is, “If A then B”-kind of rules, based on experience—yet those rules
do not go into explaining why A and B seem to be connected in some way), and
(4) technological theories (applications of scientific theories to practice; e.g., the
theory of flight is an application of fluid dynamics) [Mitcham, 1994].

The mechanisms of growth of knowledge in engineering and technology are,
in some senses, different from the mechanisms of growth of knowledge in science.
In science there are occasional revolutions when a previous scientific theory is
replaced with a new one [Kuhn, 1996]. The theories that have been replaced have
often been not merely inaccurate, but plain wrong. For instance, the phlogiston
theory of combustion and the optical æther theory, which are nowadays consid-
ered to be false, were once considered to be true ([Kuhn, 1996], [Laudan, 1981]).
However, when new technology replaces old technology it is not because the old
technology would not have worked; it is because the new technology does the
task faster, more efficiently, has some other benefits over the old technology,
or offers something that no previous technology could offer. This has led some
philosophers of engineering to argue that pragmatic technological “what works”
and “know-how” kinds of procedural and normative knowledge are rigorous,
“secure knowledge” [McCarthy, 2006]. In addition to descriptive and norma-
tive knowledge, there is a strong component of tacit knowledge in technology
[Vincenti, 1984].

The domain of knowledge in computing as a discipline is different from the
domain of knowledge in mathematics. Already in the early days of modern com-
puting, many pioneers adopted the position that computing as a discipline is
not situated in the ideal, infinite world of mathematics, but is situated within
the finite boundaries of available resources [Forsythe, 1967]. Design in computing
disciplines is rooted in engineering and deals with constructing systems or devices
to solve a given problem [Denning et al., 1989]. Design, as an engineering activ-
ity, has to cater not only to material resources but also to human constraints.
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In addition, whereas the Turing Machine does not have space constraints, com-
puting professionals must take into account the limits of computing resources
of actual computers [Forsythe, 1967]. Efficiency, effectiveness, and reliability are
all emphasized in the field of computing (e.g., [Arden, 1980], [Hartmanis, 1993],
[Knuth, 1997, 6], [Parnas, 1998], [Wegner, 1976]). However, there are two ways
of looking at the domain of computing fields: firstly, there is the view that com-
puting as a discipline studies abstract information processes and algorithms, and
secondly, there is the view that computing as a discipline studies actual imple-
mentations of computing systems. Different views to the subject of computing
as a discipline also led to different names of the discipline—such as computer
science, informatics, and computing (e.g., [Gal-Ezer & Harel, 1998]).

One of the interesting notions about the ontology of computing is the no-
tion that programs can be seen either as abstract constructions or as physical
things that do physical work. That dual nature of programs makes disciplinary
distinctions between engineering and other branches of computing difficult. On
one hand, one can claim that computer programs are physical things—computer
programs are swarms of electrons in the circuits of a computer ([Smith, 1998,
29–32], [Tedre, 2006, 122]). They are physical phenomena and they can make
physical phenomena happen. Computer programs are a part of the causal world,
and computer programs can affect the causal world. For instance, computer pro-
grams make monitors blink and printers rattle, and computer programs land
airplanes and guide missiles to their targets. On the other hand, one can claim
that programs are abstract things in the same way that mathematical objects
are abstract. Programmers can construct procedures and programs in the same
way mathematicians construct functions, theorems, and proofs—in their minds
or with a pen and paper. Computers are not necessary for creating computer
programs, and computer programs need not have any executable physical coun-
terparts (such as programs in computer memory or on hard drive).

The vagueness of the hardware-software distinction blurs the intra-disciplin-
ary borders even further. Those parts of the computer system that one can touch
are often considered to be hardware, and respectively, software is often consid-
ered to be the “non-physical” parts of a computer system. This line is vague,
too. Firstly, programs (when stored as electrical charges in memory, or as blips
on a magnetic disc) are physical phenomena. More importantly, most hardware
can be implemented as software and most software can be implemented as hard-
ware. For instance, codecs are sometimes implemented as hardware, sometimes
as software. In the end, a hardware-software distinction is a pragmatic distinc-
tion, and it is a subjective distinction [Moor, 1978]. For the user of a microwave
oven, the whole thing is hardware. But for the engineer of a microwave oven
there is often software and hardware. For the systems programmer, circuitry is
hardware, but a circuit designer can see microprograms as software. A graphics
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programmer may not even know which parts of his or her program are going to
be hardware-accelerated and which run as software.

The ontological issues in computing disciplines can be seen in a number of
ways, one of which is well described by philosopher John R. Searle [Searle, 1996].
In their work, engineers work with what Searle called brute facts and institu-
tional facts [Searle, 1996]. For instance, it is a fact that the silicon atom has 14
electrons. That is, silicon atoms have 14 electrons, no matter how people choose
to call those atoms and no matter what people think about them. But there are
also facts that are facts only because people (individually or collectively) agree
that they are facts. For instance, it is a fact that the OSI model has seven layers,
but that fact is a fact only because people collectively maintain that the OSI
model has seven layers. The former type of facts is called brute facts and the
latter type of facts is called institutional facts. On one hand, Searle’s division
allows the researcher of computing to take into account the characteristics of
the physical world, because the laws of nature determine some characteristics
and limits of automatic computing. On the other hand, Searle’s division allows
explanations of socially constructed phenomena that would not exist without
people (e.g., conventions, standards, and programs).

Engineers in computing disciplines work with many things that are based on
brute facts. For instance, how semiconductors work is a fact that is independent
of any attitudes people may have towards semiconductors. The principles behind
the functioning of the basic elements of the computer are brute facts about how
the world works. But many other aspects of computing are based on institu-
tional facts. For instance, all the standards in computing are agreements among
some stakeholders in computing. It would certainly be odd to argue that the
IEEE standard for floating-point arithmetic would reveal anything about how
the world works (cf., e.g., [MacKenzie, 1993]). Standards, as well as many other
things in computing, are constructions, which are useful but which can be aban-
doned or re-negotiated at any time. The reader should note that even though the
mechanisms and fabric of the physical world are observer-independent, concepts ;
such as atoms, quarks, and gravity; are human constructs, and thus necessarily
socioculturally influenced. Although the physical and chemical properties of sil-
icon are brute facts, the concepts that people use to describe those properties
(concepts such as hardness and atomic weight) are human-made institutional
facts, i.e., social constructions.

5 Conclusions

The importance of the engineering tradition in computing is rarely contested,
but there is still debate about the intellectual content and output of the engi-
neering tradition as well as about its academic status. That is largely because
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the engineering tradition is significantly different from the theoretical and scien-
tific traditions. Those traditions have different goals and aims, concerns and foci,
methods and modi operandi, and, to some extent, even different epistemological
and ontological views [Eden, 2007]. Some of the major differences that are com-
monly associated between the scientific and engineering traditions of computing
are portrayed in Table 2.

Table 2: Engineering and Science in Computing Compared

Engineering tradition Scientific tradition

Concerned with whether products
work

Concerned with whether claims are true

Work is value-laden Often claimed to be value-free
Aims at working implementations;
Changing the world

Aims at new findings about the world;
Understanding the world

Actions Observations
Partly generalizable Highly generalizable
Concerned with processes Concerned with causes
Processes, rules, and heuristics; Prod-
ucts and inventions

Models, theories, and laws; Discoveries

Concretizations of abstract ideas Generalizations from particular findings
Holistic, can integrate competing ideas Reductionist
Propositional and procedural knowl-
edge: “Know-that”, “Know-how”

Propositional knowledge: “Know-that”

Descriptive, normative, and tacit Descriptive
“Demo or die” “Publish or perish”
Must be able to act under very little
information

Refuse making claims if there is not
enough information

The characteristics portrayed in Table 2 are somewhat stereotypical, for
in computing the scientific, engineering-oriented, and theoretical traditions are
deeply intertwined [Denning et al., 1989]. One should also note that many of the
item pairs in Table 2 are not fully comparable. For instance, processes, rules, and
heuristics are not fully comparable with models, theories, and laws. Neverthe-
less, the table illustrates some emphases and background assumptions commonly
connected with the engineering tradition of computing, and contrasts them with
those commonly connected with the scientific tradition of computing.

The engineering tradition has an established place in computing, but its spe-
cial characteristics are not always appreciated. Whenever comparisons between
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the traditions of computing are done in terms of the mathematical tradition
or the scientific tradition, the engineering tradition certainly differs much from
those two traditions. That is not a problem as long as the comparison is purely
descriptive, but if normative ideas are derived from the comparison—that is, if
engineering is considered less valuable or intellectually inferior to the other two
traditions—then the comparison is problematic. Engineering has important and
intellectually valuable content that is incommensurable with the content of the
scientific and mathematical traditions.
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