
Learning to Program with COALA, a Distributed
Computer Assisted Environment

Francisco Jurado, Ana I. Molina, Miguel A. Redondo, Manuel Ortega
(University of Castilla-La Mancha, Computer Science and Engineering Faculty

Paseo de la Universidad 4 13071 Ciudad Real, Spain
{Francisco.Jurado, AnaIsabel.Molina, Miguel.Redondo, Manuel.Ortega}@uclm.es)

Adam Giemza, Lars Bollen, H. Ulrich Hoppe

(Universität Duisburg-Essen, COLLIDE Research Group
Dept. of Computational and Applied Cognitive Sciences

Lotharstr. 63/65, 47057 Duisburg, Germany
{giemza, bollen, hoppe}@collide.info)

Abstract: Learning to program is an important subject for students of Computer Science.
Mentoring these students is a time-consuming and complex task. In this paper, we present a
learning and tutoring environment that integrates task/solution delivery, assessment support and
tutor’s annotations, by extending Eclipse to a “Real World Integrated Development
Environment”. We will present a distributed system that uses Tuple Space architecture to
integrate Eclipse with an evaluation module and a hand-writing annotation feature.

Keywords: Learning Programming, Intelligent tutoring system
Categories: D.2.4, D.2.5, D.2.6, D.2.7, D.2.8., I.2.4., L.0.0, L.2.0

1 Introduction

Learning programming is an essential part of Computer Science studies. However, it
is not well suited for (only) being taught in lectures. It is widely accepted that learning
to program requires a “learning by doing” approach [Kumar, 03] [Scholemeyer, 96],
typically in the form of programming labs that provide an active learning [McConnell,
96]. In this paper, we focus on early stages of programming learning in which the
design and encoding of basic algorithms constitute the central individual activity (as
opposed to larger group programming projects). Our focus in this paper is, primarily,
on enriching and supporting the interaction between the learner-programmer and a
teacher or tutor. In this target situation, students must overcome some typical
difficulties for acquiring programming related knowledge [du Boulay, 89],
[Brusilovsky, 98], [Gomes, 07]. Our overall goal is to build learning support systems
that allow teachers and students to overcome the known difficulties of programming
courses.

Several systems and approaches have been proposed in order to support the
acquisition of programming knowledge and skills [Kelleher, 05] [Garner, 03]. Among
the approaches, we will centre our attention on those systems that assist the students
with any kind of adaption and feedback allowing constructivist learning experiences
[Ben-Ari, 2001].

Journal of Universal Computer Science, vol. 15, no. 7 (2009), 1472-1485
submitted:28/11/08, accepted: 28/3/09, appeared: 1/4/09 © J.UCS

Thus, it is worth highlighting the student adaption provided by electronic books
such as ELM-ART [Brusilovsky, 96] for learning LISP and KBS-Hyperbook [Nejdl,
99] for learning Java. In general, these systems offer a guided navigation through
given didactic material, trying to adapt this navigation to each student’s individual
profile. In this sense, they are adaptive electronic books. The knowledge acquired by
the students is assessed by questionnaires, quizzes or tests from programs developed
by the students as solutions to assignments. In this way, ELM-ART shows examples
to students allowing them to modify, to debug and to execute the LISP programs in its
evaluator web interface. This evaluator provides assessment and explanation for
mistakes at runtime. However, the kind of programming environment provided
through this web interface is limited and allows students to work only with simple
code.

Another online problem-solving approach is the work presented in [Kumar, 04]
[Fernandes, 05]. The work presents problets, a set of tutors that provides visualisation
and animation on several programming C++ topics such as expression evaluation,
loops, encapsulation, pointers, parameters passing and scope concepts. Authors assert
that problets provide detailed feedback to students, so they can be used as a
supplement to classroom instruction. There is a problet for each topic, and each
problet is a particular simulation environment.

In order to allow students to write more complex code, the work presented in
[Pérez, 06] provides a web interface for a Java development environment. The work is
focused on the analysis of code written by the students. It allows detecting, removing
and preventing mistakes by using language processing techniques. To do so, the
system logs, stores and analyses the errors. Thus, programmers can learn from their
own mistakes and can avoid making the same mistakes in the future. Although the
web-oriented embedment allows a system-independent execution that requires only a
web browser, it is not a distributed application that would facilitate reusability and
interoperability with other learning tools.

On the other hand, apart from feedback provided by the system, it can also come
directly from the teacher or from other students, by following the Computer
Supported Collaborative Learning (CSCL) paradigm [Koschman, 96]. Therefore, in
[Redondo, 04], the authors show the integration of several tools for learning to
program in a distributed way in specific domain contexts by applying CSCL. Instead
of a development environment, this work uses visual tools for learning both structured
programming and object oriented programming, and it introduces collaborative
planning [Redondo, 02] as a way to support CSCL.

Also using the CSCL paradigm, in [Duque, 08] we can see a Java development
environment that allows students to write, compile and execute complex Java code in
a synchronous way. The tool uses a structured chat, context awareness, and
coordination mechanisms in a Java application launched through a web browser. The
tool provides support to allow experts to analyse the collaborative work productivity,
and some quality measures about the code the students have written. However, this
environment leaves the actual assessment of the code to the evaluators (teachers), and
does not provide an automatic analysis of the code written by the students.

Searching for a system that provides feedback to the students who are learning
programming, we have seen that not all the proposals use development environments
that allow working with complex code. Furthermore, we have shown that there are

1473Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

approaches that allow for the integration of several tools in a distributed way, and
other approaches that propose the analysis of solutions developed by the students.
However, there is not one single tool that would support all these things together. So,
the suggestion presented in this paper is focused on developing a distributed
environment and a set of software facilities/tools for learning initial algorithmic
programming with specific support for the teacher-learner interaction and the ability
to analyse the solutions delivered by students. With this, we do not expect to create a
system that substitutes the teacher, but rather to implement an approximation that
provides support in a traditional classroom [Schofield, 94]. The suggested architecture
is based on a central blackboard for data sharing, and the use of agents interacting
with this blackboard to provide intelligent analysis and supervision support.

The rest of the paper is structured as follows: Firstly, we will specify a computer-
enhanced scenario for learning algorithmic programming (section 2); then, we will
describe the communication architecture and other implementation issues of the
proposed environment (section 3); after this, our scenario in action will be explained
(section 4) to show the details and possibilities of the system; and finally, some
concluding remarks will be extracted and future perspectives will be discussed
(section 5).

2 Our Computer Assisted Environment for Learning
Algorithms

We are now going to describe a typical “programming lab” scenario in academic
education. We propose to enrich this scenario by means of a distributed computing
support [Molina, 05] [Paredes, 08]. The sequence of steps to be carried out is the
following: At first, the teacher specifies programming assignments for students and
sends these to a server. Next, the students download the assignment from the server
and work it out individually. This environment could include an intelligent module for
evaluation of the students’ proposals. So, during their programming, the students can
ask this system for an automatic evaluation to check their solution. After completing
the solution, the students send their results to the server. All the time, the teacher will
be notified about the students’ actions and can see the code sent by the students on
his/her computer.

Furthermore, if the teacher has a device that allows pen-based input, such as a
tabletPC or an electronic whiteboard, he/she can use the handwriting feature to
annotate the code. This will allow for more natural interaction during the evaluation
process. Furthermore, if the teacher considers showing concrete code to the students
in class, these annotations can also be very useful when using an electronic
whiteboard.

In short, the described scenario is a distributed environment that merges
communication and notification capabilities, auto-assessment provided by the system,
and free handwriting annotations features. We will discuss all these issues in detail in
next section.

1474 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

3 Implementation Issues

In this section, we will explain the two main implementation issues taken into account
in our system. Firstly, the communication architecture that will allow us to create a
heterogeneous distributed system by means of the ad-hoc interconnection of several
services according to the growth system. Secondly, we will show the environment we
have chosen where the students will perform the learning activities.

3.1 Blackboard Architecture Using SQLSpaces

In the design and implementation of distributed and possibly collaborative learning
applications, one crucial issue is the choice of communication and synchronisation
architecture. The principle distinction is between sharing data (e.g. through a central
database) and synchronising processes (e.g. using remote method call mechanisms, as
described in [Jurado, 07a]), as a basic starting point.

Our target scenario involves the distribution of programming tasks or assignments
to groups of students, the flexible (asynchronous) downloading of such assignments,
local elaboration, upload, correction, annotation and feedback from the teacher/tutor
to the student. That is, the basic activities are typically asynchronous, but having a
shared pool of data and notifications would be highly desirable. Indeed, both
requirements are met by a blackboard architecture based on Tuple Spaces. Although
the original idea is already quite old (see below), Tuple Spaces have recently been
used in several implementations of collaborative distributed environments, such as the
Group Scribbles classroom environment [Brecht, 06] or the Amenities project
focusing on group coordination [Garrido, 06].

The Tuple Space approach as an implementation of the blackboard architecture
introduced, together with the coordination language Linda, by Gelernter [Gelernter,
85] in the 1980s. It is based on a central server, which holds all messages. The clients
exchange messages solely with the server and do not have any direct client-to-client
connections. So, the server can be seen as a tuple exchange place or shared working
memory. Clients communicate indirectly by writing and reading (or “taking”) tuples
to/from the blackboard. A widely available recent implementation of Tuple Spaces
came as part of the Jini framework under the name of JavaSpaces (Sun Microsystems,
1998). JavaSpaces also provides “leases” to manage the lifetime of Tuple Space
entries, and an event mechanism that can actively notify clients. A JavaSpaces server
is not just one tuple container, but rather consists of several disjoint spaces, which can
be addressed by different names. This is particularly useful if different types of agents
working on different levels are to be supported. Almost simultaneously, another Java-
based Tuple Space implementation called TSpaces [Lehman, 99] has been developed
and distributed by IBM’s Almaden Research Center.

For our project, we have used a Tuple Space implementation called SQLSpaces
developed at the University of Duisburg-Essen [Giemza, 07]. SQLSpaces support all
essential features including notification and lifetime management. An outstanding
feature of the SQLSpaces is the support for multiple programming languages.
SQLSpaces comes with predefined clients for Ruby, C#, PHP and Prolog in addition
to the host language of the server; Java. Additionally, SQLSpaces provide Web
Service access that makes them usable with any kind of client language with support
for Web Services. Thus, SQLSpaces can also be seen as a “language switch board”

1475Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

which enables communication in heterogeneous programming language
environments.

3.2 Environment: Customizing Eclipse

To reach our aim of creating an environment suitable for learning programming, it is
essential to use an environment that is not so different from the one that students will
find in their future work. That is, not to use virtual environments or simulation tools,
but employ a real-world Integrated Development Environment (IDE).

Thus, to further develop our approach we have selected the widely available
Eclipse platform [Eclipse]. Eclipse is an integrated development environment, which
allows creating extensions by using its own API. Such extensions are implemented as
plug-ins that can be optionally loaded by users. Eclipse is a full-fledged development
environment that works with Java, C/C++ and other programming languages.

Figure 1: Customized Eclipse Environment

Figure 1 shows a screenshot of the developed plug-in, once integrated into
Eclipse. The figure shows the appearance of the user interface that supports student
activities. It displays the properties page where the server location, port, user role and
user ID can be set. Furthermore, it shows the code written by the students, the test
cases they can execute, and the evaluation and explanation the system can give about
the algorithm they have written as a solution to an assignment. In section 5, we will
show different parts of this figure in more detail.

1476 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

As a basic means of communication, the plug-in for the Eclipse environment
allows communication with the SQLSpaces server. In the same way, we have
implemented capabilities to allow free hand annotations over code.

Details about the evaluation process and annotation facilities supported by the
tool are presented in the following sections.

4 Assessment Using Fuzzy Logic and Test Cases

To overcome the first difficulties the students may encounter while developing their
solution, we present an architecture that provides a first assessment of the students'
solution. [Ben-Ari, 01] [Traynor, 06]. This allows students to ask the system what is
wrong with the solution they are developing, without teacher intervention. With this,
our aim is to create a system that assists the students in understanding what they are
doing and help the teachers in their labour in the classroom.

There are a lot of approaches about how to assess programming learning activities
and a good survey about static and dynamic assessment of computer programs can be
found in [Ala-Mutka, 05].

Figure 2: Evaluating the Student Algorithm.

We are going to briefly describe the evaluation process we have implemented and
which is shown in depth in [Jurado, 07b]. Firstly, the teacher writes an
implementation for the ideal approximate algorithm that solves a problem (at the
bottom left of figure 2). Next, several software metrics that shape its structure will be
calculated. Thus, we obtain an instance of the ideal approximated algorithm. Then, a
fuzzy set for each metric will be established in the following way: initially, each fuzzy

1477Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

set will be a default trapezoidal function around the metric value from the
approximate algorithm; the teacher can easily modify the fuzzy set indicating:

• The maximum value that the teacher considers low for the solution.
• The minimum value for correctness.
• The maximum value for correctness.
• The minimum value that the teacher considers high for the solution.

0,00
0,20
0,40
0,60
0,80
1,00
1,20

0 2 4 6 8 10 12

Operational Complexity

Normal Low High

0,00
0,20
0,40
0,60
0,80
1,00
1,20

0 2 4 6 8 10 12

Control Complexity

Normal Low High

0,00
0,20
0,40
0,60
0,80
1,00
1,20

0 2 4 6 8 10 12

McCabe

Normal Low High

Figure 3: Fuzzy Sets for Some Calculated Software Metrics.

In this way, we obtain a collection of fuzzy sets that characterises the algorithm and
allows us to know when a measured software metric extracted from an algorithm can
be considered as normal, low or high and to what degree. In figure 3, we can see the
“normal”, “low” and “high” fuzzy sets. For each graphic, the x axis represents the
values we can obtain for a software metric and the y axis shows the membership
degree for the measure of the software metric for each fuzzy set. For instance, if the
measured value for the McCabe Cyclomatic Complexity (at the top of figure 3) is 4,
we obtain that the membership value to the “normal” fuzzy set is 1, and 0 to the
“high” and “low” fuzzy sets. So, in that case, we can say that the value for the
McCabe Cyclomatic Complexity is what the teacher considers “normal”. As we
increase the value for the metric, the membership value for the “normal” fuzzy set
reduces and the membership value for the “high” fuzzy set increases. If we look at
value 5 of the metric, we can see that the membership value for the “normal” and
“high” fuzzy sets is equal to 0.5 in both cases, that is, the metric could be considered

1478 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

“normal” and “high” in the same degree, but not “low”. In that case, we can say
something like: the measured metric is “a bit high”. Moreover, if the value for the
metric continues growing, it will come to a state where the membership value for the
“normal” and “low” fuzzy sets will be 0, and 1 for the “high” fuzzy set. So we can say
that the measured value is “high” according to the teacher.

Thus, we get a fuzzy representation of that ideal approximated algorithm, that is,
we obtain an ideal approximated algorithm fuzzy representation that solves a concrete
problem (at the top of figure 2).

Algorithms that students have written (on the right of figure 2) will be correct if
they are instances of that ideal algorithm fuzzy representation. Knowing the degree of
membership for each software metric obtained from the algorithm written by students
in the corresponding fuzzy set for the ideal approximated algorithm fuzzy
representation, will give us an idea of the quality of the algorithm that the students
have developed.

Furthermore, taking into account the fuzzy nature of the process, some fuzzy
rules have been defined to provide messages as feedback to the students, related to
their evaluations. These sentences are presented in natural language and provide the
learners with useful information. So, for example, if the system detects a discrepancy
because the McCabe’s Cyclomatic Complexity is “high”, then the system can give
advice with the message “The algorithm has more bifurcations than needed”.

Moreover, as we can see on the bottom of figure 2, the teacher writes some test
cases that the students can run to test their algorithms. With the fuzzy evaluation
process that allows analysing the code structure and the test cases that allow checking
if the algorithm solves the problem, we have a complete tool that can help the
students quite a lot in the initial stage of solving an assignment.

So, firstly, the implemented module receives the fuzzy representation the teacher
has specified. Then, when the student sends the code that solves the assignment, the
module analyses it and, finally, it provides an evaluation and an explanation about
what is wrong in the code.

In our first studies of this technique [Jurado, 07c], we analysed the effectiveness
of the proposal by contrasting the evaluation the teacher has carried out on some
students’ assignments with the automatic evaluation for the same assignments. In that
study, we obtained the following results with evaluation between 0 and 5:

• in 52.17% of the cases, the evaluations were the same;
• in 34.78% of the cases, the evaluations differ by one point;
• in 13.04% of the cases, the evaluations differ by more than one point.
These results encourage us to work on that line, analysing the code by using

fuzzy logic. Moreover, this technique can be extrapolated to other programming areas
such as analysing assignments on Object Oriented Programming learning, by simply
changing the software metrics to be used for the evaluation.

5 COALA in Action

As we have mentioned in section 2, we envisage a typical “programming lab”
scenario in academic education. We have enhanced this scenario with distributed
computer support, an automatic evaluation module and a set of plug-ins that provide

1479Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

an enriched IDE for supporting teachers’ and students’ activities. The resulting
environment and architecture has been called COALA, the acronym of “COmputer
Assisted Environment for Learning Algorithms”. In this section, we will explain in
detail the way in which this system works.

Following our explanation, figure 4 shows the different steps and messages
(tuples) between the teacher, the students, the SQLSpaces server and other software
modules such as the evaluator module.

Figure 4: Message Passing among Components and the Tuple Space.

As we can see in figure 4, at the beginning, the teacher specifies an assignment
using his/her Eclipse environment. In our case, an assignment consists of:

• A template for a Java class and methods to be implemented by the student
containing the task description.

• A JUnit test class so that the students can test their solutions.
• A fuzzy representation of the algorithm that solves a problem. This fuzzy

representation was the obtained by the teacher from his/her ideal solution
and it is the one the system will use to provide an auto-evaluation to help the
students understand what might go wrong.

Figure 5: Files to Upload for a Task.

1480 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

After this, the teacher uploads the template, the test cases and the fuzzy
representation to the server by sending a tuple with the form <task_id; template;
test_cases; fuzzy_representation> (step 1) using the “Send Task to TS” action in the
plug-in. At that moment, the task is available for all the students in the classroom.
Figure 5 shows the dialogue for the teacher to select the template, the test cases and
the fuzzy representation.

Now the students are able to download the assignment onto their workspace
reading the tuple uploaded by the teacher (step 2), using their “Download Task from
TS” action menu in the plug-in. Then, each student can work out the task by writing
the code, compiling, etc.

Figure 6: Notifications Received by the Teacher.

Once the students have finished the assignment, they can send their results to the
server and, from there they can be downloaded and reviewed by the teacher. Thus,
students upload the solution to the server sending a tuple with the following content:
<user_id; task_id; solution_code> (step 3). The teacher will be notified about the task
sent and can check the code written by the student on his/her computer, reading all the
tuples with the form <user_id; task_id; solution_code> from the server (step 4).
Figure 6 shows the view where the teacher can see the notifications received from the
tuple spaces server. In the figure, we can see how the notifications are shown as a tree
in which each branch is a notification that has the ID of the student who sent the task,
the ID of the task, and a message that requests double clicking to see the whole code
sent.

The architecture proposed allows other software to interact with the system by
reading and writing tuples from/in the Tuple Space server and to use them for other
purposes. So, we have implemented an evaluator module that reads the tuples the
students have sent; that is, the same tuples the teacher reads (step 4), and process the
code to obtain a set of metrics and an evaluation explanation (in the way presented in
section 3.3). These calculated metrics are sent to the Tuple Space server in the form
<task_id; user_id; metric1; metric2; ... metricN>. Also, an explanation associated
with each metric is sent in a tuple in the following format: <task_id; user_id; explain_
metric1; explain _metric2; ... explain _metricN> (step 5). Then, both the teacher and
the students can read the software metrics and the corresponding explanations from
the server and analyse them (step 6). So during their programming, students can use

1481Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

the tests created by the teacher as well as asking the system for an automatic
evaluation to check their solution. Figure 7 shows the evaluation (in the central
column) and explanation (in the right column) of an algorithm developed by a
student.

Figure 7: Assessment Loaded in within the Environment

Figure 8: Free Handwriting Annotations over the Code.

As we have mentioned before, to allow the teacher to have more natural
interaction in the evaluation process, we have implemented a handwriting feature.
This feature lets the teacher annotate the code by using a digital tablet, a TabletPC or
an electronic whiteboard. Thus, figure 8 shows a screenshot with the free handwriting
annotations over the code that the teacher can do. This will allow the possibility of

1482 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

creating pedagogically interesting computer enhanced scenarios. We have added this
feature, implementing a new Eclipse editor that allows capturing the corresponding
pen-events that a teacher can make over the code to create annotations.

6 Concluding Remarks and Future Work

In this article, we have presented a distributed system that allows creating computer-
enhanced scenarios for learning initial algorithmic programming. The system uses a
particular implementation of Tuple Spaces (SQLSpaces) as an engine for
communication and data sharing, and it includes handwriting features to allow for
more natural and flexible interaction. Also, an automatic evaluation module based on
the use of software metrics, test cases and algorithm fuzzy representation is included
in the overall environment, called COALA.

Testing the system in the described scenarios will give us the necessary feedback
to improve the application and create more complex scenarios that integrate other
devices and software modules. Thus, it will allow for the improvement of the quality
of the learning/teaching process in computer programming. The approach is likely to
be transferable to other subjects, including formal exercises.

Acknowledgements

This research work has been partially supported by the Junta de Comunidades of
Castilla-La Mancha, Spain through the projects AULA-T (PBI08-0069) and M-
GUIDE (TC20080552) and Ministerio de Educación y Ciencia, Spain through the
project E-Club-II (TIN-2005-08945-C06-04).

References

[Ala-Mutka, 05] Ala-Mutka, K.: A Survey of Automated Assessment Approaches for
Programming Assignments, in Computer Science Education, vol. 15, num. 2, Routledge, part of
the Taylor & Francis Group, pp. 83-102. 2005

[du Boulay, 89] du Boulay, B.: Studying The Novice Programmer, Lawrence Erlbaum
Associates, Chapter: Some Difficulties Of Learning To Program, pp. 283-300, 1989

[Ben-Ari, 01] Ben-Ari, M.: Constructivism in Computer Science Education, in Journal of
Computers in Mathematics and Science Teaching Vol. 20, Association for the Advancement of
Computing in Education, pp. 45—73, 2001

[Brecht, 06] Brecht, J., DiGiano, C., Patton, C., Tatar, D., Chaudhury, S. R., Roschelle, J.,
Davis, K.: Coordinating Networked Learning Activities with a General-purpose Interface, in
Proceedings of the 5th World Conference on Mobile Learning, Banff, Canada, 2006

[Brusilovsky, 96] Brusilovsky, P.; Schwarz, E.W., Weber, G. ELM-ART: An Intelligent
Tutoring System on World Wide Web, in Intelligent Tutoring Systems, pp. 261-269, 1996

[Brusilovsky, 98] Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., Miller, P.:
Mini-languages: A Way to Learn Programming Principles, in Education and Information
Technologies, vol 2, 65 -83, 1998

1483Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

[Duque, 08] Duque, R., Bravo, C.: Analyzing Work Productivity and Program Quality in
Collaborative Programming, in 'ICSEA '08: Proceedings of the 2008 The Third International
Conference on Software Engineering Advances', IEEE Computer Society, pp. 270-276, 2008

[Eclipse] Eclipse, online http://www.eclipse.org, last visited February 2009

[Fernandes, 05] Fernandes, E., Kumar, A.: A Tutor on Subprogram Implementation, in J.
Comput. Small Coll. Vol. 20, Consortium for Computing Sciences in Colleges, pp. 36-46, 2005

[Garner, 03] Garner, S.: Learning Resources and Tools to Aid Novices Learn Programming, in
Informing Science & Information Technology Education Joint Conference (INSITE), pp. 213-
222, 2003

[Garrido, 06] Garrido, J.L., Noguera, M., Gonzalez, M., Gea, M., Hurtado, M.V.: Leveraging
the Linda Coordination Model for a Groupware Architecture Implementation, in Proceedings of
12th International Workshop on Groupware. Springer LNCS 4154. pp. 286-301, 2006

[Gelernter, 85] Gelernter, D.: Generative Communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1): 80-112, 1985

[Giemza, 07] Giemza, A., Weinbrenner, S., Engler, J., Hoppe, H.U.: Tuple Spaces as Flexible
Integration Platform for Distributed Learning Environments, in Proceedings of ICCE 2007,
Hiroshima (Japan), November 2007. pp. 313-320, 2007

[Gomes, 07] Gomes, A., Mendes, A. J.: Learning to Program - Difficulties and Solutions, in
International Conference on Engineering Education – ICEE 2007, pp. 283-287, 2007

[Jurado, 07a] Jurado, F., Redondo, M. A., Ortega, M.: Enabling Distributed eLearning
Environments Integrating ICE-based Services, in Proceeding of the International Technology,
Education and Development Conference INTED2007, Valencia, Spain, pp. 375, 2007

[Jurado, 07b] Jurado, F., Redondo, M. A., Ortega, M.: Fuzzy Algorithm Representation for its
Application in Intelligent Tutoring Systems for the Learning of Programming, in do
Nascimento, R. P., Gerqia, A., Serendero, P. & Carrillo, E. (ed.): EuroAmerican Conference On
Telematics and Information Systems, EATIS'07 ACM-DL Proceeding. Faro, (Portugal), pp. 1-
8, 2007

[Jurado, 07c] Jurado, F.; Redondo, M. A., Ortega, M.: Applying Approximate Reasoning
Techniques for the Assessment of Algorithms in Intelligent Tutoring Systems for Learning
Programming (in Spanish), in Isabel Fernandez de Castro, (ed.): VII Simposio Nacional de
Tecnologías de la Información y las Comunicaciones en la Educación (Sintice'07), Thomson,
Zaragoza, Spain, pp. 145-153, 2007

[Kelleher, 05] Kelleher, C., Pausch, R.: Lowering the Barriers to Programming: A Taxonomy
of Programming Environments and Languages for Novice Programmers, in ACM Comput.
Suv. Vol. 37, ACM, pp. 83-137, 2005

[Koschmann, 96] Koschmann, T.: Paradigm Shifts and Instructional Technology: an
Introduction, in Koschmann, (ed.), Hillsdale, NJ: Lawrence Erlbaum, pp. 1-24, 1996

[Kumar, 03] Kumar, A.N. Learning Programming by Solving Problems, in Informatics
Curricula and Teaching Methods (ICTEM). L. Cassel and R.A. Reis ed. Kluwer Academic
Publishers. pp. 29-39. Norwell MA, 2003.

[Kumar, 04] Kumar, A.: Using Online Tutors for Learning - What do Students Think?, in
Proceedings of Frontiers in Education Conference (FIE 2004), IEEE, pp. 524-528, 2004

1484 Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

[Lehman, 99] Lehman, T.J., McLaughry S.W., Wycko P.: T Spaces: The Next Wave, in
Proceedings of the 32nd Hawaiian International Conference on Computer Systems 1999,
HICCS, Maui, Hawaii, pp. 8037, 1999

[McConnell, 96] McConnell, J. J.: Active Learning and its Use in Computer Science, in
SIGCUE Outlook, vol. 24, ACM, pp. 52-54, 1996

[Molina, 05] Molina, A.; Redondo, M., Ortega, M.: A System to Support Asynchronous
Collaborative Learning Tasks Using PDAs, in Journal of Universal Computer Science Vol. 11,
pp. 1543-1554, 2005

[Nejdl, 99] Nejdl, W, Wolpers, M.: KBS Hyperbook—A Data Driven Information System on
the Web, in 8th International World Wide Web conference, (WWW8), 1999

[Paredes, 08] Paredes, M.; Molina, A.; Redondo, M., Ortega, M.: Designing Collaborative User
Interfaces for Ubiquitous Applications Using CIAM: The AULA Case Study, in Journal of
Universal Computer Science Vol. 14, pp. 2680-2698, 2008

[Pérez, 06] Pérez, J. R. P.: Classification of Users Based on Detecting Errors Using Techniques
Processors Language, PhD thesis, University of Oviedo, 2006

[Redondo, 02] Redondo, M.Á., Bravo, C., Ortega, M., Verdejo, M.F.: PlanEdit: An Adaptive
Problem Solving Tool for Design, in De Bra, P.; Busilovsky, P. & Conejo, R. (eds.) Adaptive
Hypermedia and Adaptive Web-Based Systems', Springer LNCS, Berlin, pp. 29-31, 2002

[Redondo, 04] Redondo, M.A., Bravo, C., Molina, A.; Marcelino, M., Mendes, A.: Tools for
Programming Learning: An Approach to Provide a Social Perspective using Collaborative
Planning of Design, in Proceedings of IADIS International Conference e-Society 2004, Avila
(Spain), pp 315-322, 2004

[Sanders, 87] Sanders, D. & Hartman, J.: Assessing the Quality of Programs: A Topic for the
CS2 Course, in SIGCSE '87: Proceedings of the Eighteenth SIGCSE Technical Symposium on
Computer Science Education', ACM, pp. 92-96, 1987

[Schofield, 94] Schofield, J. W.; Eurich-Fulcer, R., Britt, C. L.: Teachers, Computer Tutors,
and Teaching: The Artificially Intelligent Tutor as an Agent for Classroom Change, in
American Educational Research Journal vol. 31, pp. 579-607, 1994

[Schollmeyer, 1996] Schollmeyer, M.: Computer Programming in High school vs. College, in
SIGCSE '96: Proceedings of the Twenty-Seventh SIGCSE Technical Symposium on Computer
Science Education, ACM, pp. 378-382, 1996

[Traynor, 06] Traynor, D.; Bergin, S., Gibson, J. P.: Automated Assessment in CS1, in ACE
'06: Proceedings of the 8th Australian Conference on Computing Education, Australian
Computer Society, Inc., pp. 223-228, 2006

1485Jurado F., Molina A.I., Redondo M.A., Ortega M., Giemza A., Bollen L. ...

