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Abstract: The Tietze-Urysohn Theorem states that every continuous real-valued func-
tion defined on a closed subspace of a normal space can be extended to a continuous
function on the whole space. We prove an effective version of this theorem in the Type
Two Model of Effectivity (TTE). Moreover, we introduce for qcb-spaces a slightly
weaker notion of normality than the classical one and show that this property suffices
to establish an Extension Theorem for continuous functions defined on functionally
closed subspaces. Qcb-spaces are known to form an important subcategory of the cat-
egory Top of topological spaces. QCB is cartesian closed in contrast to Top.
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1 Introduction

Theorems about extendability of continuous functions belong to the most im-
portant theorems in the field of topological spaces. Extendability of a continuous
function f onto a larger space Y means the existence of a continuous function
F on Y which coincides with f on the domain of f . A famous example of an ex-
tension theorem is the Tietze-Urysohn Theorem for normal topological spaces.
Of similar interest are theorems about extendability of computable functions.
A computable version of the Tietze-Urysohn Theorem for computable metric
spaces has been proved by K. Weihrauch in [Weihrauch 01].

In this paper we prove a continuous and a computable Extension Theorem for
a subclass of qcb-spaces that contains all computable metric spaces. Qcb-spaces
[Simpson 03] are known to form exactly the class of topological spaces which
can be handled by the representation based approach to Computable Analysis,
the Type Two Model of Effectivity (TTE). The category QCB of qcb-spaces
has excellent closure properties, for example it is cartesian closed [Schröder 03,
Simpson et al. 07].

Unfortunately, many interesting Hausdorff qcb-spaces fail to be normal. For
example, it was recently proved that the space N

(NN) of Kleene-Kreisel contin-
uous functionals of order 2 is not regular [Schröder 09]. Moreover, the space of
real-valued continuous functions on a computable metric space need not neces-
sarily be normal in QCB (cf. [Schröder 09]). Hence the classical Tietze-Urysohn
Theorem, which requires normality, can not be applied to these kinds of spaces.

In this paper we introduce a weaker notion of normality called quasi-normality.
This notion may be considered as a substitute for normality in the class of
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qcb-spaces (cf. Section 3). We show that quasi-normal qcb-spaces admits ex-
tendability of continuous functions defined on functionally closed subspaces (cf.
Section 4). The category QN of quasi-normal qcb-spaces forms a subcategory
of QCB that contains all separable metrisable spaces and inherits the cartesian
closed structure of QCB by being an exponential ideal of QCB.

In Section 5 we establish a computable version of the Tietze-Urysohn The-
orem. It is formulated for qcb-spaces that satisfy an effective notion of quasi-
normality.

2 Preliminaries

After fixing some notations, we repeat some notions and basic facts of topological
spaces, of the used computational model, of qcb-spaces and of pseudobases.

2.1 Notations

We write N for the set of natural numbers (including 0) and also for the discrete
topological space with carrier set N. The set of infinite sequences over N is
denoted by N

N, the set of finite words over N by N
∗, and, for a word w ∈ N

∗, the
set of sequences with prefix w by wN

N. We write p<k for the prefix of p ∈ N
N of

length k and � for the prefix relation on N
∗ ∪ N

N.
Depending on the context, 〈.〉 stands for a computable bijection either from

(NN)k to N
N or from (NN)N to N

N or from N
k to N, as defined in [Schröder 03].

Moreover, we denote by w : N → N
∗ an effective bijection between N and N

∗.
For a subset M ⊆ R, �M stands for the binary signed-digit representation core-
stricted to M .

2.2 Computability theory

As the underlying computational model we use the representation-based ap-
proach to Computable Analysis, the Type-2 Theory of Effectivity (TTE). We
assume that the reader is familiar with basic concepts of TTE, see [Weihrauch 00,
Weihrauch 08].

We only repeat here the less known notion of a computable multi-function.
A multi-function (or operator) Φ from X to Y is a relation between X and
Y . The domain of Φ is the set dom(Φ) := {x ∈ X | ∃y. (x, y) ∈ Φ}. Given two
representations δ :⊆ N

N → X of X and γ :⊆ N
N → Y of Y , a multi-function

Φ : X ⇒ Y is called computable (w.r.t. δ and γ), if there is partial computable
function g :⊆ N

N → N
N which maps any name p of an element x ∈ dom(Φ) to

a name of one possible result for x, i.e. for all p ∈ dom(δ) with δ(p) ∈ dom(Φ)
we have γ(g(p)) ∈ {y ∈ Y | (x, y) ∈ Φ}. Computability of ordinary functions is
defined correspondingly.
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2.3 Topological spaces and sequential spaces

Our references to the theory of topological spaces are [Engelking 89, Willard 70].
To denote topological spaces, we use sans-serif letters like X,Y etc. We write O(X)
for the topology of a space X, A(X) for the family of closed sets of X and G(X)
for the family of Gδ-sets of X, which are countable intersections of open sets. By
abuse of notation, we will often denote the carrier set of a space X by the same
symbol X.

A subset A of a topological space X is called sequentially closed, if A con-
tains any limit of any convergent sequence of elements in A. Complements of
sequentially closed sets are called sequentially open. For a given topology τ , we
denote the topology of sequentially open sets by seq(τ). Spaces such that every
sequentially open set is open are called sequential. The sequential coreflection (or
sequentialisation) seq(X) of X is the topological space that carries the topology
seq(O(X)) of sequentially open sets of X. The operator seq is idempotent.

A subset A of a topological space X is called functionally closed, if there is a
continuous function f from X to the unit interval I = [0, 1] (endowed with the
usual Euclidean topology) such that f−1{0} = A. Complements of functionally
closed sets are called functionally open. A common term for “functionally closed
set” is zero-set. Two disjoint functionally closed sets A,B can be strongly sep-
arated in the sense that there is a continuous function h : X → [0, 1] satisfying
h−1{0} = A and h−1{1} = B.

We denote the family of functionally open sets of X by FO(X) and the family
of functionally closed sets by FA(X). T0-spaces such that all open sets are func-
tionally open are called perfectly normal. Functionally open sets are closed under
finite union, but not necessarily under arbitrary union, unless X is hereditarily
Lindelöf space (i.e. any open cover of any subset has a countable subcover). In
this case FO(X) forms a topology. It has the property that every real-valued
function f on X is continuous w.r.t. the original topology O(X) if, and only if,
f is continuous w.r.t. FO(X). Regularity, normality and perfect normality are
equivalent for hereditarily Lindelöf spaces and thus for qcb-spaces, which are
defined below. For us, a normal space is a T1-space (some authors omit the T1-
condition) such that for a pair (A,B) of disjoint closed sets there exists a pair
(U, V ) of disjoint open sets such that A ⊆ U and B ⊆ V .

2.4 Qcb-spaces and admissible representations

A qcb-space [Simpson 03] is a topological quotient of a countably-based topolog-
ical space. Qcb0-spaces, i.e. qcb-spaces that satisfy the T0-property, are exactly
the class of sequential spaces which have an admissible representation and which
can therefore be handled by the Type Two Model of Effectivity. Admissibility
is a property guaranteeing topological well-behavedness of representations (cf.
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[Schröder 02]). The final topology of an admissible representation of a sequential
space is equal to the topology of that space.

Qcb-spaces are hereditarily Lindelöf and sequential. The category QCB of
qcb-spaces as objects and of continuous functions as morphisms is cartesian
closed. Moreover, QCB has all countable limits and all countable colimits. For
two admissible representations δX and δY of qcb0-spaces X and Y we denote by
[δX → δY] the usual admissible function space representation of YX as defined in
[Schröder 03] or [Weihrauch 00].

More information can be found in [Schröder 02, Schröder 03, Simpson 03,
Simpson et al. 07].

2.5 Pseudobases and pseudo-open decompositions

Given a topological space X, we say that a family A of subsets of X is a pseudo-
open decomposition of a subset M , if M =

⋃A holds and for every sequence
(xn)n that converges to some element x∞ ∈ M there is some set B ∈ A and
some n0 ∈ N such that {xn, x∞ |n ≥ n0} ⊆ B ⊆ M holds. Clearly, a set has a
pseudo-open decomposition if, and only if, it is sequentially open.

A pseudobase for X is a family B of subsets such that every open set has
a pseudo-open decomposition into sets in B. Any base of topological space is
a pseudobase, but not vice versa. Pseudobases are of interest, when they are
countable: Every admissible representation δ of a topological space X induces
a countable pseudobase for X, namely the family Bδ :=

{∅, δ(wN
ω)

∣∣ w ∈ N
∗}.

Using the bijection w : N → N
∗ from Section 2.1, we equip Bδ with a numbering

Bδ defined by Bδ(0) := ∅ and Bδ(i+1) := δ(w(i)NN). Conversely, if A is a pseu-
dobase of a sequential T0-space, then the space has an admissible representation
such that the induced pseudobase is equal to the closure of A∪ {∅} under finite
intersection. Hence a sequential T0-space is a qcb-space if, and only if, it has a
countable pseudobase.

3 Quasi-normal Qcb-Spaces

In this section we introduce and investigate the notion of a quasi-normal qcb-
space.

The classical Tietze-Urysohn Theorem is formulated for normal spaces. Un-
fortunately, many interesting Hausdorff qcb-spaces fail to be normal. For exam-
ple, a recent result states that the function space N

(NN) formed in the category
QCB is not normal [Schröder 09]. Hence the final topology of the natural rep-
resentation on N

(NN) is not normal, because it is equal to the topology of the
qcb-space N

(NN). Moreover, the space R
(RR) of continuous real-valued function

from R
R to R is not normal either, despite the fact that the compact-open topol-

ogy on R
(RR) is normal and the sequential coreflection of the latter yields the

1320 Schroeder M.: An Effective Tietze-Urysohn Theorem ...



topology of R
(RR). Therefore we need an appropriate substitute for the property

of normality.

3.1 Definition of quasi-normal qcb-spaces

The idea behind the definition of quasi-normality is the fact that finite prod-
ucts and function spaces in the category QCB are constructed as the sequential
coreflection (sequentialisation) of their counterparts in classical topology. These
preserve regularity and even normality in the case of countably pseudobased
spaces.

Definition 1. A qcb-space X is called quasi-normal, if X is the sequential core-
flection of a normal space.

In other words, a qcb-space is quasi-normal if, and only if, its convergence
relation is induced by a normal topology. Clearly, a quasi-normal space is Haus-
dorff. Simple examples of quasi-normal spaces are normal qcb-spaces, as qcb-
spaces are equal to their sequential coreflection. Quasi-normality does not imply
normality. E. Michael gave an example of a normal space such that its sequen-
tial coreflection is not regular (see Example 1.2 in [Michael 73]). This sequential
coreflection turns out to have a countable pseudobase, hence it is a qcb-space.

3.2 Characterisations of quasi-normality

We will now give several characterisations of quasi-normality.
The first characterisations follow from the fact that a space is hereditarily

Lindelöf, if its sequential coreflection is a qcb-space.

Proposition 2. A qcb-space X is quasi-normal if, and only if, it is the sequential
coreflection of a regular space. A qcb-space X is quasi-normal if, and only if, it
is the sequential coreflection of a perfectly normal space.

Proof. Regularity, normality and perfect normality coincide in the realm of
hereditarily Lindelöf spaces and thus in the realm of spaces for which the se-
quential coreflection is a qcb-space. �

Recall that the family FO(X) of functionally open sets of a qcb-space X forms
a topology (see Section 2.3).

Proposition 3. A qcb0-space X is quasi-normal if, and only if, its convergence
relation is induced by the topology of functionally open sets of X.
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Proof. Let X be a qcb0-space and X′ be a normal space with seq(X′) = X. Since
O(X′) ⊆ O(X) and X is hereditarily Lindelöf, X′ is hereditarily Lindelöf as well
and therefore perfectly normal. Thus O(X′) ⊆ FO(X) ⊆ O(X). As O(X′) induces
the convergence relation of X, so does FO(X).

Conversely, if FO(X) induces the convergence relation of X then X is the
sequential coreflection of the space that carries the perfectly normal topology
FO(X). �

Now we characterise quasi-normal qcb-spaces in terms of properties of pseu-
dobases. Recall that qcb-spaces are known to be those sequential spaces that
have a countable pseudobase (cf. Section 2.5).

Proposition 4. A qcb-space X is quasi-normal if, and only if, it is a T0-space
and has a countable pseudobase consisting of functionally closed sets.

The proof is based on the following surprising lemma. By a functional Gδ-set
we mean a set that is a countable intersection of functionally open sets.

Lemma 5. Let X be a qcb-space equipped with a countable pseudobase consisting
of functionally closed sets. Then every open functional Gδ-set V ⊆ X is function-
ally open.

Proof. Let G0, G1, . . . be a sequence of functionally open sets such that V :=⋂∞
j=0 Gj is open. Let (βi)i be a pseudo-open decomposition of V (see Section 2.5)

into pseudobase sets. Since the functionally closed sets
⋃n

i=0 βi and X \ Gn are
disjoint, there exists a continuous function hn : X → [0, 1] with h−1

n {0} = X \
Gn and h−1

n {1} =
⋃n

i=0 βi. We define a function f : X → [0, 1] by f(x) :=
infn∈N hn(x) and show that f is sequentially continuous with f−1{0} = X \ V .
Let (xn)n be a sequence converging in X to some x∞.

(1) Let x∞ ∈ V . Then there is some i0, n0 ∈ N such that {xn|n ≥ n0} ⊆ βi0 .
Thus for all j ≥ i0 and n ≥ n0 (including n = ∞) we have hj(xn) = 1 and
f(xn) = min{h0(xn), . . . , hi0(xn)}. This implies that (f(xn))n converges to
f(x∞). Moreover, since hj(x∞) = 0 for all j ≤ i0, f(x∞) = 0.

(2) Let x∞ /∈ V . Then there is some j ∈ N with x∞ /∈ Gj , hence f(x∞) =
hj(x∞) = 0. As (hj(xn))n converges to 0, (f(xn))n converges to 0 as well.

Hence f is sequentially continuous and therefore (topologically) continuous, be-
cause X is sequential. So f is a witness for V being functionally open. �

Now we are ready to prove Proposition 4.

Proof. (Proposition 4) We denote by X′ the space carrying the topology FO(X).
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First, let X be a quasi-normal qcb-space. Then X has some countable pseu-
dobase B and we have seq(X′) = X by Proposition 3. We define B′ to be the
family of the closures of all sets in B formed in the perfectly normal space X′.
So B′ consists of functionally closed sets. We show that B′ is a pseudobase of X′.

Let U be functionally open and let (xn)n be a sequence converging to some
element x∞ ∈ U . By regularity of X′, there are a functionally open set V , a
functionally closed set A and a pseudobase element B ∈ B with x∞ ∈ B ⊆
V ⊆ A ⊆ U and xn ∈ B for almost all n ∈ N. The closure of B formed in X′

is a subset of A and hence of U . Thus B′ is a pseudobase of X′. The family of
all finite intersections consists of functionally closed sets and forms a countable
pseudobase for X by Lemma 10 in [Schröder 02].

Conversely let X be a T0-space with a countable pseudobase consisting of
functionally closed sets. Let x ∈ X. We define the set A to be the countable
intersection of all pseudobase sets that contain x and show A = {x}. Since X is
a T0-space, for any y = x there is an open set V such that either x ∈ V � y or
x /∈ V � y. In the first case there exists a pseudobase set B with x ∈ B ⊆ V ,
hence y /∈ A. In the other case, there are, as the complements of the pseudobase
sets are open, pseudobase sets C,D with y ∈ C ⊆ V and x ∈ D ⊆ X\C ⊆ X\{y}.
We conclude A = {x}. Hence {x} is functionally closed and X is a T1-space.

In order to prove seq(X′) = X, it suffices to show that X and X′ induce
the same convergence relation for sequences. Let (an)n be a sequence that does
not converge in X to x. Then (an)n contains a subsequence (bn)n such that no
subsequence of (bn)n converges in X to x and x does not occur in the sequence
(bn)n. We consider two cases:

(1) Assume that (bn)n has a subsequence (cn)n that converges in X to some
point y. Since {x} and {y} are disjoint functionally closed sets, there are
two disjoint functionally open sets U and V with x ∈ U and y ∈ V . As (cn)n

is eventually in X \ U , there are infinitely many n with bn /∈ U . Therefore
neither (bn)n nor (an)n converges to x in X′.

(2) Now assume that (bn)n has no subsequence that converges in the space X.
Along with the fact that in X every singleton is closed, this implies that the
set A := {bn |n ∈ N} is sequentially closed. Hence A is closed in X, because
X is sequential. Thus V := X \ A =

⋂∞
n=0(X \ {bn}) is an open functional

Gδ-set. Lemma 5 implies that V is functionally open. Since V contains x,
but no element of (bn)n, neither (bn)n nor (an)n converge to x in X′.

Conversely, convergence in X implies convergence in X′, because FO(X) ⊆ O(X).
Hence X and X′ induce the same convergence relation for sequences, implying
seq(X′) = X. We conclude that X is quasi-normal. �
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3.3 Constructing quasi-normal spaces

The category QN of quasi-normal qcb-spaces enjoys excellent closure properties.
Indeed, quasi-normality is preserved by forming (i) countable products, (ii) sub-
spaces, (iii) countable coproducts, and (iv) function spaces in the category of
qcb-spaces. So QN inherits the cartesian closed structure of QCB. In fact, QN is
an exponential ideal of QCB.

Theorem 6. The category QN of quasi-normal qcb-spaces is cartesian closed.
Moreover, it has all countable limits and all countable colimits.

Proof. For a quasi-normal qcb-space X, we denote by X′ the topological space
endowed with the topology of functionally open sets of X.

Countable Products: Let (Xi)i be a sequence of quasi-normal qcb-spaces. The
countable product of these spaces formed in QCB is given by the sequen-
tial coreflection of their Tychonoff product and thus also by the sequential
coreflection of the Tychonoff product of the regular spaces X′

i, because
both products induce the same convergence relation. The latter product is
regular (cf. [Engelking 89]) and thus normal by having a countable pseu-
dobase (cf. [Schröder 03]). Hence the countable product of (Xi)i formed in
QCB is quasi-normal.

Subspaces: Subspaces in qcb-spaces are known to be topologised by the se-
quentialisation of the subspace topology. Let X be a qcb-subspace of a
quasi-normal qcb-space Y. Since the subspace topology induced by Y′ on
the carrier set of X is perfectly normal and induces the convergence relation
of X, X is quasi-normal.

Countable Limits: Since the category of quasi-normal spaces has countable
products and subspaces, it has all countable limits.

Countable Coproducts: Let Xi be a sequence of quasi-normal qcb-spaces. The
coproduct of Xi formed in QCB has the same convergence relation as the
topological coproduct (= direct sum) of the perfectly normal spaces X′

i.
Moreover, the latter is perfectly normal by [Engelking 89, Theorem 2.2.7].
So the QCB-coproduct is quasi-normal.

Exponentials: Let X and Y be quasi-normal qcb-spaces. Since X is sequential,
the family C(X,Y) of continuous functions from X to Y is equal to the
family C(X,Y′) of continuous functions from X to the regular space Y′. By
Lemma 4.2.2 in [Schröder 03], the compact open topology τco on C(X,Y′)
induces the convergence relation of continuous convergence. This is the
convergence relation of the exponential YX formed in QCB. So seq(τco) is
the topology of YX. By Theorem 3.4.13 in [Engelking 89], τco is regular.
Hence YX is quasi-normal by Proposition 2.
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Exponential Ideal: The above proof shows that YX is quasi-normal, if Y is quasi-
normal and X is a qcb-space. So for every qcb-space X the function space
[0, 1]([0,1]X) formed in QCB is in QN. Let eX : X → [0, 1]([0,1]X) be the con-
tinuous function given by eX(x)(h) := h(x). We define F(X) to be the
quasi-normal QCB-subspace of [0, 1]([0,1]X) with eX(X) as its carrier set. It
is not difficult to verify that F constitutes a functor that is left adjoint to
the inclusion functor of QN into QCB; moreover, YX is isomorphic to F(YX)
in QCB for every space Y ∈ QN. So QN is an exponential ideal of QCB.

Countable Colimits: Since the inclusion functor of QN into QCB has a left ad-
joint (see above) and QCB has all countable colimits (cf. [Schröder 03]),
QN has all countable colimits. �

Since any separable metrisable space is a quasi-normal qcb-space, Theorem 6
yields a big supply of quasi-normal qcb-spaces. For example, the aforementioned
qcb-spaces N

(NN) and R
(RR) are quasi-normal.

Note that topological quotients of quasi-normal spaces need not be quasi-
normal: The space N of the natural numbers equipped with the co-final topology
is a countably based T1-space. Thus it is a quotient of some subspace of the Baire
space. However, it is not quasi-normal, because it is not even a Hausdorff space.
Moreover, its quasi-normal reflection F(N) has only one point.

Remark. One can prove that QN also inherits its cartesian closed structure from
the category of Tychonoff kR-spaces. G. Lukács showed that this category is
cartesian closed (cf. [Lukács 04]).

4 An Extension Theorem for Quasi-Normal Qcb-Spaces

In this section we prove an Extension Theorem for quasi-normal qcb-spaces. It
states that every continuous function from a functionally closed subset into the
unit interval can be extended to a continuous function on the whole space.

4.1 A transitivity property for zero-sets

It is well-known that the subspace operator on topological spaces has the follow-
ing transitivity property: Any functionally open subset of a functionally open
subspace is functionally open in the original space, whereas the analogous state-
ment for functionally closed sets is false in general (cf. [Engelking 89, 2.1.B]).

Validity of the transitivity property for zero-sets (= functionally closed sets)
is related to extendability of continuous functions: Consider a functionally closed
subspace X of a topological space Y. If any continuous [0, 1]-valued function on X

is extendable onto Y, then any functionally closed subset M of X is functionally
closed in Y: Take continuous functions f : X → [0, 1] and g : Y → [0, 1] with
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f−1{0} = M and g−1{0} = X and extend f to a continuous function F : Y →
[0, 1]. Then λy∈Y.max{F (y), g(y)} is a continuous function witnessing that M

is functionally closed in Y.
The reverse implication is known to be true as well (see [Engelking 89, 2.1.J]).

So we will prove at first that quasi-normal qcb-spaces have the transitivity prop-
erty for zero-sets:

Proposition 7. Let X be a functionally closed subspace of a quasi-normal qcb-
space Y. Then every set that is functionally closed in X is functionally closed
in Y. Moreover, FO(X) is the subspace topology induced by FO(Y) on the set X.

4.2 Proof of the transitivity property for zero-sets

Let Y be a quasi-normal qcb-space and X be a functionally closed subspace of Y.
By Proposition 4, we can choose a countable pseudobase B for Y consisting of
functionally closed sets.

We define τ to be the topology on Y given by

τ :=
{
U ∈ O(Y)

∣∣ U ∩ X ∈ FO(X) and U \ X ∈ FO(Y)
}

(1)

and show that τ is equal to the topology FO(Y) of functionally open sets of Y.
Note that τ is indeed closed under arbitrary union, because O(Y), FO(X) and
FO(Y) are all hereditarily Lindelöf topologies by having a countable pseudobase.

Clearly we have FO(Y) ⊆ τ . The proof of the reverse inclusion FO(Y) ⊇ τ

is based on three lemmas about Gδ-sets, namely on Lemmas 5, 8, and 9. They
are direct consequences of the existence of a countable functionally closed pseu-
dobase for Y.

Lemma 8. Let V be open in Y and let {βi | i ∈ N} be a pseudo-open decompo-
sition of V into pseudobase elements in B. Moreover, let (Uj)j be a sequence of
open sets such that i ≤ j implies βi ⊆ Uj. Then the Gδ-set V ∩ ⋂∞

j=0 Uj is open
in Y.

Proof. Let (yn)n be sequence that converges to some element y∞ in V ∩⋂∞
j=0 Uj .

Then there is some i ∈ N such that (yn)n is eventually in βi ⊆
⋂∞

j=i Uj . By being
an open neighbourhood of y∞, the intersection V ∩ ⋂i

j=0 Ui contains (yn)n for
almost all n. Thus (yn)n is eventually in the set V ∩⋂∞

j=0 Uj . We conclude that
V ∩ ⋂∞

j=0 Uj is sequentially open and thus open, because Y is sequential. �

The complement of any closed subset of Y has a decompostion into sets of
the countable and functionally closed pseudobase B. Hence:

Lemma 9. Every closed subset of Y is a functional Gδ-set of Y.

The key step of the proof of the transitivity property for zero-sets (Propo-
sition 7) is to show that the topology τ satisfies the following weak normality
property.
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Lemma 10. For every functionally closed set A ∈ FA(Y) and every set U ∈ τ

containing A there is a set U ′ ∈ τ and a functionally closed set A′ ∈ FA(Y)
satisfying A ⊆ U ′ ⊆ A′ ⊆ U .

Proof. Since A∩X and X\(U ∩X) are disjoint and functionally closed in X, there
are a functionally open set W ∈ FO(X) and a functionally closed set F ∈ FA(X)
such that A ∩ X ⊆ W ⊆ F ⊆ U ∩ X.

Let V := W ∪ (U \ X) and G := F ∪ (U \ X). Then A ⊆ V ⊆ G ⊆ U . Since
W ∪ (Y \X) is open in Y and V = (W ∪ (Y \X))∩U , V is open in Y. Thus there
exists a pseudo-open decomposition {βi | i ∈ N} of V into sets of the functionally
closed pseudobase B. By Lemma 9 the closed set F and hence G are functional
Gδ-sets in Y. Therefore there are functionally open sets G0, G1, . . . ∈ FO(Y) with
G =

⋂∞
j=0 Gj .

Since A ∪ ⋃n
i=0 βi and Y \ Gn are disjoint functionally closed sets, there is a

continuous function hn : Y → [0, 1] such that h−1
n {0} = A∪⋃n

i=0 βi and h−1
n {1} =

Y \ Gn for every n ∈ N. The functionally open set On := h−1
n [0, 1/2) and the

functionally closed set An := h−1
n [0, 1/2] satisfy A ∪ ⋃n

i=0 βi ⊆ On ⊆ An ⊆ Gn.
By Lemma 8, the set U ′ := V ∩⋂∞

n=0 On is open. Clearly the set A′ :=
⋂∞

n=0 An

is functionally closed in Y. The pair (U ′, A′) satisfies

A ⊆ V ∩
∞⋂

n=0
On = U ′ ⊆ A′ =

∞⋂
n=0

An ⊆
∞⋂

n=0
Gn = G = F ∪ (U \ X) ⊆ U .

As U ′ ∩ X = W ∩ ⋂∞
j=0(Oj ∩ X) is both an open set and a functional Gδ-set

of X, the set U ′ ∩ X is functionally open in X by Lemma 5. Similarly, as the set
U ′ \X is open in Y and equal to the functional Gδ-set (U \X)∩⋂∞

j=0 Oj ∈ FG(Y),
it is functionally open in Y by Lemma 5. Hence U ′ ∈ τ . �

We employ Lemma 10 to show the following separation lemma. It resembles
Urysohn’s Separation Lemma which states that two disjoint closed sets in a
normal space can be separated by a continuous real-valued function (see e.g.
Theorem 1.5.11 in [Engelking 89]).

Lemma 11. For every functionally closed set A ∈ FA(Y) and every set U ∈ τ

with A ⊆ U there is a continuous function h : Y → [0, 1] with A ⊆ h−1{0} and
Y \ U ⊆ h−1{1}.
Proof. We use the construction idea of a standard proof of Urysohn’s Separation
Lemma. Let D0 := {0, 1} and Dn := {(2i − 1)/2n | i ∈ {1, . . . , 2n−1}} for n ≥ 1.
For each dyadic rational d in D :=

⋃∞
n=0 Dn we define inductively an open set

Ud ∈ τ and a closed set Ad ∈ FA(Y) such that

c < e implies Uc ⊆ Ac ⊆ Ue ⊆ Ae . (2)

“n = 0”: We set U0 := ∅, A0 := A, U1 := U and A1 := Y.
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“n > 0”: For d ∈ Dn we have {d − 2−n, d + 2−n} ⊆ ⋃n−1
i=0 Di. By the induc-

tion hypothesis we have already defined a pair (Ad−2−n , Ud+2−n) satisfying
Ad−2−n ⊆ Ud+2−n . We apply Lemma 10 to this pair to obtain sets U ′ ∈ τ

and A′ ∈ A(Y) satisfying Ad−2−n ⊆ U ′ ⊆ A′ ⊆ Ud+2−n . We set Ud := U ′

and Ad := A′.

Clearly, the sequence (Ud, Ad)d∈D satisfies (2). We define h, h′ : Y → [0, 1] by

h(y) := inf{d ∈ D | y ∈ Ad} and h′(y) := sup{e ∈ D | y ∈ Y \ Ue}

and show h(y) = h′(y) for all y ∈ Y. If h(y) > h′(y), then there would be some
d ∈ D with h(y) > d > h′(y) implying y /∈ Ad ∧ y ∈ Ud and contradicting
Ud ⊆ Ad. On the other hand, if h(y) < h′(y), then there would be some d ∈ D

such that h(y) < d < h′(y) ∧ y ∈ Ad and some e ∈ D such that d < e <

h′(y) ∧ y ∈ Y \ Ue, contradicting Ad ⊆ Ue. For y ∈ Y and s, t ∈ D we deduce
from h = h′ the two implications

s < h(y) < t =⇒ y ∈ Ut \ As =⇒ s ≤ h(y) ≤ t .

From both implications it follows that h is continuous. �

From Lemma 11 we can deduce:

Lemma 12. The topology τ is equal to the family of functionally open sets of Y.

Proof. We have already observed the inclusion FO(Y) ⊆ τ . Now let U ∈ τ .
By being open, U has a pseudo-open decomposition {βi | i ∈ N} consisting of
functionally closed pseudobase elements. By Lemma 11, for every i there is a
topologically continuous function hi : Y → [0, 1] with βi ⊆ h−1

i {0} and Y \ U ⊆
h−1

i {1}. By [Engelking 89, Theorem 1.4.7], the function f : Y → [0, 1] defined by
f(y) := 1 − ∑∞

i=0 2−i−1 · hi(y) is continuous. Clearly, f−1{0} = Y \ U . �

Lemma 12 finally implies the transitivity property for functionally closed sets
in quasi-normal spaces stated in Proposition 7.

Proof. (Proposition 7) Let A ∈ FA(X). Then U := Y\A = (X\A)∪(Y\X) is an
element of τ and thus functionally open in Y by Lemma 12. Hence A ∈ FA(Y).
Conversely, for every B ∈ FA(Y) the set B ∩X is functionally closed in X. Thus
FO(X) is the subspace topology induced by FO(Y) on the subset X. �

4.3 The Extension Theorem for Continuous Functions

In this section we formulate and prove the Extension Theorem for quasi-normal
qcb-spaces. The proof follows the lines of the proof of the original Tietze-Urysohn
Theorem (cf. [Engelking 89, Theorem 2.1.8]), using Proposition 7 in place of
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Urysohn’s Separation Lemma. Although Theorem 13 can be deduced from the
original Tietze-Urysohn Theorem with the help of Proposition 7, we give an
explicit construction, because the latter can be easily enhanced to a proof of the
Extension Theorem for computable functions in Section 5.

Theorem 13. Let X be a functionally closed subspace of a quasi-normal qcb-
space Y.

1. Every continuous function f : X → [0, 1] can be extended to a continuous
function F : Y → [0, 1] satisfying F (x) = f(x) for all x ∈ X.

2. Every continuous function f : X → R can be extended to a continuous func-
tion F : Y → R satisfying F (x) = f(x) for all x ∈ X.

Proof. 1. We modify the proof of the Tietze-Urysohn Theorem in [Engelking 89].
For the sake of simplicity, we show the statement for functions into the inter-
val [−1, 1] in place of [0, 1]. First we prove that the multi-function Φ which
maps a dyadic number c in (0, 1] and a continuous function h : X → [−1, 1]
with supx∈X |h(x)| ≤ c to all continuous functions H : Y → [−1, 1] satisfying

sup
y∈Y

∣∣H(y)
∣∣ ≤ 5

16c and sup
x∈X

∣∣h(x) − H(x)
∣∣ ≤ 11

16c (3)

is total. Since A := h−1[−c,− 3
8c] and B := h−1[38c, c] are functionally closed

in X, they are functionally closed in Y by Proposition 7. So there exists a
continuous function k : Y → [0, 1] satisfying k−1{0} = A and k−1{1} = B,
because A and B are disjoint. We define the continuous function H : Y →
[−1, 1] by H(y) := 5

8c
(
k(y) − 1

2

)
. One easily verifies that H satisfies Condi-

tion (3), hence H ∈ Φ(c, h).

Now we construct inductively a sequence (gi)i of continuous functions gi : Y →
[−1, 1] such that

sup
y∈Y

∣∣gi(y)
∣∣ ≤ 5

16 · (11
16 )i and sup

x∈X

∣∣f(x) −
i∑

j=0

gj(x)
∣∣ ≤ ( 11

16 )i+1 (4)

by choosing g0 ∈ Φ(1, f) and gi+1 ∈ Φ
(
( 11
16 )i+1, λx∈X. f(x) − ∑i

j=0 gi(x)
)
.

Note that the second statement in (4) ensures that the multi-function Φ is
applied to a legal argument. For all n ∈ N we have

∣∣ ∑
j≥2n

gj(y)
∣∣ ≤ 5

16 · (11
16 )2n ·

∞∑
j=0

( 11
16 )j = (121

256 )n · 5
16 · 1

1−11/16 ≤ 2−n .

Therefore the formula F (y) :=
∑∞

j=0 gj(y) defines a function from Y into
the interval [−1, 1]. Moreover, the function sequence

(
λy∈Y.

∑2n
j=0 gj(y)

)
n

converges uniformly to F . Hence F is a continuous function. The second
statement in (4) implies F (x) = f(x) for all x ∈ X.
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2. Let X′ and Y′ be the topological spaces that carry the topologies FO(X) and
FO(Y), respectively. By Proposition 7, X′ is a topological subspace of Y′. As
Y′ is normal and f is topologically continuous w.r.t. FO(X), the statement
follows from the original Tietze-Urysohn Theorem. �

5 An Effective Version of the Extension Theorem

In this section we establish an effective version of the Tietze-Urysohn Extension
Theorem. This theorem is formulated for qcb-spaces that satisfy a computable
notion of quasi-normality, which we call effective quasi-normality.

5.1 Representations for families of subsets

Given an admissible representation δ of a qcb-space Y, we introduce at first
representations (derived from δ) for the following families of subsets of Y: the
open sets, the closed sets, the functionally opens sets, the functionally closed
sets, and the functional Gδ-sets (= countable intersections of functionally open
sets).

To define the representations of O(Y) and A(Y), we use the fact that every
open set has a pseudo-open decomposition into elements of the pseudobase Bδ

induced by δ. Using the effective bijective numbering w : N → N
∗ of N

∗ from
Section 2.1, we define the representations δO of O(Y) and δA of A(Y) by

δO(q) = V :⇐⇒ δ−1(V ) =
{
p ∈ dom(δ)

∣∣ ∃i. q(i) > 0 ∧ w(q(i) − 1) � p
}

and δA(q) := Y \ δO(q). So for q ∈ dom(δO) we have δO(q) =
⋃

i∈N
Bδ(q(i)).

Moreover, {Bδ(q(i)) | i ∈ N} is a pseudo-open decomposition of δO(q): admissi-
bility of δ implies that for all sequences (yn)n converging to some element y∞ ∈
δO(q) there are δ-names pn for yn such that lim

n→∞ pn = p∞ (cf. [Schröder 02]).

There is some i ∈ N such that w(q(i) − 1) is a prefix of p∞ and thus a prefix of
almost all pn, implying that (yn)n is eventually in Bδ(q(i)).

One can prove that δO is computably equivalent to the Sierpiński repre-
sentation of O(Y), which encodes an open set V via its characteristic function
cf V from Y into the Sierpiński space defined by cf V (y) = � :⇐⇒ y ∈ V . The
Sierpiński space has {⊥,�} as its underlying set and {⊥} as its only closed
singleton.

By using the standard function representation, [δ → �[0,1]], of the set of
continuous functions from Y to [0, 1], we define representations δFO of FO(Y)
and δFA of FA(Y) straightforwardly by

δFA(q) :=
{
y ∈ Y

∣∣ [δ → �[0,1]](q)(y) = 0
}

and δFO(q) := Y \ δFA(q)
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for q ∈ dom([δ → �[0,1]]). Finally, we define the representation δFG of the family
of functional Gδ-sets by

δFG(〈q0, q1, . . . 〉) :=
⋂∞

j=0 δFO(qj) ,

where 〈 . 〉 denotes a standard computable bijection from (NN)N to N
N.

With standard methods of TTE, one can prove the following lemma. It for-
mulates effective versions of known theorems in the theory of topological spaces.

Lemma 14.

1. Finite union and finite intersection (on the respective family of subsets) are
computable w.r.t. each of the representations δO, δA, δFO, δFA, δFG.

2. Countable intersection of closed subsets is computable w.r.t. [�N → δA] and
δA; countable intersection of functionally closed subsets is computable w.r.t.
[�N → δFA] and δFA.

3. The multi-function that maps two disjoint functionally closed sets A,B to all
continuous functions h : Y → [0, 1] satisfying h−1{0} = A and h−1{1} = B

is computable w.r.t. δFA and [δ → �[0,1]].

4. The function that maps a continuous function h : Y → R and two real num-
bers r, s ∈ R to the functionally closed set h−1[r, s] is computable w.r.t.
[δ → �R], �R and δFA.

5. The representation δFO is computably reducible to δO, and δFA is computably
reducible to δA.

6. For any δA-computable closed subset M , the function O �→ O ∪ Y \ M is
computable w.r.t. (δ|M )O and δO.

7. Let ·op be any operator in {·O, ·A, ·FO, ·FA}. For any δop-computable subset
M , the function A �→ A ∩ M is computable w.r.t. δop and (δ|M )op.

8. Let ·op be any operator in {·O, ·A, ·FO}. For any δop-computable subset M ,
(δ|M )op is computably reducible to δop.

Here δ|M denotes the corestriction of δ to the subset M . Remember that a
representation φ1 for a set M is computably reducible to a representation φ2 for
M or a superset of M , if there is computable function g satisfying φ2(g(p)) =
φ1(p) for all p ∈ dom(φ1). Two representations are computably equivalent, if
there are computable reducible to each other (cf. [Weihrauch 00]).
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5.2 Effectively quasi-normal spaces

We introduce an effectivised version of the notion of a quasi-normal qcb-space.
The idea is to use the fact that quasi-normal qcb-spaces have an admissible
representation δ such that the pseudobase Bδ = {Bδ(n) |n ∈ N} induced by
δ (see Section 2.5) is functionally closed. This follows from Proposition 4 and
the fact that the standard construction of an admissible representation (see
[Schröder 02]) from a pseudobase closed under finite intersection induces this
pseudobase.

Definition 15. Let Y be a qcb-space.

1. An admissible representation δ of Y is called effectively functionally closed,
if the pseudobase Bδ = {Bδ(n) |n ∈ N} induced by δ consists of functionally
closed sets and the sequence (Bδ(n))n is computable w.r.t. the representa-
tion δFA.

2. The space Y is called effectively quasi-normal, if Y has an admissible and
effectively functionally closed representation.

By having a functionally closed pseudobase, an effectively quasi-normal space
is indeed quasi-normal (cf. Proposition 4). An example of an effectively func-
tionally closed representation is the signed-digit representation �R, because the
function (a, b) �→ [a, b] is computable w.r.t. �R and �FA

R
. Computable equivalence

of representations do not preserve this effectivity property, simply because there
are effective representations of the Euclidean space that induce pseudobases con-
taining non-closed sets.

5.3 The effective Tietze-Urysohn Extension Theorem

Now we are ready to formulate the effective Tietze-Urysohn Extension Theorem
for effectively quasi-normal qcb-spaces. We state a non-uniform and a uniform
version.

Theorem 16. Let Y be a quasi-normal qcb-space equipped with an admissi-
ble effectively functionally closed representation δ. Moreover, let X be a δFA-
computable subset of Y. Then every (δ|X , �[0,1])–computable function f : X →
[0, 1] has a (δ, �[0,1])–computable extension F : Y → [0, 1].

Theorem 16 follows from the uniform version:

Theorem 17. Let Y be a quasi-normal qcb-space equipped with an admissi-
ble effectively functionally closed representation δ. Moreover, let X be a δFA-
computable subset of Y. Then the multi-function that maps any continuous func-
tion f : X → [0, 1] to all its continuous extensions F : Y → [0, 1] is computable
w.r.t. [δ|X → �[0,1]] and [δ → �[0,1]].
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One can even show that extendability of continuous functions is also com-
putable uniformly in the functionally closed domain. We omit the details.

5.4 Sketch of Proof of the effective Extension Theorem

The effective Tietze-Urysohn Theorem 17 can be deduced from the following
proposition along with Lemma 14 by carefully effectivising the proof of Theo-
rem 13.

Proposition 18. Let Y be a quasi-normal qcb-space equipped with an admissible
effectively functionally closed representation δ. For every δFA-computable subset
X ⊆ Y, the representation (δ|X)FA is computably reducible to δFA.

We prove Proposition 18 by showing effective versions of the lemmas in Sec-
tion 4 on which Proposition 7 is based. Let δ be an admissible effectively func-
tionally closed representation of Y and let X be a δFA-computable subset of
Y. Lemma 14.7 implies that δ|X is an effectively functionally closed representa-
tion of the space X endowed with the (sequential) subspace topology inherited
from Y. As a pseudobase for Y we use the functionally closed pseudobase Bδ

induced by δ.
At first we introduce a representation Ω of the topology τ from Equation (1).

We define Ω by

Ω(〈q, r, s〉) = U :⇐⇒ (
δO(q) = U, (δ|X)FO(r) = U ∩ X, δFO(s) = U \ X

)
.

Here 〈·, ·, ·〉 denotes a computable bijection between N
N × N

N × N
N and N

N.
Our effective version of Lemma 5 states that any δO-name of a functionally

open set V can be converted into a δFO-name, when additionally the information
about V as a functional Gδ-set is given by means of a δFG-name. To formulate
this statement precisely, we represent the family of all open functional Gδ-sets
by the conjunction of the representations δO and δFG . The conjunction δO ∧ δFG

is defined by (δO ∧ δFG)(〈q, s〉) = V :⇐⇒ V = δO(q) = δFG(s), cf. [Schröder 03,
Weihrauch 00].

Lemma 19. The representation δO ∧ δFG is computably reducible to δFO, and
(δ|X)O ∧ (δ|X)FG is computably reducible to (δ|X)FO.

Proof. We only consider the slightly more difficult case φ := δ|X . Let 〈q, s〉 ∈
dom(φO ∧ φFG) and let V := φO(q) = φFG(s). We can compute s0, s1, . . . ∈
dom(φFO) with 〈s0, s1, . . . 〉 = s. Since δ is an effectively functionally closed rep-
resentation, the map i �→ Bφ(i) = Bδ(i)∩X is computable w.r.t. φFA. Thus for
every n ∈ N we can compute a φFA-name of the closed set F q

n =
⋃n

i=0 Bφ(q(i)) ⊆
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V by Lemma 14. Since F q
n and φFA(sn) are disjoint, by Lemma 14 we can con-

struct for each n ∈ N a function hq,s,n : X → [0, 1] satisfying h−1
q,s,n{0} = φFA(sn)

and h−1
q,s,n{1} = F q

n .
We define a function fq,s : X → [0, 1] by fq,s(x) := infn∈N hq,s,n(x) and

show that (q̂, ŝ) �→ fq̂,ŝ is computable w.r.t. [φ → �[0,1]]. Let p ∈ dom(φ) and
k ∈ N. Set x := φ(p). In order to compute a dyadic number approximating
fq,s(x) with precision 2−k, we apply exhaustive search to find a pair (i,m) ∈
N

2 such that either w(q(i) − 1) is a prefix of p or the prefices q<m, s<m, p<m

admit the verification of hq,s,i(φ(p)) ≤ 2−k. In the former case, we have x ∈
Bφ(q(i)) ⊆ V and thus hq,s,j(x) = 1 for all j ≥ i, so that it suffices to compute a
dyadic approximation to min{hq,s,0(x), . . . , hq,s,i(x)} with precision 2−k. In the
latter case we have 0 ≤ fq,s(x) ≤ hq,s,i(x) ≤ 2−k, so that 0 is an appropriate
approximation. Note that if x belongs to V then some prefix of p has to be listed
by the name q. If x is not in V , then there is some j with x /∈ φFO(sj) and hence
hq,s,j(x) = 0. Therefore the exhaustive search will be eventually successful for
〈q, s〉 ∈ dom(φO ∧ φFG) and p ∈ dom(φ).

We conclude that there is computable function g : N
N → N

N realising 〈q̂, ŝ〉 �→
fq̂,ŝ. For every element x ∈ V there is some i such that x ∈ Bφ(q(i)), implying
fq,s(x) = min{hq,s,0(x), . . . , hq,s,i(x)} and thus fq,s(x) > 0. For every element
x /∈ V there is some j with x /∈ δFO(sj) implying fq,s(x) = hq,s,j(x) = 0. Hence
g translates φO ∧ φFG into φFO. �

We effectivise Lemma 8 by introducing a technical representation δOB of
O(Y) and by stating that it is computably reducible to δO. We define δOB by

δOB(〈q, s0, s1, . . . 〉) = V :⇐⇒
{

V = δO(q) ∩ ⋂∞
j=0 δO(sj) and

∀i ≤ j. Bδ(q(i)) ⊆ δO(sj)

for all q, s0, s1, . . . ∈ N
N and V ∈ O(Y). Note that δO(q) = δOB(〈q, q, q, . . . 〉).

Lemma 20. The representation δOB is computably reducible to δO.

Proof. Using a computable bijection 〈·, ·, ·〉 : N
3 → N, we define g : N

N → N
N by

g(〈q, s0, s1, s2, . . . 〉)(〈a, b, c〉)

:=

⎧⎪⎪⎨
⎪⎪⎩

a + 1 if q(b) > 0 and w(q(b) − 1) is a prefix of w(a) and
for all j < q(b) there is some kj ∈ {sj(l) | l ≤ c}
such that kj > 0 and w(kj − 1) is a prefix of w(a)

0 otherwise

for all q, s0, s1, s2, . . . ∈ N
N and all a, b, c ∈ N. Clearly g is computable. For all
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〈q, s0, s1, s2, . . . 〉 ∈ dom(δOB) and p ∈ dom(δ), we have

δ(p) ∈ δOB(q)

⇐⇒ ∃b ∈ N.w(q(b) − 1) � p ∧ ∀j ∈ N.∃kj ∈ sj(N).w(kj − 1) � p

⇐⇒ ∃b ∈ N.
(
w(q(b) − 1) � p ∧ ∀j < q(b).∃kj ∈ sj(N).w(kj − 1) � p

)
⇐⇒ ∃a, b, c ∈ N.

(
w(a) � p ∧ w(q(b) − 1) � w(a)

∧ ∀j < q(b).∃kj ∈ {sj(l) | l ≤ c}.w(kj − 1) � w(a)
)

⇐⇒ ∃i ∈ N.w
(
g〈q, s0, s1, s2, . . . 〉(i) − 1

) � p .

Therefore g translates δOB into δO. �

The effectivity condition on δ ensures the following effectivisation of Lemma 9.

Lemma 21. The representation δA is computably reducible to δFG.

Proof. Any δA-name q of a closed set A provides a sequence (βi)i of pseudobase
elements in Bδ such that their union is the complement of A. By the effectivity
condition on δ and by Lemma 14, we can convert q into a δFG-name of the set
A =

⋂∞
i=0(Y \ βi). �

Lemmas 10 and 11 can be effectivised by stating computability of appropriate
multi-functions.

Lemma 22. The multi-function which maps a functionally closed set A ∈ FA(Y)
and a set U ∈ τ with A ⊆ U to all pairs (U ′, A′) ∈ τ × FA(Y) satisfying
A ⊆ U ′ ⊆ A′ ⊆ U is computable w.r.t. the representations δFA and Ω.

Lemma 23. The multi-function which maps a functionally closed set A ∈ FA(Y)
and a set U ∈ τ with A ⊆ U to all continuous functions h : Y → [0, 1] satisfying
A ⊆ h−1{0} and Y \ U ⊆ h−1{1} is computable w.r.t. the representations δFA,
Ω and [δ → �[0,1]].

By Lemma 12, the topology is τ is equal to FO(Y). We express this property
in terms of computable equivalence of representations.

Lemma 24. The representations Ω and δFO are computably equivalent.

Lemmas 22, 23 and 24 can be proven by effectivisations of the proofs of
their topological counterparts using Lemmas 14, 19, 20 and 21. As a pseudo-
open decomposition into functionally closed sets for an open subset V of Y given
by an δO-name q, one uses the family {Bδ(q(i)) | i ∈ N}. We omit the details.

We now show how to effectivise the proof of Proposition 7 using Lemma 14
and the representations of the relevant families of subsets of Y.

1335Schroeder M.: An Effective Tietze-Urysohn Theorem ...



Proof. (Proposition 18) Let tX ∈ N
N be computable such that δFA(tX) = X.

Lemma 14.5 and 14.6 imply that there is a computable function g1 :⊆ N
N → N

N

realising the function h : FA(X) → O(Y) defined by h(A) := (X \ A) ∪ (Y \
X) w.r.t. (δ|X)FA and δO. By Lemma 24, there is a computable function g2

translating Ω into δFO. The computable function g :⊆ N
N → N

N defined by
g(r) := g2(〈g1(r), r, tX〉) translates (δ|X)FA into δFA, because 〈g1(r), r, tX〉 is an
Ω-name of the open complement h

(
(δ|X)FA(r)

)
of the functionally closed set

(δ|X)FA(r) for every r ∈ dom((δ|X)FA).

6 Discussion

We have shown that quasi-normality yields a reasonable substitute for the prop-
erty of normality in the category of qcb-spaces. It admits a continuous and, in
its effective version, a computable Extension Theorem for functions defined on
functionally closed subspaces. The category QN of quasi-normal qcb-spaces con-
tains all countably based normal spaces and enjoys excellent closure properties,
e.g. QN is cartesian closed. By contrast, the category of normal qcb-spaces is not
cartesian closed: the space N

(NN) of Kleene-Kreisel continuous functionals of or-
der 2 is not normal (see [Schröder 09]), even though N

N and N are metrisable. An
open question is whether the category of quasi-normal qcb-spaces endowed with
an admissible effectively functionally closed representation is cartesian closed.
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