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Abstract: In this paper, we consider password-based authenticated key exchange with
different passwords, where the users only share a password with the trusted server but
do not share between themselves. The server helps the users share a cryptographi-
cally secure session key by using their different passwords. We propose a light-weight
password-based authenticated key exchange protocol with different passwords, i.e., it
requires only 2 rounds and 4 modular exponentiations per user. The protocol provides
forward secrecy, known-key secrecy, key secrecy against the curious server, and security
against undetectable online dictionary attacks without random oracles.
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1 Introduction

Password-based authenticated key exchange (PAKE) protocols allow two or more
parties to share a secret session key by using only a human-memorable password.
The shared session key may be subsequently used for confidentiality or data
integrity. PAKE can be used in several environments, especially in pervasive
computing environments where pervasive devices have relatively small comput-
ing power. The popularity of mobile Internet access, Wireless LAN hotspots,
wireless-equipped PDAs, RFID tags, mobile phones, and Bluetooth has made
pervasive computing a reality.

Most of existing PAKE protocols assume that the two users have shared a
common password. However, this assumption is hard to satisfy in some appli-
cations. With the rapid developments in modern communication environments



Kwon J.O., Jeong I.R., Lee D.H.: Light-Weight Key Exchange ... 1043

such as pervasive computing and ubiquitous computing, it is inevitable to con-
struct a secure peer-to-peer channel. In such a peer-to-peer channel, it would
be more plausible to assume that a user wants to communicate securely with
another user with the different passwords. In these environments, a two-party
PAKE protocol with the same password is hard to use, since the number of pass-
words that a user has to memorize linearly increases with the number of possible
partners. In PAKE with different passwords in the three-party setting, each user
only shares a password with a trusted server. The trusted server authenticates
two users and helps the users with different passwords share a common session
key. It thus requires each user to only remember a password with the trusted
server. PAKE with different passwords in the three-party setting surmounts the
above problem.

Especially, we consider PAKE between pervasive computing devices having
user input interfaces. When two users want to exchange sensitive data, each user
types in the registered password to his pervasive computing devices. Through
our PAKE protocol, the two users can share a cryptographically secure session
key for further secure communication by using the human-memorable password
only. As examples, our protocol allows that a user who has a mobile phone but
has no public-key certificates sends or receives an encrypted e-mail by using a
memorable password that is shared with his mobile e-mail server. Our protocol
also allows two mobile users to exchange encrypted messages via a mobile mes-
senger program by using a password that is shared with his mobile messenger
server only. It does not require a user to have public-key certificates.

1.1 Related Works and Our Work

PAKE with different passwords in the three-party setting has been extensively
studied in the last few years [Steiner et al. 1995, Lin et al. 2001, Byun et al. 2002,
Abdalla et al. 2005, Abdalla and Pointcheval 2005, Wang et al. 2006].

In [Byun et al. 2002], a protocol, C2C-PAKE, without a formal proof has been
proposed. It is conjectured to be secure when the block cipher is instantiated
via an “ideal cipher”. But C2C-PAKE is not secure against undetectable on-line
dictionary attacks [Kwon et al. 2007].

In [Abdalla et al. 2005], a formal model of security and a generic construc-
tion, GPAKE, of 3-party PAKE with different passwords, have been proposed.
The security of GPAKE has been proved in the standard model (without formally
proving forward secrecy). However, a concrete instantiation from GPAKE is not
optimized from the viewpoint of the round-/computational complexity, because
the subprotocols are treated as black boxes. For example, even the most efficient
instantiation from GPAKE still requires 6 rounds and more than 17 modular
exponentiations per user in the standard model. Therefore, the amounts of com-
municational /computational burden required by GPAKE may restrict the use
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of the PAKE protocol in the mobile networks. For a small device communicat-
ing over a mobile network, it is especially important to establish a session key
with a small amount of computation and communication, and a small number
of rounds.

The generic construction in [Abdalla et al. 2005] can be seen as a compiler
that transforms any provably-secure two-party PAKE protocol in the standard
model into a secure three-party PAKE protocol in the standard model. A generic
construction simplifies the design for protocols and analysis of protocols. Because
of the merits of using a generic construction, the generic construction has been
used in the design of various key exchange protocols such as [Bellare et al. 1998,
Mayer and Yung 1996, Katz and Yung 2003, Wang et al. 2006]. However, the re-
sulting protocols are often less efficient than tailored-made protocols because
each protocol module is treated as a black box.

To improve the efficiency of the generic protocol, GPAKE, Abdalla et al.
presented a tailor-made protocol AP in [Abdalla and Pointcheval 2005]. Security
of AP has been proved in the “ideal hash” model under non-standard variants
of the decisional Diffie-Hellman (DDH) assumption (without formally proving
forward secrecy).

Wang et al. [Wang et al. 2006] show that AP is not secure against unde-
tectable on-line dictionary attacks and GPAKE can be insecure to undetectable
on-line dictionary attacks when GPAKE uses a 2-party PAKE protocol without
the authentication security from users to the server. Wang et al. then present
a generic construction of 3-party PAKE providing security against undetectable
on-line dictionary attacks, NGPAKE, and prove its security. NGPAKE can be in-
stantiated by using any provably-secure 2-party PAKE protocol in the standard
model such as KOY [Katz et al. 2001] so as to generate a secure 3-party PAKE
protocol in the standard model. NGPAKE can also be instantiated by using any
provably-secure 2-party PAKE protocol in the random oracle model such as PAK
[MacKenzie 2002] or OMDHKE [Bresson et al. 2004] so as to generate a secure
3-party PAKE protocol in the random oracle model.

It is well-known that a secure scheme in the ideal cipher/hash model may
not be secure in the real world, if an idealized function is instantiated with a
real function [Canetti et al. 1998, Nielsen 2002, Goldwasser and Taumen 2003,
Canetti et al. 2004, Bellare et al. 2004]. So, it is more desirable to design secure
and efficient 3-party PAKE protocols in the standard model. We suggest KEDP
which is a secure tailor-made protocol with different passwords in the standard
model. KEDP is efficient in the view point of communicational/computational
and rounds complexity.

In Section 2, we review the primitives used to construct our protocol. In
Section 3, we review the security attacks and define security models based on
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the existing security model for PAKE with different passwords in the 3-party
setting. In Section 4, we present our protocol, KEDP. In Section 5, we present
the proof of security. In Section 6, we provide a comparison of efficiency and
security with the previous 3-party PAKE protocols. We conclude in Section 7.

2 Preliminaries

In this section we review the well-known cryptographic primitives that are used
to construct our protocol. We use notation [a, b] for a set of integers from a to b.
We use notation ¢ < S to denote that ¢ is randomly selected from a set S. We
denote the concatenation of two strings a and b as al|b. If evt is an event, Pr[evt]
is the probability that evt occurs.

Hash Diffie-Hellman Assumption [Abdalla et al. 1998, Abdalla et al. 2001].
Let # € N be a security parameter. Let H be a hash function such that H :
{0,1}* — {0,1}?. Let GG be a group generator which generates a group G
whose prime order is ¢ and a generator is g. Consider the following experiment:

Exply.g.4(0) Exply g6.4(0)
(G,q,9) « GG(17%) (G,q,9) « GG(17%)
uy,uz < [1,4] uy,uz < [1,q]
Up < g% Uz < g*2 Ui < g";Us < g*2
W < H(gu1u2) W « {0,1}?
dFA(G’qagaUlaU27W) dFA(G’qagaUlaU27W)
return d return d

The advantage of an adversary A is defined as follows:
AdvﬁDH(H) = Pr[Expgf)gHg’,lA(H) =1]- Pr[Expg]?g%f)A(H) =1].
The advantage function is defined as follows:

AdVIE (0, 1) = MAXL AP ()1,

where A is any adversary with time complexity ¢. The HDH assumption is that
the advantage of any adversary A with time complexity polynomial in @ is neg-
ligible.

If hash function H is derived from some cryptographic hash function like
SHA-1 [SHA 1995], the HDH assumption seems to hold. The hash function
should provide one-wayness. For more detailed discussion about selection of a
hash function, refer to [Abdalla et al. 1998, Abdalla et al. 2001].

Strong Unforgeability of MAC. A message authentication code (MAC) al-
gorithm consists of three algorithm, M = (Key, Mac, Vfy). Key generates a key
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kmac. Given kp,q., Mac computes a tag 7 = Macy,, . (M) for a message M. Vfy
verifies a message-tag pair using key kpqc, and returns 1 if the tag is valid or 0
otherwise. In defining the security of a MAC we use the standard definition of
strong unforgeability under adaptive chosen-message attack. Namely, let M be
a MAC scheme and A be an adversary,  be a security parameter. Consider the
following experiment:

ExpSim(9)

Emae < {0,1}?

(M, 7_) . AMackmac(')’nykmac("')(10)

if Vfy, (M, 7) =1 and oracle Macy,,,.(-)
never returned 7 on input M then return 1

else return 0

The advantage of an adversary A is defined as follows:
Advy'4 (8) = PrlExpiy 4 (8) = 1].
The advantage function of the scheme is defined as follows:
Advin (0, 8,4, a0) = " {Advin 4 (0)},

where A is any adversary with time complexity ¢ making at most ¢, MAC gener-
ation queries and ¢, MAC verification queries. The scheme M is SUF-secure if the
advantage of any adversary A with time complexity polynomial in € is negligible.

IND-CCA of Asymmetric Encryption. An asymmetric encryption scheme
consists of E = (E.key, E.enc, E.dec). E.key generates (sk,pk) a pair of private-
/public-keys. E.enc encrypts a plaintext using pk. E.dec decrypts a ciphertext
using sk and outputs a plaintext if the ciphertext is valid or L otherwise.

Let 6 be a security parameter. Consider the following experiment:

O

(5k, k) ¢ Eckey(1)

(mo,my, St) < AF-decsr() (find, pk)
d <+ {0,1}

C +— E.encpk (md)

d' « AE-decai(") (gueSS, c, St)
Return d'

In the above experiment an adversary A selects two messages, mg and my,
in the find stage. Then A is given ciphertext ¢ which is an encryption of mg or
ma1. A tries to decide whether ¢ = E.encyi(mg) or ¢ = E.encpi(m1), and outputs
its guess in the guess phase. St is used to retain some state information. A can
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access to the decryption oracle E.decgy(+) under the following restriction: A can
not ask for decryption of challenge ciphertext c¢. The advantage of A is defined
as follows:

Adve ) “9%(0) = Pr[Expg. oy ©“*(0) = 1|d = 1] — Pr[Expg.y ““*(0) = 1|d = 0].
The advantage function of the scheme is defined as follows:
AdEPCN (9,1) = (AP A )},

where A is any adversary with time complexity ¢. The scheme E is IND-CCA
secure if the advantage of any adversary A with time complexity polynomial in
 is negligible.

3 Security Attacks and Model

3.1 Security Attacks

We summarize security attacks with respect to PAKE with different passwords.

Di1cTIONARY ATTACKS. Dictionary attacks are possible because the set of prob-
able passwords is small. Usually dictionary attacks are classified into on-line and
off-line dictionary attacks. In on-line dictionary attacks, an adversary guesses
a password by participating in a PAKE protocol. In off-line dictionary attacks,
an adversary uses only transmitted messages from a successful run of the pro-
tocol. Thus, these off-line attacks are undetectable. We also have to consider
off-line dictionary attacks by malicious users. On-line dictionary attacks are al-
ways possible. However, these attacks cannot become a serious threat if on-line
attacks can be easily detected and thwarted by counting access failures. In the
server-aided PAKE protocols such as three-party PAKE, we more carefully con-
sider on-line dictionary attacks because a malicious user may launch such on-line
attacks indiscernibly by using the server as a password verification oracle. If a
failed guess cannot be detected and logged by the server, the attacks are called
undetectable on-line dictionary attacks [Ding and Horster 1995]. If this kind of
attack succeeds on a PAKE protocol, an adversary is able to find the correct
passwords of users and hence the attacker is able to access everything that is
allowed to honest users.

ATTACKS AGAINST KEY SECRECY. One of the most basic security requirements
of a key exchange protocol is key secrecy which guarantees that no computa-
tionally bounded adversary can learn anything about the session keys shared
between honest users by eavesdropping or sending messages of its choice to the
users in the protocol. It is necessary that the key secrecy also be preserved against
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the server which behaves honestly but in a curious manner. That is, the server
should not learn anything about the session keys of the users by eavesdropping
even though the server know the passwords of the users. This is true even if the
server helps two users establish a session key between them.

The importance of the following security attributes with respect to key se-
crecy depends on the real applications. Forward secrecy means that even with
the passwords of the users any adversary does not learn any information about
session keys which are successfully established between honest users. A PAKE
protocol is said to be secure against known-key attacks if compromise of multiple
session keys for sessions other than the one does not affect its key secrecy. This
notion of security means that session keys are computationally independent from
each other. A bit more formally, this security protects against “Denning-Sacco”
attacks involving compromise of multiple session keys (for sessions other than
the one whose secrecy must be guaranteed). Security against known-key attacks
also implies that an adversary cannot gain the ability to perform the off-line
dictionary attacks on the passwords from the compromised session keys which
are successfully established between honest users.

3.2 Security Model

We present a formal model of security for modeling the above security attacks.
The security model defined in this section is based on Abdalla et al.’s model for
three-party PAKE in [Abdalla et al. 2005] which follows the model established
by Bellare et al. [Bellare et al. 2000] which has been extensively used to analyze
key exchange protocols.

We consider a PAKE protocol with different passwords in which two users
want to exchange a session key. P; is an identity of a user and S is an identity
of the server. S helps two users P; and P; with different passwords to share
a common session key. P; holds a password pw;. We assume that pw; is in
a password dictionary and the size of the dictionary is PW. We consider a
symmetric model where the server S holds pw; for each user P;.

Our definition of “partnered” follows that of [Bellare et al. 2000] which uses
a notion of a session identifier. P; may have many instances of the protocol. Let a
k-th instance of P; be PF. Let an (-th instance of S be S*. A session identifier of
Pk, sidf, is used to uniquely name the sessions, and is defined as a concatenation
of the protocol messages by the lexicographic ordering by their owners. In this
paper, we assume that the parties can transmit messages simultaneously and a
broadcasting channel. We also assume that the users can be ordered by their
names (e.g., lexicographically) and write P; < P; to denote this ordering.

A partner of P}, pid®, is an identity of the user with whom P* intends to

(3 (3
establish a session key sk¥. The oracles P and ijl are partnered if the followings
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hold:

(1) sidf =sid®  (2) pidf = P; (3) pid? = P.

There are three types of adversaries; outside attackers, the curious server,

and malicious users. An outside attacker tries to break key secrecy of the session
keys. The curious server behaves honestly but it tries to learn information about
a session key shared between honest users. A malicious user deviates from the

protocol to perform dictionary attacks against the other user.

QUERIES FOR THE OUTSIDE ATTACKERS. Let A be an adversary. A controls all
the communications and makes queries to the oracles. The queries that A4 can
ask are as follows.

Send(P}, M) or Send(S*, M): This query sends message M to an instance PF
or S¢ and gets a response from the instance, respectively. Using this query, A
can do active attacks such as modifying or inserting the protocol messages.
The adversary can make P} initiate a key exchange protocol with S and
P; by asking a Sendo(PF, S, P;) query. In response to Sendo(PF, S, P;), PF
sends the first message of the protocol.

Execute(PF, S¢, Pj’“’): This query models passive attacks. The adversary gets
the messages exchanged during the honest execution among P, Pf’ and S*.
(Although the actions of the Execute query can be simulated via repeated the
Send oracle queries, this particular query is needed to distinguish between
passive and active attacks.)

Reveal(PF): This query models the adversary’s ability to obtain session keys,
i.e., this models known-key attacks in the real system. If a session key ski»c
has previously been constructed by PF, it is returned to the adversary.

Corrupt(FP;) or Corrupt(S): This models the exposure of the long-term key
held by P; or S, respectively. That is, this models forward secrecy. The
adversary is able to obtain long-term keys of parties. Protocols achieving
forward secrecy maintain the secrecy of a session key against the adversaries
which have long-term keys, even if the session key has been established with
interference of an adversary before the long-term keys are corrupted.

Test(PF): This query is used to define the advantage of an adversary. This
query is allowed only once by A, and only to fresh oracles. A fresh oracle
is defined below. In this query, a coin b is flipped. If b = 1, the session key
sk held by PF is returned. If b = 0, a random string drawn from {0, 1}? is
returned, where 6 is a security parameter.

A passive adversary can use the Execute, Reveal, Corrupt and Test queries

while an active adversary additionally can use the Send query. Even though the



1050 Kwon J.O., Jeong I.R., Lee D.H.: Light-Weight Key Exchange ...

Execute query may seem to be useless since it can be simulated by repeatedly
using the Send queries, the Execute query is essential to distinguish on-line dic-
tionary attacks from off-line dictionary attacks. The number of the Send queries
does not take into account the number of the Execute queries. Thus, the number
of on-line dictionary attacks is bounded by the number of the Send queries.

FRESHNESS FOR THE OUTSIDE ATTACKERS. To eliminate trivial attacks, we
define a notion of freshness for a Test query considering forward secrecy. We say

an oracle PF is fresh if the following conditions hold:

(1) P¥ has not been revealed.

(2) Pf’ has not been revealed, if P* and Pf’ are partnered.

(3) Neither Corrupt(S) nor Corrupt(P;) has been asked by the adversary
before any Send(ij' ,*) queries, where P; is the partner of P}.

(4) Neither Corrupt(S) nor Corrupt(P;) has been asked by the adversary
before any Send(PF,*) queries, where P; is the partner of PF.

Note that it is possible that after corrupting S or P,, A itself may im-
personate P, at a specific session. In this case, A can trivially find out the
session key of this session. To eliminate this trivial case, the third and fourth
conditions are necessary.

QUERIES FOR THE CURIOUS SERVER. In our protocol, the server has the pass-
words for all users and his private key. We notice that the server behaves hon-
estly but in a curious manner. For this reason, the curious server is allowed
to ask multiple queries to the Execute and Send(PF, M) oracles but not to the
Send(S!, M) and Reveal oracles, since these oracles can be easily simulated using
the passwords and its private key, respectively. The curious server can make S*
initiate a key exchange protocol with P; and P; by asking a Sendy(S*, P;, P})
query. In response to Sendy(S*, P;, Py), S sends the first message of the protocol.

FRESHNESS FOR THE CURIOUS SERVER. We say an oracle PF is fresh if the
following conditions hold:

(1) There exists an instance ij’ partnered with PF.

(2) PF has computed a session key sk # NULL and neither P* nor ijl has

been asked for a Reveal query.

Definition 1. We say a protocol P is secure, if the following three properties
are satisfied:

- Validity: If all oracles in a session are partnered, the session keys of all oracles
are the same.
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- Key secrecy with respect to outside attackers: An adversary A asks the above
queries for outside attackers to the oracles and receives the responses. At
some point during the game A asks a Test query to a fresh oracle for the
outside attackers. 4 may ask other queries after the Test query and outputs
b" to guess the bit b used in the Test oracle. The advantage of adversary A
must be measured in terms of the security parameter 6 and is defined as

Adv*3™(0) = PrlA() = 1|b = 1] — PrlA() = 1|b = 0].
The advantage function is defined as
AVEA(9, 1) = B A" 6)

where A is any adversary with time complexity ¢ which is a polynomial in

0. Adv™ (9, ) should be bounded by 755 +€(0), where €(f) is a negligible

function, gs. is the number of Send queries and PW is the size of the password

space.

- Key secrecy with respect to the curious server: The server asks the above
queries for the curious server and receives the responses. To measure the
advantage of the curious server, the server asks a Test query to a fresh oracle
for the curious server. Then, Adv$s™"" (8, t) should be bounded by €(8), where
€(0) is a negligible function.

4 A Light-Weight PAKE Protocol with Different Passwords

We now present our protocol KEDP for PAKE with different passwords. Let G
be a cyclic group which has a prime order ¢q. Let g be a generator for G. Let
M be a strongly unforgeable MAC algorithm and let H be a hash function such
that {0,1}* — {0,1}".

INITIALIZATION. The server has a secret key sk and a public key pk for an
encryption scheme E = (E.key, E.enc, E.dec). User P; has pw;. P; and server S
have shared pw;. The public parameters are (G, q, g, H, E, M, pk) which are made
available to all parties. We stress that, in contrast to the PKI-based client-to-
server model, the public key of the server, pk, is one of the public parameters.
We assume that P; and P; want to establish a session key, and describe the
protocol in view point of FP;. P; behaves as similarly as P;. An example of an
execution of KEDP is shown in Fig. 1.
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KEDP

Round 1. P; randomly chooses x; from [1, ¢] and k; from {0,1}%. P; calculates
X; = ¢" and sends (P;, ¢; = E.encpr, (pw;||ki]| X;]|P;)) to S.

Round 2. Upon receiving (P;,é) and (Pj,¢;), S decrypts é and &, and
gets (pﬂ;l||k~z||)&~’l||P]) = E.decg(¢;) and (pﬂ)j||k~j||)fj||Pi) = E.decs(&).
If pw; # pw; or pw; # pw;, S stops. Otherwise, S computes
T = MaCISZ(Pl”PJHXlHX]) and T = MaCEJ(PJ||PZ||XJ||Xl) S sends
(Pi,A;j,Ti) to P; and (Pj,Xi,Tj) to P;.

Key computation. Upon receiving (Pi,)/(\j,ﬁ), P; check if
Viy,, (P,||PJ||X,||5(\],TA,) Z 1. If the verification is successful, P; computes the

—T;

session key sk = H(X; ).

COMPLETENESS. In an honest execution of the protocol, both users P; and P;
calculate the identical session key sk = H(g%:%4).

Py (pw1) 8 (pwy, pwa, sk) Py (pwa)
T - 1.4 ro - . 1
ey = TLal vz TLal)
by = {0.1} ka — {0.1}

ra

Xi=g"1 XNa=g"2
ey = Eencyp (pury || ke || X1 ]| P2) cz = E.encyp (pua||ka||X2||Py)
Pyoeq Pa e
(pues|[k1 ]| X1 || P2) — E.decas(cr)
(pug||k2||Xz||P1) — E.dec.s(cz)
Verify puy and paws
71 = Mack, (Py[|Pa||X1]]1X2)
T2 = Macy, (Pe||P1[|X2]|X1)

Check if P1.X2.7 P2, X172 Check if
Viye, (Pr| P2l X1 || Xz m) =1 Viyiy (P2 |Py ]| Xa ]| X 1. 72) 2y
sk = H(X,1) sk — H(X2)

Figure 1: An example of an execution of KEDP

5 Security Analysis

SECURITY AGAINST OUTSIDE ATTACKERS. The following theorem says that
KEDP is secure against outside attackers, since any adversary can test only one
guessed password through a run of KEDP. That is, the adversary can do only
detectable on-line dictionary attacks.

Theorem 1. Let G be a group in which the HDH assumption holds. Let M be
an SUF-secure MAC algorithm. Then KEDP provides key secrecy with respect
to outside attackers. Concretely,

AQVREDE (0,1, 4se) < (243N ) AdvE ™ OO Ng, Advi ™ +(Ngs) ™ Advii g+ 0+
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where ¢ is the maximum total game time including an adversary’s running time.
An adversary makes ¢s. Send queries. IV is the number of the users and ¢; is the
upper bound of the number of sessions that an adversary makes. PV is the size
of the password space.

Proof of Theorem 1. In the proof, we prove that the best strategy an adversary
can take is to perform an on-line dictionary attack. Assume that an outside
attacker, A, breaks KEDP with a non-negligible probability. Then A should break
KEDP with a non-negligible probability, before A finds the correct password
through an on-line dictionary attack. Thus, we estimate the advantage of an
adversary which does not send the first round messages made with a correct
password.
We define a series of games

(gameKEDP7 game, gamel,l: ey gamel,qsa ety gameN,l: ety gameN,qs)

as follows: In gameygpp, the answers to the oracle queries (Execute, Send, Reveal,
Corrupt, Test) are made by following KEDP. The game, is same with gameggpp
except the followings:

1. The simulator randomly selects pw! from {0, 1}¢ for P;.

2. Assume that S has received (P;, &) for the first round message. Let (piv; ||%; ||
Xi”ﬁj) be the message decrypted from é. If piw; € {pw;, pw}}, the simula-
tor considers that ¢; is valid, and sends the second round message of S¢.
Otherwise, the simulator does not send any message in the second round.

The game game,; , (1 < i < N,1 < k < g5) is same with the previous game
except the followings: The simulator sends (P;,c; = E.encpy(pwi||k;|| X;]|P;))
for the first round message of PF, where P; is the partner of P}F. Note that
pw! € {0,1}? is used instead of pw;.

Advoirt represents Adv®*™" in gamey, and Advimi® | represents Advy ™™
in gamey.

. outAtt outAtt
Claim 1. Advgre, . . < AdVggne -

Claim 2. Advgsis® — Advganer < 2Ng, - Advg >0,

Claim 3. Advgsrel < (2+Ngy)-Adves ™"+ NasAdviy " +(Ng,)*Adviy g +

g gameN,qs
se

gse
pw T 56

Thus, from Claim 1, Claim 2, and Claim 3, the theorem follows. O
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Proof of Claim 1. In game,, there are two passwords pw; and pw} for P;. Thus,
it is obvious that the advantage of an adversary in game, is greater than the
advantage of the adversary in gameygpp- O

Proof of Claim 2. We first show that if the difference of the advantage of A
between two adjacent games, game; ;. and game;. ., is non-negligible, we can
construct an algorithm B which breaks the IND-CCA security of E using A.
Thus,

outAtt outAtt IND-CCA
Advgameir‘kr,A - Advgamei*‘k* VA <2 AdVE,B :

B is given a public key pk and a decryption oracle E.decsy(+), and simulates
KEDP to A as follows:

1. For oracle queries of A, B answers as in game; ,, except the followings:
If B has to generate the first round message of P, B outputs (mg =
pwi. || ki || X+ || Pj, m1 = pwi+||ki= || Xi+|| P;) in the find stage of an IND-CCA
game, where P; is the partner of P . B receives a challenge ciphertext c*.
B sends (P;,c; = c¢*) to A as the first round message of P . If B has to
decrypt a ciphertext, B uses a decryption oracle E.decg/(+).

2. Assume that B has used a coin b in the Test query and A outputs b'. If b = b/,
B outputs 1 and quits. Otherwise, B outputs 0 and quits.

If ¢* = E.encyp, (pwi- || ki || Xi- || P;), B simulates game;, 1. If ¢* = E.encyi (pwi ||k
|| Xi«||P;), B simulates game;. ... Thus the following equation holds:

Advp O = Pr(B() = 1|d = 1] — Pr[B() = 1|d = 0]
> Pra[b=1b"1in game;, ;] — Prab=10"in game;. ;.]
AdvoutAtt _|_ 1 AdvoutAtt _|_ 1

game;s ;. ,A game;« jx, A

>
- 2 2

Using hybrid arguments, the following equation holds:

outAtt outAtt IND-CCA
AdVgame, — AdVgame,, S 2N g, - Advg .

O
Proof of Claim 3. Let forgeCipher be an event that A sends (P}, é) to S, where
¢ = E.encpp(pwi]] * || * ||*) or é = E.encpr(pw;|| = || * ||*), and (P, é;) has not
been sent by P;.
In gamey , , the advantage of A is from the following cases:

(Case 1) There exists at least one forgeCipher.

(Case 2) There exists no forgeCipher.
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We bound the advantage from each case in the following claims.

. outAtt,forgeCipher IND-CCA Qse Qse
Claim 3.1. Advg, . ™ < Ngs - Advg z + 5 T ow

Claim 3.2. Advs O 85 < 9-Adve s %+ Nay Adviy ™ +(Ngs)* Advizgg.-

gamey A

From Claim 3.1 and Claim 3.2, Claim 3 follows. O

Proof of Claim 3.1. The security against dictionary attacks including off-line
and undetectable on-line dictionary attacks is measured by the probability that
forgeCipher occurs. To bound the advantage from forgeCipher, Adv;:tnf:;,fjfff'pher,
we define a series of games

(gamen yq 1, GAMeN 1 ;s -oey @AMEY N 1, .oy GAMEY )

as follows: The game gamei7k(N +1<i<2N,1 <k < q) is same with the
previous game except the followings:

1. The simulator randomly selects pw!' from {0,1}? for P;.

2. The simulator sends (P;,¢; = E.encpy(pw!||k;||X;||P;)) for the first round
message of P, where P; is the partner of PF. Note that pw!' is used instead
of pwj.

3. Assume that S* has received (P;, é;) for the first round message. Let (piv; || ;]|
X',HPJ) be the message decrypted from ¢&. If pw; ¢ {pw;, pw},pw!}, the
simulator does not send any message in the second round.

It is easy to see that forgeCipher occurs with ¢ + 35 in game,y , , since
the messages of P; are independent of pw! € {0,1}? and pw; € PW. So, even
an infinitely powerful adversary cannot obtain the information about the pass-
words of the users by passively observing the runs of the protocol. To obtain the
information about the password of a user, an adversary may perform an on-line
dictionary attack to verify that the adversary has correctly guessed the pass-
word of the user. It is obvious that the advantage of an adversary by performing
the on-line attacks increases, but the advantage of even an infinitely powerful
adversary is bounded by L3 + gyev We will also show that if the difference of
the probability that the event forgeCipher occurs between two adjacent games,
game; ;. and game;. .., is non-negligible, we can construct an algorithm B which
breaks the IND-CCA security of E using A. Thus, using hybrid arguments the

advantage of A from forgeCipher is bounded as follows:

outAtt,forgeCipher IND-CCA , 4se (se
AdVgameN’qs7A S Nqs . AdVE,B + 2_9 + PW

B is given a public key pk and a decryption oracle E.decsy(+), and simulates
KEDP to A as follows:
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1. For oracle queries of A, B answers as in game; ,, except the followings:
If B has to generate the first round message of P, B outputs (mg =
pw!l||ki=|| X+ || Pj,my = pwl.||ki-||Xi~ || Pj), where P; is the partner of PE .
B receives a challenge ciphertext ¢* for an IND-CCA game. B sends (P;,¢; =
¢*) to A as the first round message of Pi’i*. If B has to decrypt a ciphertext,
B uses a decryption oracle E.decgy, (+).

2. If forgeCipher occurs, B outputs 1 and quits.

If ¢* = E.encyy, (pwi. ||ki- || Xi- || P}), B simulates game;s ;.. If ¢* = E.encpp (pwil || ki-
|| Xi«||P;), B simulates game;. ... Thus the following equation holds:

AdvER % = Pr[B() = 1|b = 1] — Pr[B() = 1|b = 0]
> PriforgeCipher in game;, ;] — Pr[forgeCipher in game,. ,.].

O

outAtt,forgeCipher
gamey , ,A ’

Proof of Claim 3.2. To bound the advantage from forgeCipher, Adv
we define a series of games

_ _ _ _
(Bamen i1 1, GAMEN 1 4 5oy GAMEY N 1, ..oy GAMEY ;)

as follows: The game gfm\ei,k(N +1<i<2N,1 <k < ¢ is same with the
previous game in Claim 2 except the followings:

1. Assume that S has received (P;, ¢;) for the first round message. Let (pivg]|%;]|
X'i||Pj) be the message decrypted from ¢;. If pw; ¢ {pw;, pw}}, the simulator
does not send any message in the second round. If ki = k;, the simulator
randomly selects k! and sends (P;, X;,7; = Macy, (P}||P;||1X:]|1X;)) to P in
the second round, where X']- is sent to S* by P;.

2. Assume that P¥ has received (P;, X;,7;) for the second round message. The

simulator check if Vy, (Pi||P;||X;||X;, 75) < 1. If the verification is success-

ful, the simulator computes a session key sk = H (X jx)

. outAtt,forgeCipher outAtt,forgeCipher . IND-CCA
Claim 3.2.1. Advg/am\ei,’k“A Advgfr?ei*,k*w‘l <2-Advg .

Claim 3.2.2. Adv2UAoseCivher < nrg . AGuSUF 4 (Ng,)2 - AdviPIL.

gameoy o 0 A

From Claim 3.2.1 and Claim 3.2.2, Claim 3.2 follows. O

Proof of Claim 3.2.1 We show that if the difference of the advantage of A be-
tween two adjacent games, game; ;. and game;. ., without forgeCipher, is non-
negligible, we can construct an algorithm B which breaks the IND-CCA security
of E using A. Thus,
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outAtt,forgeCipher outAtt,forgeCipher i IND-CCA
Advg/am\ei,’k“A Advg?n?ei*,k*,fl <2-Advg .
B is given a public key pk and a decryption oracle E.dec(-), and simulates
KEDP to A as follows:

1. For oracle queries of A, B answers as in game; ;. except the followings:
If B has to generate the first round message of P, B outputs (mg =
pwi. ||k || X+ || Py, m1 = pwi. || ki || Xi+|| P;) in the find stage of an IND-CCA
game, where P; is the partner of P . B receives a challenge ciphertext c*.
B sends (P;,c; = c¢*) to A as the first round message of P . If B has to
decrypt a ciphertext, B uses a decryption oracle E.decg/(+).

2. If B has to verify a MAC for PE", B uses k;-.

3. Assume that B has used a coin b in the Test query and A outputs b'. If b = b/,
B outputs 1 and quits. Otherwise, B outputs 0 and quits.

If ¢* = E.encpr, (pw}. ||ki- [| Xi- || P}), B simulates game; ;.. If ¢* = E.encyy, (pw}. ||k}
||Xi-||P;), B simulates game;. ;.. Thus, the following equation holds:

Advp O = Pr(B() = 1|d = 1] — Pr[B() = 1|d = 0]
Z Pr_A[b == bl in g/a-\rneir’k/] - Pr_A[b == bl in g/a-\mei*’k*]
(AdvoutAtt,forgeCipher

A
- 2
(AdV‘;{JtAtt,forgECipher in g/ar?ei*’k*) +1

— . a
2

iIl g/a\mei,’k/) + 1

Proof of Claim 3.2.2 Let forgeMac be an event that 4 sends (Pi,X'j,fi) to P;,
where the verification of MAC is successful and (P;, X, 7;) has not sent by S.
In game, , , the advantage of A is from the following cases:

(Case 1) There exists at least one forgeMac.
(Case 2) There exists no forgeMac.

We bound the advantage from each case in the following claims.

Claim 3.2.2.1 AdveuiamforeeMac - nrp AU
game A

2N,qs?

Claim 3.2.2.2 Adv2Satoeeiac < (Vg )2 . AdviE.

game,y o, A

From the Claim 3.2.2.1, Claim 3.2.2.2, Claim 3.2.2 follows. (]
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Proof of Claim 3.2.2.1. If an adversary A forges a MAC in g/a\me2N7qs, we can
construct an algorithm B which breaks the underlying MAC algorithm by using
A. B is given a MAC generation oracle Macg(-) and a MAC verification oracle
Vfy,.(, ), and simulates KEDP to A as follows:

1. B selects i* < [1, N] and t* « [1, ¢].

2. For oracle queries of A, B answers as in game, N.q. €xcept the followings: If B
has to generate or verify a MAC for the t*-th instance of P;«, B uses Macg(+)
or nyk(: )

3. If a forged message-tag pair (M*,7*) for the ¢t*-th instance of P;« is found
during simulation, B outputs (M*,7*) and quits.

The success probability of B depends on whether or not an event forgeMac occurs
and B correctly guesses ¢* and t*. If these guesses are correct, the simulation

is perfect. Thus the following equation holds: Advy g > —~ - AdyRutAttforgeMac
, qs game,y o A

Proof of Claim 3.2.2.2. To correctly guess the session key of P; without forgeCipher
and forgeMac, an adversary has to calculate H(¢g%*/) with X; = ¢* and X, =
g%i, where X; has been made by P; and X; has been made by P;. Thus, we can
construct an algorithm B which breaks the HDH assumption using A. B is given
(G,q,9,U1,Us, W) in the experiment of the hash Diffie-Hellman problem, and
embeds them in the protocol messages. The more concrete description of B is as
follows:

1. Bisgiven (G, q,g,U;,Us, W). B randomly selects i*, j* from [1, N], and ¢y, to
from [1, gs]-

2. For each oracle query of A, B answers it as in game, ~.q. except the followings:

- B uses X;+ = U; for the first round message of Pitj, and X« = U, for
the first round message of Pjtf.

- If A asks a Reveal query to Pitﬁ and Pit*1 has received Xj-, B fails and
stops. If A asks a Reveal query to Pff and Pf& has received X, = g**, B
returns U;*. Note that A should use Xj, = ¢”* which has been selected
by the simulator for an instance of Py, since neither forgeCipher nor
forgeMac occurs.

- If A asks a Reveal query to Pjtf and Pjtf has received X;«, B fails and
stops. If A asks a Reveal query to Pjtf and Pjtf has received X = g%, B
returns Uy*. Note that A should use X = ¢g"* which has been selected
by the simulator for an instance of Py, since neither forgeCipher nor
forgeMac occurs.
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- If A asks a Test query to Pitf and Pitj has received X+, B returns W to
A. If A asks a Test query to P;f and P;f has received X;«, B returns W
to A. Otherwise, B fails and stops.

3. Assume that A outputs b’ and quits. Then, B outputs b’ and quits.

If B correctly guesses i*, j*, t; and t2, B returns the real session key or a random
string depending on whether or not W = H(g"*"2), where U; = g** and U, =
g“2. So the following inequality holds:

Advg = Pr[B(U.,Us, W) = 1|Uy = ¢g“*, Us = ¢g“2, W = H(g"“'"?)]
_Pr[B(U17 U27W) = 1|U1 = gu17U2 = gu27 W= {07 1}0]

1
> W(Pr[A() = 1|The real session key is returned to A for a Test query.]
—Pr[A() = 1|A random string is returned to A for a Test query.])
_ 1 . VoutAtt,forgeMac
= gy AN A
So the claim follows. O

SECURITY AGAINST THE CURIOUS SERVER. The following theorem says that
KEDP is secure against the curious server. That is, the server cannot know the
session keys between the users by eavesdropping, even though the server knows
the passwords of the users.

Theorem 2. Let G be a group in which the HDH assumption holds. Then KEDP
provides key secrecy with respect to the curious server. Concretely,

AdvRERs(8,t) < (Ngs)? - Adviy og,

where ¢ is the maximum total game time including an adversary’s running time.
N is the number of the users and g5 is the upper bound of the number of sessions
that an adversary makes.

Proof of Theorem 2. S can access the Execute, Send(P¥, M) and Test oracles.
To correctly guess the session key of P; without interrupting the execution of
the protocol between P; and P;, the curious server S has to calculate H(g""7)
with X; = ¢% and X; = ¢%/, where X; has been made by P; and X; has
been made by P;. We now construct an algorithm B which breaks the HDH
assumption using S. B is given (G, ¢, g, U1, Us, W) in the experiment of the hash
Diffie-Hellman problem, and embeds them in the protocol messages. The more
concrete description of B is as follows:
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1. Bis given (G, q,g,U;,Us, W). S gives pk to B. B selects pw; for P;(1 <i <
N). B shares pw;(1 <i < N) and the public parameter (G, q, g, H, E, M, pk)
with . B randomly selects i*, j* from [1, N] and ¢y, 2 from [1, gs].

2. For each oracle query of S, B simulates KEDP as follows:

- B uses X;+ = U; for the first round message of Pitf and X;- = U, for
the first round message of Pjtf.

- If S asks a Test query to P/ and P/ has received X, B returns W to

S. If § asks a Test query to Pff and Pjtf has received X;«, B returns W
to S. Otherwise, B fails and stops.

3. Assume that S outputs b’ and quits. Then, B outputs b’ and quits.

If B correctly guesses i*, j*,t; and t2, B returns the real session key or a random
string depending on whether or not W = H(g"*%2), where U; = g% and Uy =
g“?. So the following inequality holds:

AdvaP! = Pr[B(Uy, Us, W) = 1|U; = g“*,Us = g"2, W = H(g"*"?)]
_Pr[B(U17 Uz, W) = 1|U1 = gula U = qu,W = {07 1}9]
1
>
~ (Ngs)?
—Pr[S() = 1|A random string is returned to S for a Test query.])
1

curSvr
= —(Nqs)2 . AdVS .

(Pr[S() = 1|The real session key is returned to S for a Test query.]

So the claim follows. O

6 Comparison of Efficiency and Security

In Table 1, we compare the efficiency and security of our protocol with the
3-party PAKE protocols that have been proven to be secure. Because modu-
lar exponentiation is the computationally expensive operation in many cryp-
tographic protocols, we compare the number of modular exponentiations that
each user and the server compute. The efficiency of an instantiation from GPAKE
[Abdalla et al. 2005] and NGPAKE depends on the used 2-party PAKE protocol.
For a concrete instantiation of GPAKE as presented in [Abdalla et al. 2005], we
use the 2-party PAKE protocol, KOY [Katz et al. 2001], and the 3-party key dis-
tribution scheme [Bellare et al. 1996]. For a concrete instantiation in the stan-
dard model of NGPAKE as presented in [Wang et al. 2006], we use KOY as a 2-
party PAKE protocol. We refer to this instantiation as NGPAKE1. For a concrete
instantiation in the random model of NGPAKE as presented in [Wang et al. 2006],
we use OMDHKE as a 2-party PAKE protocol. We refer to this instantiation as
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Round|{Modular exp.|[UDOD|KSS|FS|KK Model
ser| Server

Scheme ‘

GPAKE [Abdalla et al. 2005] 6 [>17] > 17 A O JATO Standard
AP [Abdalla and Pointcheval 2005] 2 2 2 X A | A1 O] Random oracle
NGPAKEL [Wang et al. 2006] 6 |> 17| > 17 O [ a]alo Standard
NGPAKE2 [Wang et al. 2006] 4 3 3 O A | A | O | Random oracle
KEDP (Ourscheme)’ 2 4 2 O O |O|O Standard

A: The security proof is not provided. However, the assurance seems to be provided.

UDOD: Security against undetectable on-line dictionary attacks by outside attackers

KSS: Key secrecy against the curious server

FS: Forward secrecy

KK: Known-key secrecy

¥ The number of modular exponentiations in our scheme is for the case when we use DHIES in

[Abdalla et al. 1998, Abdalla et al. 2001] for the underlying encryption scheme.

Table 1: Comparison of the provably secure PAKE protocols

NGPAKE2. In fact, the inefficiency of the instantiation of GPAKE and the NG-
PAKEL protocol comes from the inefficiency of the underlying 2-party PAKE
protocol. There are provably secure 2-party PAKE protocols in the standard
model such as the protocols in [Goldreich and Lindell 2001, Katz et al. 2001,
Katz et al. 2002]. But all of the existing 2-party PAKE protocols without ran-
dom oracles are not practical enough for the small mobile devices.

The efficiency of KEDP depends on the underlying asymmetric encryption
scheme E. One of the efficient asymmetric encryption schemes is DHIES which
is IND-CCA-secure without random oracles [Abdalla et al. 2001]. In DHIES, en-
crypting a message requires two exponentiations and decrypting a ciphertext re-
quires one exponentiation. Thus, in KEDP a user has to do four exponentiations
and the server has to do two exponentiations using DHIES.

Size of p 512 bits 1024 bits 2048 bits
Size of exponent 160 bits 160 bits 256 bits

[ 3GHz Pentium IV ]| 0.64ms | 230ms [ 1238 ms |

Table 2: Times for modular exponentiation

Table 2 shows, for various values of p, the times required to compute a single
modular exponentiation, that is the calculation of g* mod p, where x is chosen at
random. This table is the output of the BMARK program, on a 3GHz Pentium
IV system, compiled with Microsoft VC++ Version 6, with standard/O2 com-
piler optimization [Shamus Ltd.]. This is for the standard version of the Shamus
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MIRACL cryptographic library, with no special optimizations.

[ Size of I GPAKE [ AP [ NGPAKE1 [ NGPAKE2 |  KEDP |
[ p Jexponent|[| User [ Server [User [Server| User [ Server [User[Server| User [Server|
512 160 >10.88 [ >10.88[1.28 ] 1.28 [ >10.88 | >10.88 [ 1.92] 1.92 [2.56 | 1.28
1024 160 >39.1 ] >39.1 46 ] 46 | >39.1 | >39.1 [ 69 [ 69 [92] 4.6

2048 256 >210.46|>210.46(24.76| 24.76 | >210.46(>210.46|37.14| 37.14 |49.52| 24.76

Table 3: Times for modular exponentiation of the PAKE protocols

Table 3 shows, for various values of p, the times in milliseconds required to
compute modular exponentiation on the PAKE protocols in Table 1.

7 Conclusion

In this paper, we have proposed a practical PAKE protocol with different pass-
words which is secure against undetectable on-line and off-line dictionary attacks
without random oracles. Our protocol requires only 2 rounds and 4 modular ex-
ponentiations per user. Furthermore, our protocol provides forward secrecy and
known-key secrecy, and key secrecy against the curious server.
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