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Abstract: Differential evolution (DE) algorithm puts emphasis particularly on imitating the 
microscopic behavior of individuals, while estimation of distribution algorithm (EDA) tries to 
estimate the probabilistic distribution of the entire population. DE and EDA can be extended to 
multi-objective optimization problems by using a Pareto-based approach, called Pareto DE 
(PDE) and Pareto EDA (PEDA) respectively. In this study, we describe a novel combination of 
PDE and PEDA (PDE-PEDA) for multi-objective optimization problems by taking advantage 
of the global searching ability of PEDA and the local optimizing ability of PDE, which can, 
effectively, maintain the balance between exploration and exploitation. The basic idea is that 
the offspring population of PDE-PEDA is composed of two parts, one part of the trial solution 
generated originates from PDE and the other part is sampled in the search space from the 
constructed probabilistic distribution model of PEDA. A scaling factor Pr used to balance 
contributions of PDE and PEDA can be adjusted in an on-line manner using a simulated 
annealing method. At an early evolutionary stage, a larger Pr should be adopted to ensure 
PEDA is used more frequently, whereas at later stage, a smaller Pr should be adopted to ensure 
that offspring is generated more often using PDE. The hybrid algorithm is evaluated on a set of 
benchmark problems and the experimental results show that PDE-PEDA outperforms the 
NSGA-II and PDE algorithms. 
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1 Introduction  

Problems that have two or more objectives to be simultaneously optimized are 
common in real-world situations. Such problems are called multi-objective 
optimization problems (MOPs) and were originally studied in the context of 
economics [Coello, 1999]. The importance of these multi-objective problems was 
soon made evident and eventually became an important topic within the field of 
operations research [Ngatchou, 2005]. Often this task becomes challenging due to the 
inherent conflicting nature of the objectives to be optimized. The multi-objective 
optimization problem is an extension of single-objective (scalar) optimization (SOP). 
Compared to MOP, SOP is much easier to solve, because there is only one solution. 
In the case of MOP, there may not exist one solution that is best or a global optimum 
with respect to all objectives. The solution of a MOP is usually a set of acceptable 
trade-off optimal solutions. This solution set is called a Pareto set [Coello, 1999]. 
There are, at present, two classes of approaches for solving multi-objective 
optimization problems [Coello, 1999], [Ngatchou, 2005], [Konak, 2006]. One class 
consists of the traditional algorithms, including the multi-objective weighted method, 
the layered optimization method, the constraint method, the global criterion method 
and the goal programming method. The basic idea of the traditional algorithm is to 
convert the multi-objective optimization problem to a single objective optimization 
problem. This conversion is usually done by aggregating all objectives in a weighted 
function, or simply transforming all but one of the objectives into constraints. The 
merit of the traditional algorithm is that we can apply existing single-objective 
optimization algorithms to solve MOP directly. But this approach has several 
limitations [Ngatchou, 2005]: 1) it requires a priori knowledge about the relative 
importance of the objectives and the limits on the objectives that are converted into 
constraints; 2) it cannot find multiple solutions in a single run, thereby requiring it to 
be applied as often as the number of desired Pareto optimal solutions; 3) trade-off 
between objectives cannot be easily evaluated and 4) the solution may not be 
attainable unless the search space is convex. 

The second class of approach to solve multi-objective optimization problems are 
evolutionary algorithms. In recent years, many different intelligent optimization 
methods such as genetic algorithm (GA), evolutionary strategy (ES) and particle 
swarm optimization (PSO) have been successfully developed and applied in many 
domains such as machine learning, process control, economic prediction and 
engineering optimization [Smith, 2005], [Priandoko, 2006], [Ngom, 2006], [Esmin, 
2002], [Krohling, 2006]. Therefore, the application of these optimization methods in 
solving MOPs has already become a popular research topic. Because these stochastic 
optimization methods are highly distributed and parallel, they can obtain different 
compromising solutions in the population simultaneously at each run. In the past few 
years a considerable amount of interest has been shown in multi-objective 
evolutionary algorithm (MOEA) and a number of different MOEAs have been 
suggested, such as NPGA [Horn, 1994], NSGA [Srinivas, 1994] and its improved 
version NSGA-II [Deb, 2002], SPEA [Zitzler, 1999] and its improved version SPEA2 
[Zitzle, 2001], PAES [Knowles, 1999], MOPSO [Coello, 2002] and others. Compared 
with traditional algorithms, MOEAs are more suitable for solving MOPs for the 
following reasons [Coello, 2007]: 1) multiple solutions can be found in a single run of 
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a MOEA; 2) a good spread of the nondominated solutions can be obtained and 3) a 
MOEA is less susceptible to the shape or continuity of the Pareto-optimal front. 

The differential evolution (DE) algorithm is one of the most successful 
evolutionary algorithms (EAs) developed by Storn and Price for optimization 
problems over continuous domains [Storn, 1997]. In DE, the value of each variable in 
the chromosome is represented by a real number. Therefore, this method of real 
number representation is much more practical than a conventional GA. In addition, 
the mutation operation used by DE has a perfect fine-tuning function, whereas GA 
does not. Many successful cases have been reported in the literature on applying 
differential evolution to solving various practical problems [Bhat, 2006], [Kim, 2007], 
[Nobakhti, 2008]. It has been proven that DE has some special characteristics of good 
convergence, high efficiency, concise concept and being ease of understand in the 
field of optimization problems [Wong, 2005]. Recently, the success of DE in the 
optimization of single-objective optimization problems is the motivation of extending 
the basic idea in a multi-objective optimization context by using a Pareto-based 
approach, called the Pareto DE (PDE) [Madavan, 2002], [Xue, 2003], [Robic, 2005].  

Like GA, DE algorithm is a genetics-based optimization method, that is, it 
acquires solutions by carrying out genetics operators such as crossover and mutation 
for each individual in the population. Its emphasis is particularly on imitating the 
microscopic behavior of individuals. Therefore, DE algorithm has good local 
optimization ability and poor global searching ability. In the last few years, a class of 
novel optimization algorithm, called estimation of distribution algorithm (EDA), has 
become a favorite topic in the field of evolutionary computation and an efficient 
approach for various practical engineering problems [Inza, 2000], [Sagarna, 2005], 
[Simionescu, 2006]. With EDA an entirely new paradigm of evolutionary 
computation has been introduced, which is a combination of statistical learning theory 
and stochastic optimization algorithm without using conventional evolutionary 
operators such as crossover and mutation [Larranaga, 2002]. EDA tries to estimate the 
probabilistic distribution of an entire population or to describe its evolutionary trend 
directly from a macroscopic point of view. Therefore, EDA has good global searching 
ability and poor local optimization ability. 

An efficient optimization algorithm should make use both of local information 
from solutions found so far and global information about the search space. Local 
solutions found so far can be helpful in exploiting information, while global 
information can guide the search for exploring promising areas. The search in EDA is 
mainly based on global information, while DE exploits information on distance and 
direction, which is a type of local information. Like GA and DE, EDA can be 
extended to multi-objective optimization problems by using a Pareto-based approach, 
called Pareto EDA (PEDA). Therefore, this study mainly investigates the combination 
of PDE and PEDA for MOPs to improve the performance of both algorithms. The 
proposed hybrid multi-objective optimization algorithm PDE-PEDA can maintain the 
balance between exploration and exploitation effectively.  

The remainder of our presentation is organized as follows. Section 2 provides a 
brief introduction to MOP. The algorithm steps and the offspring generation scheme 
of the novel PDE-PEDA algorithm are described in detail in section 3. Extensive 
experimental studies are conducted in section 4, including a comparative study of the 
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proposed algorithm with PDE and the well-known NSGA-II algorithms on a number 
of benchmark problems. The last section presents some concluding remarks. 

2 Multi-objective Optimization Problem 

Consider a general multi-objective minimization problem as presented below: 
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where, ),,,( 21 Dxxxx =  is a vector of D-dimensional decision variables, Y  is a 
vector of R-dimensional objective functions, )(xΓ  and )(xρ  are inequality and 
equality constraints respectively. 

The inherent nature of multi-objective optimization problems is that objective 
functions are competitive and conflicting. Therefore the global optimization for multi-
objective optimization problems is not unique. In MOPs, a number of conflicting 
objective functions are to be optimized simultaneously. An ideal solution, at which 
each objective function gets its optimal value, usually does not exist due to the 
conflicting nature of the objective functions. Thus, a different definition of optimality 
is required. The solution of a MOP is associated with the definition of a Pareto 
optimal solution. 

A Pareto optimal solution is a key concept in multi-objective optimization 
problems. This concept formulated by Vilfredo Pareto is defined by Tan et al. in [Tan, 
2002]: for decision vector DRx ∈* , if there does not exist any other decision 
vectors DRx ∈  that can make the inequation )()( *xfxf rr ≤ , Rr ,,2,1=  be 
true but exists at least one { }Rr ,,2,10 ∈  that can make inequation 

)()( *
00

xfxf rr <  be true, then the decision vector *x  is called one Pareto optimal 
solution vector of the MOP. 

In general, multi-objective optimization problems have many Pareto optimal 
solution vectors, so the main task to solve multi-objective optimization problems is to 
find a collection of Pareto optimal solution vectors that form the Pareto set. 

3 PDE-PEDA: A Multi-objective Optimization Algorithm 

3.1 Algorithm steps of PDE-PEDA 

For the sake of simplicity, without loss of any generality, we consider the following 
unconstrained multi-objective minimization problem: 

{ })(,),(),()(min 21 xfxfxfxfY R==  (2) 
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In many cases, the constrained optimization problem (1) can be handled as an 
unconstrained multi-objective optimization problem (2) by using penalty functions. It 
should be especially noted that the proposed PDE-PEDA algorithm is also suitable for 
constrained MOPs even though unconstrained MOPs have been used in our 
investigation. 

The algorithm steps of PDE-PEDA for solving multi-objective optimization 
problems are in the following described in detail. 

Step 1: Initialization. An initial population is chosen randomly and should 
uniformly cover the entire solution space based on the consideration of the 
requirement of population diversity. For example, an initial population can be 
represented as the form ),,,,( ,,,1, GjDGjiGjGj xxxx = , where Di ,,2,1= , 

NPj ,,2,1= , NP  is the population size, max,,2,1 GG =  is the generation 

number and maxG  is the maximum generation. As a rule, we will assume a uniform 
probabilistic distribution for all random decisions unless otherwise stated. Differential 
evolution can encode real parameters as floating-point numbers, which makes DE 
well suited for real parameter optimization. Therefore, chromosomes are encoded by 
real numbers as follows: 

)( jijijiji lowhighrandlowx −×+=  (3) 

where jihigh  and jilow  denote the upper and lower bounds of each chromosome 

respectively and rand  is a random number chosen from the range [0, 1]. 
Step 2: Selection. The Pareto-based evolutionary algorithm developed here differs 

from the basic algorithm primarily in the selection procedure used to select 
subsequent generations of the population. Low-quality solutions (individuals) are 
removed from the population, while high-quality individuals are reproduced. We have 
opted to use the nondominated sorting and ranking selection procedure developed by 
Deb et al. in [Deb, 2002] to select nondominated individuals to constitute a 
nondominated solution set.  

Step 3: Modeling. A probabilistic distribution model is built, based on statistical 
information extracted from the solutions in this nondominated solution set according 
to the PEDA. 

Step 4: Offspring generation. Suppose 10 ≤≤ rp , the EDA is used to generate 
a new individual when rpRAND < , i.e., the sample of a new individual in the 
search space given the constructed probabilistic distribution model of PEDA. On the 
other hand, when rpRAND > , the DE algorithm is used to generate a new 
individual, i.e., crossover and mutation operators are applied to the parent individuals 
to generate a new individual. RAND  is also a uniform random number chosen from 
the range [0, 1].  

The scaling factor rp  is used to control the contributions of PEDA and PDE to 
offspring generation or to balance the use of global and local information. All 
individuals in the new population are sampled from the probabilistic model of PEDA 
when 1=rp , while all individuals in the new population are generated from the 
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PDE when 0=rp . At an early evolutionary stage, a larger rp  should be adopted to 
ensure the dominant function of PEDA and to enhance its global searching ability. 
PEDA directs PDE to search along the Pareto front. The scaling factor should be 
reduced during the evolutionary process to force PDE to take up the dominant 
function gradually and to ensure the solutions converge to a true Pareto front. 
Therefore, the scaling factor rp  can be adjusted in an on-line manner using a 
simulated annealing method. 
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where max
rp  and min

rp  are the upper and lower bounds of the scaling factor and 
10 ≤≤ β  is an annealing factor. 

Step 5: Boundary treatment. Because the search space is limited, it is essential to 
ensure that parameter values lie inside their allowed range )  ,( jiji highlow . A 
simple boundary treatment equation is shown as follows: 
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where Rand  is a random number chosen from the range [0, 1]. 
Step 6: Combine the new population with the existing parent population. Note 

that the size of the combined population is NP∗2 . 
Step 7: Selection. Evaluate each individual in the combined population and carry 

out the nondominated sorting and ranking selection, developed by Deb et al. in [Deb, 
2002] to select nondominated individuals to constitute a nondominated solution set.  

Basic differential evolution algorithm usually adopts the following method to 
update each individual in the population. It determines whether the fitness value of 
the new individual is superior to that of the parent individual. If not, the parent 
individual is preserved for the next generation. Otherwise, the new individual will 
replace its parent in the next generation. For MOPs, the new individual that is not 
dominant or is dominated by its parent is possibly superior to the other new 
individuals or parent. If we adopt the above basic individual updating method, the 
obtained optimization information is easily lost, which will affect the evolutionary 
result. Therefore, all the parent individuals are combined with the new individuals 
generated from PDE and PEDA to form a combined population with size NP∗2 . 

Step 8: Stopping condition. If the stopping condition is met, stop. Otherwise 
return to Step 3. The commonly used stopping condition is to set a maximum number 
of evolutionary generations. 

3.2 Offspring generation scheme of PDE 

A differential evolution algorithm is conceptually simple and possesses good 
convergence properties that have been demonstrated in a variety of applications. It is 
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a genetics-based approach in continuous search spaces [Storn, 1997]. Differential 
evolution can be extended to multi-objective optimization problems by using a 
Pareto-based approach. The Pareto-based DE algorithm, developed here differs from 
the basic algorithm used to select subsequent generations of the population in the 
selection procedure. Therefore, a candidate individual in PDE can be generated 
according to the following mutation and crossover operations, commonly used in a 
basic DE. 

3.2.1 Mutation 

The main difference between DE and other evolutionary algorithms is the 
implementation of a mutation operation. The mutation operation of DE applies vector 
differentials between the existing population members for determining both the 
degree and direction of perturbation.  

Mutation is primarily responsible for keeping a population robust and for 
searching new territory. Instead of using a predefined probability to carry out 
mutation operation on genes, differential evolution is self-adjusting since it deduces 
the perturbations from the distances between the vectors. The inherent ‘self-adjusting’ 
of DE works as follows: as the population converges to an optimum, any randomly 
chosen difference vector will become smaller in size. Eventually when all members 
converge to a single solution, the difference vector will be zero and the mutation 
operator will be disabled altogether. Differential evolution generates a perturbed 
vector GjW , , corresponding to the parameter vector Gjx , , using a mutation scheme. 
New perturbed vectors are generated by adding the weighted difference to another 
vector.  

In [Storn, 1997], the authors developed a set of mutation schemes that allow a 
large number of options, depending on the nature of the problem, which are called 
DE/rand/1, DE/best/1, DE/rand/2, DE/best/2 and DE/rand-to-best/1. We have used 
scheme DE/rand/1.  
Scheme DE/rand/1  

In this scheme, for each vector Gjx , , a perturbed vector is generated according to 
equation (6).  

)( ,,,, 321 GrGrGrGj xxFxW −+＝  (6) 

where [ ]NPrrr  ,1,, 321 ∈  are integers chosen randomly and jrrr ≠≠≠ 321 . The 
mutation factor ]2 ,0[∈F  is a real number, which controls the amplification of the 
differential variation. It should be noted that there is no relationship between 
parameter vectors Grx ,1

 and Gjx , . 
It can be seen from equation (6) that, unlike in a genetic algorithm, in DE the 

degree of mutation is derived from a difference vector that is calculated using 
members of the current populations. Figure 1 illustrates the generation process of a 
perturbed vector defined by equation (6) within a solution space. 
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3.2.2 Crossover 

Once the perturbed vector is created, it will undergo a crossover operation to increase 
the population diversity and avoid falling into a local minimum. According to the jth 
population vector Gjx ,  and its corresponding perturbed vector GjW , , the crossover 

creates a new trial vector GjU ,  with the rule 

),,,( ,,2,1, GjDGjGjGj uuuU =  (7) 
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where )(rand ib  is a randomly chosen real number within the range [0, 1]. Index 
)(mbr j  is a randomly chosen integer within the range [1, D] and is responsible for 

the trial vector to contain at least one parameter from the perturbed vector. CR  is a 
crossover factor within the range [0, 1] and is the probability to create parameters of 
the trial vector from the perturbed vector. 

The idea of crossover operation is illustrated in figure 2 for D=6 and 
2)(mbr =j . 

× ×
×

Grx ,3

Grx ,2

×

× : NP parameter vectors from generation G

: Newly generated perturbed vector

Solution space

GjW ,

)( ,3,2 GrGr xxF −

Gjx ,

Grx ,1

 

Figure 1: Sketch map of scheme DE/rand/1 

3.3 Offspring generation scheme of PEDA 

Estimation of distribution algorithm, also called a probabilistic model-building 
genetic algorithm (PMBGA) [Pelikan, 1999], is a new area of evolutionary 
computation. In EDA there is neither a crossover nor a mutation operator. It directly 
extracts global statistical information about the search space from the search so far 
and builds a probabilistic model of promising solutions. Then sampling this 
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probabilistic model generates offspring. In such a way, the relationships between the 
variables involved in the problem domain are explicitly and effectively exploited. 
EDA can be extended to multi-objective optimization problems by using a Pareto-
based approach. The Pareto-based EDA developed here differs from the basic 
algorithm primarily in the selection procedure used to select subsequent generations 
of the population. Therefore, a candidate individual in PEDA can be generated 
according to the following modeling and sampling operations commonly used in a 
basic EDA. 

GjW ,Gjx , GjU ,

Gjx ,1

Gjx ,2

Gjx ,3

Gjx ,4

Gjx ,5

Gjx ,6

Gjw ,1

Gjw ,2

Gjw ,3

Gjw ,4

Gjw ,5

Gjw ,6

Gjw ,4

Gjw ,2

Gjw ,1

Gjw ,6

CRb ≤)1(rand

)(mbr2 j=

CRb ≤)4(rand

CRb ≤)6(rand

Gjx ,3

Gjx ,5

 

Figure 2: Illustration of the crossover operation 

3.3.1 Building probabilistic model 

A major issue in EDA is how to build a probabilistic distribution model. The 
estimation of the joint probabilistic distribution associated with the database 
containing the selected individuals is not an easy task. Generally speaking, in EDA 
for the global continuous optimization problem, the probabilistic model can be a 
Gaussian distribution [Quinlan, 1986], a Gaussian model with a diagonal covariance 
matrix (GM/DCM) [Quinlan, 1993], a Gaussian mixture [Brieman, 1984], or a 
histogram [Tsutsui, 2001]. Among these popular probabilistic models, the histogram 
is the most straightforward method to estimate probabilistic density. 

There are two types of marginal histogram models: fixed-width histogram (FWH) 
and fixed-height histogram (FHH) [Tsutsui, 2001]. In our study, we assumed that the 
selected set of individuals obey the fixed-height histogram model. In a FHH model, 
we divide the search space ],[ ii ba  of each variable ix  into H  bins (subintervals). 
Each bin has the same height, which means that each bin contains the same number of 
individuals. Then the range of the width of each bin can be calculated according to the 
number of individuals. The important characteristic of FHH is that the bins in dense 
regions are narrower and thus the accuracy of the model in important regions 
increases. In the context of evolutionary algorithms, the width of bins around high 
peaks decreases as more individuals are located in these areas. Since the probability 
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of generating a new individual from each bin in the FHH is the same, we expect both 
the density as well as the accuracy to improve in promising regions of the search 
space. Figure 3(a) gives an example of the FHH for a population which has a normal 
distribution )4.1 ,0(N  for variable ix  in the range [-5, 5] as shown in figure 3(b). 
Ten bins were used. In this example, more individuals were sampled around 0=ix  
because the bin width around 0=ix  is narrower and therefore there are more bins for 
the same area. 
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(a)                                                                            (b)  

Figure 3: Example of the FHH of normal density 

3.3.2 Sampling 

A new individual can be generated as follows: first, select stochastically a bin sh  
( Hs ,,2,1= ) with a probability of H1 . Then generate a number from the 
selected bin with uniform distribution. This process is repeated until all individuals 
are obtained. It should be noted that each bin has the same selection probability, i.e., 

H1 . 

4 Experimental Results 

In this section, PDE-PEDA is tested on a set of commonly used multi-objective 
minimization problems in order to evaluate its performance and compared with a PDE 
and one of the state-of-the art NSGA-II. These benchmark problems are collected 
from the published literature and include various relevant features such as low 
dimensional and high dimensional decision spaces, convex and nonconvex Pareto 
optimal fronts, continuous and discontinuous fronts, symmetric and asymmetric 
fronts, etc. Many of these features may cause difficulties in a multi-objective 
optimization algorithm. Table 1 shows eight test problems used in this study. It should 
be noted that all objective functions are to be minimized. 
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Table 1: Benchmark problems used in this study 

In order to make a fair comparison, for NSGA-II, PDE and PDE-PEDA a real-
coded mode was adopted and their common parameters were set the same. For all 
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benchmark problems, a population of size 100 was used and each experiment carried 
out to 250 generations. For the real-coded NSGA-II, the simulated binary crossover 
(SBX) and polynomial mutation operators with distribution indices 20=cη  and 

20=mη  were used in [Deb, 2002]. For PDE and PDE-PEDA, we chose a reasonable 
set of values and did not make any effort in finding the best parameter settings for 
different problems. The detailed parameter settings are shown in Table 2. 

The optimization goal of multi-objective optimization algorithms is: 1) to 
minimize the distance between the generated and the true Pareto front and 2) to 
maintain a good diversity in solutions of the Pareto optimal set. The performance of 
the algorithms is evaluated with respect to the following metrics. The details of these 
metrics may be found in [Deb, 2002] or [Khare, 2003]. 

1) Metric γ  measures the extent of convergence to a known set of Pareto optimal 
solutions. The smaller the value of γ , the better the convergence toward a Pareto 
optimal front.  

2) Metric Δ  measures the extent of spread achieved among the obtained 
solutions. The smaller the value of Δ , the better the diversity. 

 
Algorithm cη  mη  F  CR  NP  maxG  max

rp  min
rp  β  H  

NSGA-II 20 20 / / 100 250 / / / / 
PDE / / 0.3 0.3 100 250 / / / / 
PDE-PDEA / / 0.3 0.3 100 250 0.9 0.2 0.95 20 

Table 2: Parameter settings 

 
Algorithm SCH FON KUR ZDT1 

0.003391 0.001931 0.028964 0.033482 NSGA-II 0 0 0.000018 0.004750 
0.001600 0.000715 0.027312 0.001187 PDE 1.50000e-8 2.27821e-8 2.80982e-6 9.82142e-9 
0.0015917 0.000697 0.023050 0.000971 PDE-PEDA 1.35606e-8 9.03766e-9 6.84544e-5 3.92606e-9 

Algorithm ZDT2 ZDT3 ZDT4 ZDT6 
0.072391 0.114500 0.513053 0.296564 NSGA-II 0.031689 0.007940 0.118460 0.013135 
0.001325 0.001425 42.22191 0.012050 PDE 5.64285e-8 1.59285e-8 2.088529 7.0634e-5 
0.001188 0.001363 0.651008 0.005227 PDE-PEDA 5.37550e-8 5.53571e-9 0.227134 2.2220e-5 

Table 3: Mean (first row) and variance (second row) of the convergence metric γ  

Figure 4 shows one of the resultant nondominated solutions in 10 runs 
corresponding to all the studied problems using PDE-PEDA, where solid lines and 
hollow circles, respectively, denote the true Pareto front and the obtained 
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nondominated solutions.These figures demonstrate the abilities of PDE-PEDA in 
converging to the true front and in finding diverse solutions in the front. The problem 
ZDT4 has 219 different local Pareto-optimal fronts in the search space, of which only 
one corresponds to the global Pareto-optimal front. Figure 4.(g) shows that PDE-
PEDA get stuck at different local Pareto-optimal sets. It can be seen from these 
fugures, in both aspects of convergence and distribution of solutions, PDE-PEDA 
peformed well on all benchmark problems except on ZDT4. 
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Figure 4: Nondominated solutions with PDE-PEDA on Benchmark functions 

Algorithm SCH FON KUR ZDT1 
0.477899 0.378065 0.411477 0.390307 NSGA-II 0.003471 0.000639 0.000992 0.001876 
0.410946 0.401087 0.407138 0.374037 PDE 2.39182e-3 6.81966e-4 3.08166e-4 1.38130e-3 
0.407875 0.389124 0.406625 0.351025 PDE-PEDA 1.09088e-3 1.07227e-3 1.54365e-4 8.23222e-4 

Algorithm ZDT2 ZDT3 ZDT4 ZDT6 
0.430776 0.738540 0.702612 0.668025 NSGA-II 0.004721 0.019706 0.064648 0.009923 
0.383337 0.571987 0.575167 0.945390 PDE 1.69575e-3 1.02328e-3 0.175642 0.142226 
0.341925 0.525325 0.392650 0.582955 PDE-PEDA 5.07730e-4 6.62290e-4 7.3551e-4 0.058701 

Table 4: Mean (first row) and variance (second row) of the diversity metric Δ  
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Table 4 shows the mean and variance of the diversity metric Δ  obtained in 10 
independent runs using real-coded NSGA-II, PDE and PDE-PEDA. We show two 
rows for each benchmark problem. The first row presents the mean of Δ  in 10 runs 
and the second row shows its variance. For each benchmark problem, the smallest 
value of the mean of Δ  is shown in bold numbers. As can be clearly seen from Table 
4, PDE-PEDA is able to find a better spread of solutions on all benchmark problems 
except on FON, where NSGA-II found better diversity. 

In order to evaluate the convergence speed of algorithms, the changes of the 
values of γ  along with each generation are presented in figure 5 on all the studied 
problems using PDE and PDE-PEDA, where solid and dashed lines denote PDE-
PEDA and PDE respectively. It can be seen from figure 5 that, compared with PDE, 
the convergence speed of PDE-PEDA on these MOPs are improved to different 
degrees. 
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Figure 5: Metricγ along with generation on Benchmark functions 

In summary, our experimental results show that PDE-PEDA, compared with 
NSGA-II and PDE algorithms, has better convergence performance. In addition, 
because estimation of distribution algorithm with good global search property is 
introduced into the Pareto-based differential evolution, PDE-PEDA not only can 
exploit in depth but also can explore in width, which makes for effective 
improvements in both the diversity of the obtained nondominated solutions and the 
convergence speed. 

5 Conclusions 

Many real-world problems involve the simultaneous optimization of various 
noncommensurable and conflicting objectives that are difficult, if not impossible, to 
solve without the aid of powerful optimization algorithms. In recent years, many 
different stochastic optimization methods such as GA, ES, PSO and DE have been 
successful developed and applied to solve MOPs by using a Pareto-based approach. 
While it has been shown that these biologically inspired heuristics offer better 
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performances over classical optimization approaches in complex MOPs, they are 
plagued by their own limitations in exploration ability.  

In our study, a novel hybrid optimization algorithm PDE-PEDA is presented for 
solving MOPs by introducing estimation of distribution algorithm, with good global 
exploration ability into Pareto-based DE. PEDA is used to guide PDE to search along 
the Pareto front, while PDE is used to ensure that solutions converge to the true 
Pareto front. PDE-PEDA combines local information obtained by PDE with global 
information extracted by PEDA to create offspring. The offspring of PDE-PEDA is 
composed of two parts, one part generated originates from PDE and the other part is 
sampled from the constructed probabilistic distribution model of PEDA. In order to 
maintain the balance between exploration and exploitation effectively, we designed a 
scaling factor that can be adjusted in an on-line manner using a simulated annealing 
method. At an early evolutionary stage, a larger scaling factor should be adopted to 
ensure PEDA is used more frequently, whereas at later stage, a smaller scaling factor 
should be used to ensure the offspring are generated more often, using PDE. Our 
experimental results on several benchmark problems show that PDE-PEDA, 
compared with NSGA-II and PDE algorithms, can find many Pareto optimal solutions 
distributed onto the Pareto front and can improve convergence speed effectively. It 
may be noted that although the proposed algorithm has been demonstrated for 
unconstrained optimal problems with only two objective functions, it can be used for 
constrained problems with more than two objective functions. 

For future research, we will investigate the possibility to relate the scaling factor 
with performance metrics such as convergence or diversity metrics in order to make it 
possible for the algorithm to choose the PDE and the PEDA in a more suitable way. 
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