
Extending SD-Core for Ontology-based Data Integration

Ismael Navas-Delgado
(University of Málaga

Málaga
Spain

ismael@lcc.uma.es)

José F. Aldana-Montes
(University of Málaga

Málaga
Spain

jfam@lcc.uma.es)

Abstract: This paper describes the main elements of a functional platform for build-
ing Semantic Web Applications, the Semantic Directory (additional information can be
found at http://khaos.uma.es/SD-Core). A Semantic Directory provides a resource di-
rectory, in which web resources are registered and their semantics published. Using the
Semantic Directories we provide a solution for publishing the semantics of resources,
and interoperating them with some other applications in the same or different do-
mains. The main idea behind this proposal is to help developers build Semantic Web
applications by providing them with functional components for this task. This paper
also describes some applications that have been developed using an SD-Core extension:
SD-Data. Then, we describe the instantiation of the Khaos Ontology-based Mediation
Framework (KOMF) in the Systems Biology domain. This framework provides an ar-
chitecture that enables the research on the development of ontology-based mediators.
Thus, an ontology-based mediator has been produced that has demonstrated its utility
in two applications developed in the Amine System Project using the SD-Data for reg-
istering semantics: AMMO-Prot and SBMM Assistant. The use of ontologies is limited
in the current version of the mediator, but its development as a framework enables the
implementation of improvements based on the use of reasoning.
Key Words: Metadata, knowledge management
Category: M.1, M.8

1 Introduction

Semantic Web research has been ongoing since the initial proposal of Tim Bern-
ers Lee. Nowadays, this research is producing technology that is being inte-
grated in enterprise applications. In this context, the development of Semantic
Web based applications has had to address several problems: to choose a com-
ponent for dealing with ontologies, to deal with ontology relationships (usually
available as ontology alignments) and to relate non-semantic resources with se-
mantics through annotation tasks. These new issues in software development
have caused developers significant problems when estimating the real cost of
applications, and reusing existing components.

Journal of Universal Computer Science, vol. 15, no. 17 (2009), 3201-3230
submitted: 25/2/09, accepted: 25/9/09, appeared: 1/11/09 © J.UCS



Figure 1: Generic infrastructure and its main extensions.

The essential role of middleware is to manage the complexity and heterogene-
ity of distributed infrastructures. On the one hand, middleware offers program-
ming abstractions that hide some of the complexities of building a distributed
application. On the other hand, a complex software infrastructure is necessary
to implement these abstractions. Instead of the programmer having to deal with
every aspect of a distributed application, it is the middleware that takes care of
some of them.

Ontologies serve various needs in the Semantic Web, such as storage or
exchange of data corresponding to an ontology, ontology-based reasoning or
ontology-based navigation. When building a complex Semantic Web applica-
tion, designers may prefer to combine different existing software modules. Thus,
our proposal aims to develop a middleware infrastructure which will hide details
of the semantics from programmers by providing a set of working components.

An infrastructure is generally a set of interconnected structural elements that
provide the framework supporting an entire structure. From our point of view,
this is a set of components which provide the basic elements to develop more
complex applications.

The huge amount of information and the complexities of handling it have
given rise to a lot of research concerning practical approaches to the Semantic
Web. One of the central problems in this Web is the efficient integration of data

3202 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



transmitted over the wide area networks. The goal of a data integration system
is to provide uniform access to a set of heterogeneous data sources, freeing the
user from problems caused by different locations, query languages and different
database protocols.

The need for data integration started when the number of applications and
data repositories began to grow rapidly. The first approaches appeared in the
80s, and formed the basis for the research in this area. The evolution contin-
ued over mediator based systems, such as AMOS II [Risch et al. 2001], DISCO
[Tomasic et al. 1997], TSIMMIS [Garcia-Molina et al. 21997] and Garlic
[Haas et al. 1996]. Then, agent technology was used in some systems like InfoS-
leuth [Ksiezyk et al. 2001] and MOMIS [Beneventano et al. 2000]. Finally, the
new technologies appearing have been used in data integration: XML (MIX
[Bornhovd et al. 1999]), ontologies (OBSERVER [Mena et al. 1996]). Finally,
more sophisticated and even commercial systems have appeared, such as FeD-
eRate [Prudhommeaux 2007], Virtuoso [OpenLink Software 2010], SDS
[In Silico Discovery 2010], Concept Based Systems like [Sattler et al. 2005] and
Semantic Web Middleware for Virtual Data Integration on the Web
[Langegger et al. 2008]. Studying the most relevant data integration systems has
allowed us to determine the main elements of a data integration system, and so
to extract the pattern for building this kind of system.

In this paper we present the main elements of a functional infrastructure for
implementing Semantic Web Applications (Figure 1). The goal of the proposed
infrastructure is to provide useful components for registering and managing on-
tologies and their relationships, and also metadata regarding the resources com-
mitted or annotated with the ontologies registered, which means a practical step
towards building applications in the Semantic Web. The main advantage of us-
ing an infrastructure for the development of Semantic Web applications is that
software developers can reuse components, reducing the implementation costs.

The Semantic Directory [Navas-Delgado et al. 2008]
[Navas-Delgado et al. 2008B] concept has been implemented as a set of interfaces
for managing semantics: SD-Core (http://khaos.uma.es/SD-Core)1. The SD-
Core interfaces are extended with new functionalities for a specific type of re-
source (data providing resources). This extension, SD-Data can be used for data
integration. In this sense, we present an application type, Ontology-Based Medi-
ation, using a framework that is able to integrate data from disperse data sources:
the Khaos Ontology-based Mediation Framework (KOMF). This framework has
been instantiated to develop a mediator for Systems Biology: the Systems Bi-
1 We have developed SD-Core as a set of Web Services, so it can be made available

to a wide rage of applications needing to use resource semantics. In addition, we
have developed an installable version that will include SD-Core in an existing Web
Server or in a new one, which will be installed if there is no other one available. This
auto-installable version will include a Web interface for testing the SD-Core. In the
future this software will be made available as an Open Source project

3203Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



ology Khaos Ontology-based Mediator (SB-KOM), which uses ontologies as
integration schemas, and takes advantage of simple reasoning to perform the
query rewriting. The development as a framework allows us to introduce new
improvements in the mediator gradually, increasing the use of semantics to op-
timize the query processing and rewriting. This mediator has been used to build
two end-user applications: AMMO-Prot (The ASP Model Finder) and SBMM
(The Systems Biology Model Manager). The main contributions of our proposal
are:

• The proposed infrastructure provides the minimum set of components re-
quired to develop a wide range of applications in the Semantic Web.

• The use of a common infrastructure for developing Semantic Web appli-
cations enables the possibility of interconnecting these applications (taking
advantage of the semantics) and allowing these applications interoperability.

• The development of applications only involves developing components which
extend the infrastructure and provide new functionalities for more complex
applications.

• The semantics of Semantic Directories is made explicit and publicly available,
so the Semantic Web applications can interoperate directly with them.

• The interfaces provided are also described semantically so they can be com-
bined with other semantically described applications.

Section 2 describes SD-Core showing the characteristics of its generic com-
ponents. Then, we describe related works (Section 3). The developed extension
and its applications are described in Section 4. Section 5 describes KOMF (the
Khaos Ontology-based Mediation Framework). Applications in Systems Biology
are presented in Section 6. Finally, we will discuss the main advantages of our
proposal (Section 7) and the conclusions reached with respect to its implemen-
tation and use (Section 8).

2 Related Work

In this context the Semantic Web Framework is the most similar work to this
paper. However, it is in its initial stage (framework design), while we have suc-
cessfully applied our infrastructure to create Semantic Web applications in real
scenarios. The Semantic Web Framework has a structure in which applications
are described using simple components. Thus, the Semantic Web Framework pro-
vides a classification and analysis of existing tools, but it does not define even
component interfaces. The Semantic Web Framework classifies the components
in dimensions that have been chosen from the developers’ experience.

3204 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Table 1: The Semantic Web Framework dependencies

1 2 3 4 5 6 7
1. Data and Metadata Management - X
2. Querying and Reasoning X -
3. Ontology Engineering X X - X
4. Ontology Customization X -
5. Ontology Evolution X -
6. Ontology Instance Generation X -
7. Semantic Web Services X X X -

Each component is described by defining its dependencies with other com-
ponents [Leger et al. 2007], and then a list of use cases is presented. The list of
dependencies between dimensions is shown in Table 1. This list has the special
characteristic that the first dimension is a requirement for the other ones.

Each use case describes how several components of the framework can be
composed to solve a specific problem. From these use cases and the component
dependencies we can deduce that some blocks of components can be grouped,
because they usually act together. In this case, these groups fully match those
of our infrastructure proposal.

Our approach overcomes the design of a generic proposal by describing bigger
components because analysis of the possible Semantic Web applications indicates
that some combinations of simple components are shared in all of these applica-
tions.

Due to the similarity between the two proposals it will be possible to adapt
our components for use in the Knowledge Web Semantic Web Framework as
soon as the final API is available, and components from this project could be
used to produce alternative implementations of our infrastructure.

Another related application is the Onthology (http://www.onthology.org)
central repository, which also uses OMV to manage ontology metadata. The
main focus of this work is to provide a centralized server to manage ontologies
that have been accepted in a specific domain. Oyster [Palma et al. 2006] is a
complementary application that provides a decentralized system for those users
who need to exchange up-to-data information with other users. However, neither
system focusses on providing a way of annotating resources with the ontologies
managed by their systems.

Universal Description, Discovery and Integration (UDDI,
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm) is a
platform-independent, Extensible Markup Language (XML)-based registry for
businesses worldwide to list themselves on the Internet. UDDI is an open indus-

3205Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



try initiative, enabling businesses to publish service listings and discover each
other and define how the services or software applications interact over the Inter-
net. A UDDI business registration consists of three components: White Pages,
Yellow Pages and Green Pages. It is designed to be interrogated by Simple Ob-
ject Access Protocol (SOAP) messages and to provide access to Web Services
Description Language (WSDL) documents describing the protocol bindings and
message formats required to interact with the web services listed in its direc-
tory. SD-Core is a more generic approach based on semantics to register online
resources. In this case the use of semantics allows users to locate resources de-
pending on domain ontologies (that the user should know). This generic infras-
tructure can also be extended to deal with more specific resources, and in this
sense this paper presents SD-Data, an extension to deal with data providing
resources.

3 Semantic Directory Core

This section presents the generic infrastructure for the development of Semantic
Web applications. The analysis of different architectural proposals and Semantic
Web applications makes it clear that a Semantic Web application must have these
characteristics:

– Ontologies must be used to introduce semantics.

– As a single and common ontology is not available for most of the domains,
ontology management and alignment is necessary.

– Resources are annotated with different ontologies, even in the same domain.

– Resources need to be located by means of the defined semantics.

Summarizing the list of requirements, we can deduce that ontology and re-
source managers are necessary components for most of the applications. In ad-
dition, we can find relationships between ontologies and resources (this is one of
the main characteristics of Semantic Web applications). These relationships are
rich, and we can take advantage of them in the development of Semantic Web
applications.

The proposed infrastructure is based on a resource directory, called Semantic
Directory Core, SD-Core (Figure 2). We define the SD-Core as ”a set of core ele-
ments to build Semantic Web applications, and it is made available as a server to
register semantics, providing services to query and browse all the registered se-
mantics”. In order to formally define the elements that the SD-Core will manage,
we have defined its internal elements by means of metadata ontologies.

SD-Core is semantically described to to allow semantic interoperability with
other Semantic Web applications. The semantics will be described in terms of

3206 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 2: The Semantic Directory Core (SD-Core), a Distributed Semantic Web
Infrastructure. The internal elements of the SD-Core could be changed to adapt
to different kinds of resources.

two metadata ontologies, Ontology Metadata and Resource Metadata. These pub-
licly available ontologies are internally managed through a Metadata Manager.
In order to reach a useful implementation, we have to define these metadata
ontologies and also which metadata manager we are going to use in the SD-Core
(Figure 2).

The SD-Core is composed of three interfaces (Figure 2), which tends to be
the minimum set of elements for building a wide range of applications for the
Semantic Web. The SD-Core provides: 1) the Ontology Metadata Repository
Interface; 2) the Semantic Register Interface; and 3) the Resource Metadata
Repository Interface.

The Ontology Metadata Repository interface provides a way of registering on-
tologies and then locating the useful ones for an application. This first interface
offers different types of access to the information on resources related to ontolo-
gies registered in the SD-Core. The basic access operation is to search ontologies
in the Ontology Metadata. Where a reasoner is used as Metadata Manager in
the SD-Core, the search capabilities will be improved.

The following methods are provided by the Ontology Metadata Repository
Interface, enabling users to register and browse ontologies:

– registerOntology. These are methods for registering ontologies in the SD-
Core where the semantics are published using the parameters provided. This
information will be included as instances of the Ontology Metadata ontology.

– getOntology. This set of methods provides a way of retrieving ontologies
registered in the SD-Core.

3207Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



– listOntologies. These methods provide the list of all the registered ontologies
or some of them depending on the search parameter provided.

The Semantic Register Interface is in charge of relating resources with sev-
eral of the registered ontologies. When registering a resource, these interface im-
plementations will generate metadata in the Resource Metadata containing the
relationships between this resource and previously registered ontologies. Thus, it
will be possible to take advantage of registered resources by means of the ontolo-
gies registered in the SD-Core. Once a resource has been registered, the SD-Core
monitor (the application in charge of ensuring that all components work cor-
rectly) will repetitively test if it is available. In the case where the resource is
not available (reachable) it is marked as not available temporarily. Thus, if a
user/application asks for resources complying with certain characteristics, un-
available resources’ URLs will not be returned. If the SD-Core monitor detects
that the resource is available, its state is updated.

This interface provides the following method, which allows the resource owner
to register the resource:

– registerResource. This method allows users to register resources related with
previously registered ontologies.

The Resource Metadata Repository Interface is an interface for accessing in-
formation about resources, which provides methods for locating resources based
on their URL, name, relationships with domain ontologies, etc. The basic access
operation is to search resources in the Resource Metadata. The following list
briefly describes the main methods provided by this interface:

– getRelatedElements. This method lists the related concepts of a given concept
of an ontology registered in the semantic directory.

– listResources. This set of methods enables the location of all the resources
or those related with one specific ontology.

4 SD-Data: An Extension of the SD-Core to deal with Data
Providing Resources

In order to make use of the SD-Core to deal with data providing resources
we have decided to extend the proposed infrastructure to provide additional
methods for this kind of application. This specialization is called the SD-Data
(Figure 3). The SD-Data has been successfully applied in the development of
a Semantic Web framework for data integration: The Khaos Ontology-based
Mediation Framework (KOMF). It uses SD-Data for managing semantics, and
has been instantiated as a mediator for Systems Biology and used to develop
two end-user applications.

3208 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 3: SD-Data Internal Elements. Metadata included as metadata ontologies
allows us to define the semantics of resources and ontologies related to them.

4.1 SD-Data Metadata

The SD-Data includes two inter-related ontologies (OMV [Hartmann et al. 2005]
and SDMO), which describe the internal semantics of the Semantic Directory
(see Figure 3). The main advantage of using ontologies to represent metadata
is that this metadata can be managed by tools ranging from a simple ontology
parser to a complex ontology reasoner, enabling the use by intelligent agents
thanks to the use of explicit semantics. We use OMV to register additional in-
formation about ontologies to help users locate and use them (we have registered
the ontologies obtained from searches in SWoogle [Ding et al. 2004] and Google).
The metadata scheme contains further elements describing various aspects re-
lated to the creation, management and use of an ontology.

SDMO is the ontology in charge of registering information about resources
and relationships between these resources and ontologies registered in the SD-

3209Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 4: Semantic Directory Metadata Ontology, SDMO. Class ”User” is not
shown because it is not related with the other classes. This class is used to check
user access to the SD-Core.

Data. SDMO and OMV are related by a class included in SDMO, which provides
a way of relating resources (SDMO instances) with registered ontologies (OMV
instances). The current version of SDMO is composed of five classes (Figure 4):
OMV, Resource, Mapping, Similarity and User:

– OMV: this class is used to link resources with registered ontologies (as in-
stances of the OMV ontology). It contains the ontology name and URL.

– Resource: this class is used to store information (query capabilities, schema,
query interface, name and URI) about resources.

– Mapping: this class is used to set the relationships between resources and
ontologies. Each mapping is related with a similarity instance that establishes
the similarity between ontology concepts and resource elements.

– Similarity: the similarity class contains three properties (concept1, concept2
and similarityValue) to establish the similarity between an ontology concept
and a resource element.

– User: this class is added in order to deal with users in the applications.

As we have used the OMV metadata ontology in the SD-Data, the regis-
tration of ontologies will imply the creation of some OMV class instances. We
have chosen OntologyImplementation because we assume that ontologies used
to annotate resources will be those that have been implemented in a specific
language (OWL in our case). This concept has several properties for describing
ontologies, and we have selected the most relevant ones for our purposes:

3210 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



– implementationName. This property defines the name of the ontology and
the value is retrieved from the input parameters of the registration method.
Two different ontologies may have the same name.

– ontologyURL. It allows us to set the URL of the ontology. This information
is provided in the registration process and it will be used to differentiate two
different ontologies.

– numClasses. It enables storage of the number of classes contained in the
ontology. This information, which is obtained by reading the ontology from
the URL provided, could be used for providing statistic data.

– numIndividuals. This property defines the number of instances that the
ontology has in its definition. This information is obtained directly from the
ontology.

– version. The version of the ontology could be set using this property. This
information can be obtained from the ontology definition. However, not all
the ontology providers annotate the version in the same way. For this reason
we have developed a heuristic program that tries to find this information in
the ontology definition.

– implementationAcronym. This property allows us to define a short name
for the ontology.

– imports. It establishes references to other ontologies. This information is
obtained in the registration process from the ontology definition, and will
allow us to find explicit relationships between different ontologies.

4.2 SD-Data Design

In order to deal with the characteristics of data providing resources, SD-Data
includes some additional methods. Thus, the Semantic Register includes meth-
ods for registering resources, indicating which method is suitable for querying,
getting the schema and knowing the query capabilities.

The resources registered must have a schema for representing their data.
As the current tendency in the Semantic Web is to use XML or RDF as data
interchange languages, this kind of resource must provide an XMLSchema or an
RDF-Schema, which will be provided in the registration call. This assumption
limits the type of resources that can be registered in the SD-Data. However,
resources providing information with OWL instances could also be registered
with few changes in the implementation.

These resources have to be data providing resources, so they have a spe-
cific schema that can be directly related with one or more registered ontologies.

3211Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Additional methods have been added to the Resource Metadata Repository to
retrieve information related with this kind of resource:

– getSchema. This method locates the schema of a resource registered in the
directory.

– listMappings. These methods list the mappings of a resource with one or more
ontologies of the SD-Data. The resources are located taking into account the
possible input parameters.

As a first approach for the Metadata Manager we have used Jena (http:
//jena.sourceforge.net/). However, access to the registered information is
possible using a reasoner like Racer [Baader et al. 2003] or DBOWL
[Roldan-Garcia et al. 2008].

The use of this or another reasoner can be carried out using the DIG API
(http://dl.kr.org/dig/). In this way, another DIG compliant reasoner can be
used instead of Racer or DBOWL. The use of a reasoner implies that the system
will have an additional overhead because of the reasoner activities. However, this
kind of tool can be installed in a separate machine thereby avoiding the system
overhead.

SD-Data is considered a Semantic Web application because it provides basic
elements for dealing with semantics without any additional component. However,
more complex applications can be developed using SD-Data. Thus, Semantic
Aware applications use SD-Data to find the semantics of resources registered in
them, accessing the information through the existing resources. These resources
have to be registered in SD-Data, but this will not involve making changes in
them. On the other hand non Semantic Aware applications can directly access
the resources.

4.3 SD-Data Use Cases

This section describes some examples of the use of SD-Data. Thus, the result of
registering ontologies and resources is shown.

We can register an ontology with the call to ”registerOntology” using the
URL ”http://mobi.yaco.es/andalucia.rdf/andalucia-tourism.owl” and
the name ”AndaluciaTourism”. This registration process will generate an in-
stance of the OntologyImplementation concept. This instance will have some
datatype property values such as: implementationName (AndaluciaTourism), on-
tologyURL (http://mobi.yaco.es/andalucia.rdf/andalucia-tourism.owl) and num-
Classes (15).

However, ontologies with more information will generate instances with more
metadata. For example, the registration of the ontology at
”http://www.co-ode-org/ontologies/pizza/2007/02/12/pizza.owl” will
generate an instance with this metadata:

3212 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



– implementationName (pizza), ontologyURL (.../pizza.owl), implementa-
tionAcronym (QuatroQueijos@pt), versionInfo (v.1.4. Added Food class . . .),
numClasses (143) and numIndividuals (5).

In addition, more complex ontologies will provide us with more information.
Thus, the registration of an ontology with ”import” elements will generate one
instance for each ”import” element and then the corresponding properties in
the original ontology metadata. For example the registration of the ontology at
”http://iridl.Ideo.columbia.edu/ontologies/interface.owl” will gener-
ate the following instances:

– implementationName (interface), implementationAcronym (Contributor@-
en-US), ontologyURL (.../interface.owl), numClasses (103), numIndi-
viduals (1551), imports (Ont1, Ont2).

– Ont1: implementationAcronym (Rights@en-US), ontologyURL
(http://purl.org/dc/terms) and numClasses (24).

– Ont2: implementationAcronym (Contributor@en-US), ontologyURL (.../
iriterms.owl), numClasses (18), numIndividuals (5) and imports (Ont3,
Ont4, Ont5).

– Ont3: implementationAcronym (Contributor@en-US), ontologyURL (.../
rdfcache.owl), numClasses (4) and numIndividuals (1).

– Ont4: implementationAcronym (Contributor@en-US), ontologyURL (http:
//purl.org/dc/elements/1.1/), numClasses (0) and numIndividuals (0).

– Ont5: implementationAcronym (Contributor@en-US), ontologyURL (.../
iricrosswalk.owl), numClasses (10) and numIndividuals (4).

On the other hand, SD-Data extends the SD-Core to enable additional ways
of registering resources. Thus, the different methods provided enable registration
at different levels: making the relationships with registered ontologies explicit or
allowing SD-Data to calculate them by means of an internal matching tool.
The registration of resources will generate instances of the Mapping and Sim-
ilarity classes, indicating the relationships between the resource and registered
ontologies. This information could be obtained from the input parameters of the
registration process, or could be obtained automatically using a matching tool.

For example, we can register a data source with information on different
towns in Andalućıa. For this we will use the call: registerResource (”town-
Description”, ”http://www.juntadeandalucia.es/iea/sima/index.htm”, ”http://-
mobi.yaco.es/andalucia.rdf/andalucia-tourism.owl”, mappings).

The mappings vector is a list of similarities in which each similarity is a triple:
(resourceElements, ontologyConcepts and similarityValue). ResourceElements is

3213Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 5: KOMF architecture. The architecture includes as its main elements
the Controller, Query Planner and Evaluator/Integrator. A reasoner could be
used to improve the query planning and the information integration.

an XPath expression with the part of the resource that is related with the on-
tology. OntologyConcepts is a query expressed in terms of the ontology, and the
similarity value expresses how similar the concepts included in this query are
with respect to the elements included in resourceElements.

5 KOMF: the Khaos Ontology-based Mediation Framework

In this section, we propose an ontology-based mediator framework (the Khaos
Ontology-based Mediation Framework, KOMF) which uses SD-Data, a generic
infrastructure to register and manage ontologies, their relationships and also
information relating to the resources.

In the proposed framework (see Figure 5) our goal is to provide access to the
data using a common data model, and a common query language. Our archi-
tecture provides a semantically coherent model representation of the combined
data from the wrapped data sources and transparent access to the combined
data through queries to the mediating view.

In this context, wrappers are an important part of the internal elements
of Data Services [Navas-Delgado et al. 2005]. A wrapper accepts queries from

3214 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



the mediator, translates the query into an appropriate query for the individual
source, performs any additional processing and returns the results to the me-
diator. The user/programmer does not need to make individual interfaces for
each data source. An interface to a data source is one that translates data into a
common data model used by the mediator helping the user to access each data
source.

In our case we have chosen XML, in a broad sense: XML, XML-Schema and
XQuery, as the common data model. However, it is also possible to deal with
RDF (RDFSchema and SPARQL). The development of Data Services requiring
the development of a wrapper has been studied previously
[Navas-Delgado et al. 2005]. Biological data sources are usually public and down-
loadable. In these cases we have designed some patterns to retrieve a data source
stored as a flat file to store it in an XML database.

Data Services, independently of the development process, are distributed
software applications that receive queries in XQuery/SPARQL and return
XML/RDF documents. Thus, the process of registering them in a semantic di-
rectory implies finding a set of mappings between one or several ontologies and
the data service schema (expressed as an XMLSchema/RDFS document). These
mappings will be the key elements to integrate all the data sources, and they
will be the way resource semantics are made explicit.

As the proposal is to use ontologies to integrate data, we have chosen a GAV
(Global as View) approach [Halevy et al. 2001]. In GAV, each source is related
to the global schema (ontology in our case) by means of mappings. Moreover,
the use of ontologies will allow us to take advantage of reasoning mechanisms to
improve the query rewriting.

The mappings we use are defined as pairs (Pt, Qo). Pt is a set of path ex-
pressions on the resource schema, and Qo a query expression in terms of the
ontology. In a first approach we have chosen XPath as the language to express
Pt, and conjunctive queries to represent Qo.

The architecture of the proposed Ontology-Based Mediation Framework (Fig-
ure 5) is composed of three main components:

– The Controller : This component assumes the role of the infrastructure be-
tween all mediator components and interacts with the user interface, pro-
viding query results described in terms of one of the ontologies registered in
the semantic directory.

– The Query Planner : This component elaborates a query plan (QP) for the
user query. The planner has been implemented including the most basic
reasoning to take advantage of described semantics (subsumption and clas-
sification). Thus, if a query includes a concept this query will be expanded
to include the semantic descendants. The mappings (stored in SD-Data) are

3215Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



also important in this process and they are used to find if the query pattern
matches one or more patterns in the mappings.

– The Query Solver/Integrator : This component analyzes the query plan (QP)
received from the query planner, and performs the corresponding call to the
data services involved in the sub-queries (SQ1, . . . , SQn) of the query plan
(R1, . . . , Rn). This component will obtain a set of XML documents from
different data services. Results from data services (R1, . . . , Rn) are composed
by this component, obtaining the results of the user query. This component
uses the mappings to translate the XML document to ontology instances,
and then a conjunctive query evaluator is applied to the set of instances
found.

The use of a reasoner will provide the possibility of improving the planning
and integration process taking advantage of the explicitly defined semantics.

The Controller provides two different methods:

– query(userQuery, domainOntology): int. This method accepts a query
and returns the query identifier to check the status of the query. Thus, the
implementations of this component will provide an asynchronous behavior
to applications using the mediator.

– status(queryId): int. This method returns different values for possible
status of the query evaluation and can return the following different status:

• [0] Started.

• [1] Planned. The query has been sent to the Query Planner and the
Query Planner has returned a correct query plan.

• [2] Solved. The query plan has been resolved, but results have not yet
been integrated and produced as instances.

• [3] Integrated. The sub-query results have been integrated.

• [4] Finished.

The Query Planner provides the following method:

– plan(query): QueryPlan. This method returns a query plan for a given
query.

The Query Solver/Integrator provides a method for executing a query plan:

– execute(queryPlan): Instances. This method returns a set of instances
as a result of executing a query plan.

3216 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



6 Systems Biology Applications

In the context of Life Sciences, the framework of Systems Biology is being merged
[Kitano et al. 2002]. It is supported by all high-throughput methods which gen-
erate large amounts of data that simply cannot be processed by the human
mind. This field includes a wide variety of concepts and methods but in gen-
eral, it can be considered the analysis of living systems, through the study of
the relationships among the elements in response to genetic or environmental
perturbations, with the ultimate goal of understanding the system as a whole.
A ”system” can be considered at different levels, from a metabolic pathway or
gene regulatory network to a cell, tissue, organism or ecosystem. The number
of information repositories and services for biological elements (molecules, cells,
etc) is growing exponentially. Consequently, Systems Biology is the archetype of
a knowledge-intensive application domain for which the Semantic Web should
be particularly interesting.

6.1 SB-KOM: The Systems Biology Khaos Ontology-based
Mediator

KOMF has been successfully instantiated in the context of Systems Biology for
integrating disperse data sources [Navas-Delgado et al. 2008C] and for integrat-
ing metabolic information. As shown in Figure 5 the architecture of KOMF is
composed of four main components. The following sections describe the imple-
mentation of these components for the cited domain.

6.1.1 The Controller

The controller component receives user’s requests (coming from from some user
applications which perform the role of the mediator client), and evaluates them
to obtain the result of their requests. In our approach, the controller creates
different threads for different user’s requests, and assumes the role of the infras-
tructure between the mediator components.

Once received, the request is sent to the planner component and one or several
(queries) plans (QP) obtained. A query plan is a set of queries to be executed
over different data services and information about how to compose them. The
controller chooses one and it is sent to the Query Solver/Integrator” component.
This component answers the calls to the different data services involved in the
plan. Finally, the XML documents obtained in the calls to the evaluator are
composed to build the set of instances that are returned to the user application.
This component traces the status of each query. Thus, applications can use this
trace to inform users on the query resolution.

3217Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 6: Query Example for retrieving information about enzymes

6.1.2 The Query Planner

This component is by far one of the most fundamental pillars in the action of
elaborating one or several query plans and it computes the user query from
different data. Plans generated by this component specify the data sources from
which the information can be retrieved and in which order they must be accessed.

The evaluation of these queries depends on the query plans themselves and
absolutely must be generated expeditiously. Before starting to explain the algo-
rithm we must define the query language for the queries that this component
will accept. Queries are expressed as conjunctive predicates, with three main
categories: classes, datatype properties that link individuals to data values and
object properties that link individuals to individuals. The technique used is based
on Sideways Information Passing Strategies (SIPS) [Bancilhon et al. 1986].

According to this language, there will be different types of mappings in the
semantic directory. The classes will be connected to the XPath of one or several
XML resource elements. On the other hand, datatype properties will be con-
nected to those two expressions: the first one corresponds to the class and the
second to the property. The object properties will be related to the active classes
XPath in the property. One possible example of a query is that shown in Figure
6.

In this query, we have five classes (Enzyme, Organism, Substrate, Product
and EnzymeVariant), two datatype properties (ecNumber and organismName
) and four object properties (naturalSubstrate, naturalProducts, hasVariant and
belong to).

This query will return instances of a class Enzyme whose Ec number is ”ec-
Number”, and which are related to:

– The ”organism” CellularOrganism by means of the relation belong to.

– Some Substrate by means of the relation naturalSubstrate.

– Some Product by means of the relation naturalProducts.

3218 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 7: Mappings between the domain ontology and registered resources.

– Some EnzymeVariant by means of the relation hasVariant, this EnzymeVari-
ant has to be related to the same Organism which the enzyme is related to
by means of the relation belong to.

For the query example and mapping shown in Figure 7, the algorithm first
finds all query predicates, getting Enzyme(E), ecNumber(E, ”ecNumber”), Cellu-
larOrganism(O), organismName(O, ”organism”) , belongTo(E, O), Substrate(S),
naturalSubstrate(E, S), Product(P), naturalProducts(E, P), EnzymeVariant(V),
hasVariant(E, V), belongTo(V, O).

Then, the SD-Data is queried to find if the used concepts have descendants.
In this case, the query is expanded to search for information related with these
descendants. The reasoner is used in this case by the SD-Data to infer the re-
quired knowledge.

Then the predicates which have common parameters are grouped together.
This produces a large set of combinations such as:

– Enzyme(E), ecNumber(E,”ecNumber”)

– Enzyme(E), belongTo(E,O)

– Enzyme(E), naturalSubstrate(E,S)

– Enzyme(E), naturalProducts(E,S)

– Enzyme(E), hasVariant(E,V)

3219Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O)

– Enzyme(E), ecNumber(E,”ecNumber”), naturalSubstrate(E,S)

– Enzyme(E), ecNumber(E,”ecNumber”), naturalProducts(E,S)

– Enzyme(E), ecNumber(E,”ecNumber”), hasVariant(E,V)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
naturalSubstrate(E,S)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
naturalProducts(E,S)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
hasVariant(E,V)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
naturalSubstrate(E,S), naturalProducts(E,S)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
naturalSubstrate(E,S), hasVariant(E,V)

– Enzyme(E), ecNumber(E,”ecNumber”), belongTo(E,O),
naturalSubstrate(E,S), naturalProducts(E,S), hasVariant(E,V)

– . . .

However, the planning algorithm filters those groups that are not present in
the SD-Data mappings, by querying the repository that will provide the data
elements related with the given concepts. Thus, in this example we obtain the
following groups:

– C1: Enzyme(E), ecNumber(E,”ecNumber”)

– C2: CellularOrganism(O), organismName(O,”organism”)

– C3: Substrate(S)

– C4: Product(P)

– C5: EnzymeVariant(V)

– C6: naturalSubstrate(E,S)

– C7: naturalProducts(E,P)

– C8: hasVariant(E,V)

– C9: belongTo(V,O)

3220 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



– C10: belongTo(E,O)

From these (C1 to C10) groups, the planner selects the group that has some
variable instanced (in the example, the group C1 would be selected for having
the ecNumber instanced with the value ”ecNumber”).

The group selected in the previous step will be considered as the root of
the possible planning tree. The order of execution of the groups will depend
on the instanced variable: first, it executes the groups which contain instanced
variables, then the groups that relate the instanced variable to other groups and
so on.

For this example, the plan will execute the group C1 from which we will
determine all the Enzymes that have ecNumber equal to ”ecNumber”. Then the
groups C10, C8, C7 and C6 will be executed in parallel to be linked to the in-
stanced variable in the previous step (the variable E in that case). From these
simultaneous executions, the algorithm determines all objects that are respec-
tively related to Enzyme by means of the relationships belong to, hasVariant,
naturalSubstrate and naturalProducts.

Once those objects are obtained, they will be checked to see if they sat-
isfy the groups C2, C5, C4, and C3 respectively; in our case, the algorithm
will verify whether the objects obtained from C10, C8, C7 and C6 are of the
type CellularOrganism, EnzymeVariant, naturalSubstrate and naturalProducts
respectively.

A possible plan of execution for our query could be that represented in Figure
8. The arcs represent object properties: belong to, hasVariant, naturalSustrate
and naturalProducts in this case.

Each node and arc (Figure 8) contains the following information: the XQuery
query (produced from the mappings) corresponding to the sub-query of the data
sources node or arc, name and URL.

6.1.3 The Query solver/Integrator

A query plan describes the order of execution of the local queries. The plan
contains all the information needed by the Evaluator/Integrator to execute a
local query; this information includes the resource URI and the local query
expressed in XQuery. To answer a user query, this component first executes the
data services in the order specified by the query plan. Then, it generates the
instances from the data service results. To minimize the query execution time,
we can run the local queries concurrently. This is possible when the local queries
are independent of each other. We say that a query Qj depends on another query
Qi if Qj is a parameterized query whose parameters take values from the result
of executing Qi.

3221Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 8: Query plan for the query ”Ans(E,O,P,S,V) :- Enzyme(E), ecNum-
ber(E,”ecNumber”), CellularOrganism(O), organismName(O, ”organism”), be-
longTo(E,O), Substrate(S), naturalSubstrate(E,S), Product(P), naturalProd-
ucts(E,P), EnzymeVariant(V), hasVariant(E,V), belongTo(V,O);”. Each node
and arc contains information to access the corresponding data service.

For example, to execute the first local query (nodes E and O) the evaluator
needs to know the resource URI (http://khaos.uma.es/brenda/services/brenda)
and the XQuery query.

In the sample query plan (Figure 6), the query of node V depends on the
query of node E, the query of node P depends on the query of node E and the
query of node S depends on the query of node E. So, the queries of nodes V, P
and S must be executed after the query of node E. However, queries V, P and S
are independent of each other and can be executed concurrently improving the
system performance.

The sample query has values for datatype properties of Enzyme and Cellu-
larOrganism classes. As shown in the query plan, the first data service to be
executed is the one that corresponds to nodes E and O (it involves two nodes
because it needs the values of two concepts to be executed); then the other
data services are executed concurrently. The Object Properties hasVariant, nat-
uralProduct and naturalSubstrate are used to retrieve concurrently values for
variables V, P and S from the first data service result. Each variable will have
a list of values. Obviously, queries parameterized with different values are in-
dependent, so the execution of a data service for different values can be done

3222 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



concurrently. As shown in the query plan, the data services that correspond to
variables V, P and S are independent of each other. So the three data services
for all value lists are executed concurrently.

The mediated schema used in our mediator is an ontology. Therefore the
results must be returned to the user as ontology instances. Since in our architec-
ture the component responsible for executing local queries is a Data Service, the
results of executing the queries included in the plan are XML documents. Once
the result is retrieved, the XML document is translated to ontology instances
(RDF model), using the mappings between the XML elements and the OWL
ontology. The translation process is based on mappings. The system supports
two types of associations in the mappings: one-to-one and one-to-many. The
one-to-one association means that a resource in the ontology is mapped with an
XPath in the data service schema. On the other hand, the one-to-many associ-
ation means that a resource in the ontology is mapped to several XPaths in the
data service schema.

Based on related work in Ontology Mapping (such as [Ehrig et al. 2004]), we
have defined three kinds of mappings: class mapping, datatype property mapping
and object property mapping:

– Class Mapping: relates a class to an XML element. This means that for each
XML element, in a data service result, mapped to a class an instance of
this class is created. The use of a reasoner enables the extension of these
mappings with the inferred class hierarchy.

– Datatype Property Mapping: relates a datatype property to an XML ele-
ment. As properties can have more than one domain class, in this kind of
mapping we need to specify the domain class to use. For each XML element,
in a data service result, mapped to a datatype property an instance of this
datatype property is created. The datatype property value is the text value
of the XML element and the domain is an instance of the class declared in
the mapping as domain class. The use of a reasoner allows the algorithm to
detect when a property can be applied to a class even when it has not been
explicitly defined in it.

– Object Property Mapping: this kind of mapping relates two classes involved
in class mappings (already declared) to an object property name. For ex-
ample, consider another class mapping that relates ”enzyme” class to ”/Re-
sult/ENZYME” element, and an object property mapping that relates ”en-
zyme” and ”NSP” to the object property named ”has”. This component
generates an ”enzyme” instance E and two ”NSP” instances N1 and N2, and
also it generates two ”has” object property instances h1 and h2. h1 has E as
domain and N1 as range, and h2 has E as domain and N2 as range. To de-
termine which instance is the domain of a property instance, this component

3223Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 9: Part of the result returned by the data service corresponding to nodes
E and O

uses relative paths as described above for the datatype property mapping.
In this case, the use of a reasoner also allows the algorithm to detect when
a property can be applied to a class that does not contain this property.

For the example shown in Figure 9, consider that we have a class mapping
that maps a class ”NSP” to ”/Result/ENZYME/NSP” element and a datatype
mapping that maps a datatype property ”name” to
”/Result/ENZYME/NSP/NameSt” element. Using these mappings, the compo-
nent creates two ”NSP” class instances N1 and N2, and four ”name” datatype
property instances n1 and n2 with N1 instance as domain and ”acetyl-CoA” and
”spermidine” as values, and n3 and n4 with N2 instance as domain and ”acetyl-
CoA” and ”spermine” as values. As we have seen in this example, there is a need
to determine which instance (N1 or N2) is the domain of each datatype instance
(n1, n2, n3 and n4), the component uses relative paths to achieve this purpose.
In this example the relative path between ”/Result/ENZYME/NSP/NameSt”
and ”/Result/ENZYME/NSP/” is ”../”.

In an XML document it is usual that a value appears more than once for the
same or different XPaths. But in an instance graph, the value of a property for

3224 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



an instance must appear only once. For both cases, when the value appears more
than once for the same XPath with a one-to-one association or when the value
appears more than once for different XPaths with a one-to-many association, the
library deals with the situation and generates just one instance for this value.

The last, but not least important, characteristic of the library is related to
inheritance. For both datatype properties and object properties specified for a
class, if a mapping is specified for one of its subclasses, all the subclass instances
generated must have values for the superclass properties (if possible).

6.1.4 Data Services

In our proposal, the sources are made available by publishing them as Web
Services (named Data Services). Our primary goal here is to integrate databases
accessible via internet pages. In this context, wrappers are an important part
of the internal elements of data services. Data services, independently of the
development process, are distributed software applications that receive queries
in XQuery and return XML documents.

In the context of mediator development, the process of registering resources
in a SD-Core implies finding a set of mappings between one or several ontologies
and the data service schema (usually expressed as an XMLSchema document).
These mappings will be the key elements to integrate all the data sources, and
these mappings will be the way in which the resource semantics are made explicit.

7 Discussion

The Knowledge Web European project (http://knowledgeweb.semanticweb.
org) has designed a Semantic Web Framework, which describes the main ele-
ments that Semantic Web applications will require and the type of applications
that can be developed by using this framework. Thus, the main aim of this
project is to identify and classify components (developed in Universities and
Businesses) that could be useful for developing Semantic Web applications. The
implementation of the identified components would solve the software developer
problem of finding Semantic Web components and their interconnections.

This framework classifies the components in dimensions, chosen as a result
of the developers’ experience. The following dimensions are considered: Data
and metadata management, Querying and reasoning, Ontology development and
management, Ontology customization, Ontology evolution, Ontology alignment,
Ontology instance generation and Semantic web services.

Each component is described by defining its dependencies with other com-
ponents, and then a list of use cases is presented. Each use case describes how
several components of the framework can be composed to solve a specific prob-
lem. From these use cases and the component dependencies, we can deduce that

3225Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



some blocks of components can be grouped, because they usually act together.
In addition, their capabilities are almost the same as the ones provided by our
infrastructure. These common blocks are the Ontology and Data repositories,
whose definitions are [Leger et al. 2007]:

– Ontology repository component. This component provides functionalities to
locally store and access ontologies and ontology instances.

– Data repository component. This component provides functionalities to lo-
cally store and access data and ontology annotated data.

The Ontology repository component is supposed to provide a defined proto-
col to access ontologies, enabling query support though standard languages. In
addition, the repository should have some quality characteristics: provide fault
tolerance mechanisms, implement caching mechanisms, manage change propa-
gation, scale and allow management access.

The functionalities of the Ontology repository component are provided in our
proposal by the Ontology Metadata Repository Interface. This interface allows
users to locate registered ontologies. As the system stores the URLs to publicly
available ontologies, the changes are directly updated when the source ontology
is changed. In addition, URLs are tested before being sent to users to prevent
providing ontologies that are temporarily inaccessible. Besides, the proposed
interface provides methods for ontology providers to manage the registration of
their ontologies.

On the other hand, the Data repository component is covered by the Seman-
tic Register Interface and the Resource Metadata Repository Interface, which
provide a defined protocol to access the resources, offering fault tolerance mech-
anisms, information propagation when resources are changed and management
mechanisms for resource providers.

Another component that usually acts together with the previous ones is, the
Metadata repository, defined as:

– Metadata registry component. This component provides functionalities to
locally store and access metadata information.

These three components have also the interesting feature that they do not
depend on any other component and appear as necessary elements for most of
the simple components described. Therefore, they can be considered the core of
any Semantic Web Application.

The Semantic Web Framework [Leger et al. 2007] is the most similar work to
our proposal. However, whereas it is in its initial stage (framework design), we
have successfully applied our infrastructure to create Semantic Web applications
in real scenarios. The Semantic Web Framework has a structure in which applica-
tions are described using simple components. Our infrastructure overcomes this

3226 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Figure 10: Relationship between SD-Core and the Semantic Web Framework. (A)
The interfaces of the SD-Core could be implemented using components from the
Semantic Web Framework. (B) Some of the components of the Semantic Web
Framework could be implemented using the SD-Core implementation.

goal by describing bigger components because the analysis done by the Knowl-
edge Web Project of the possible Semantic Web applications indicates that some
combinations of simple components are shared in all of these applications.

Figure 10A shows how the SD-Core could be implemented using components
from the Semantic Web Framework. Thus, methods of the SD-Core will be im-
plemented as calls to these components. On the other hand Figure 10B shows
the way in which some components of the Semantic Web Framework could be
developed using the SD-Core implementation.

8 Conclusions

The main goal of this article has been to describe the design of the different
elements that comprise our infrastructure and how it can be used to solve real

3227Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



problems. Thus, we have described the SD-Core and the design of the Semantic
Directory concept. This core defines the minimum set of components required
to implement any Semantic Web application. Its architecture is the result of the
experience derived from (our) previous work2.

This article describes an extension of SD-Core to include new capabilities by
adding new methods (without adding new interfaces), producing SD-Data, for
dealing with data providing resources. This extension has been used to design a
framework that takes advantage of SD-Data to build ontology-based mediators.
It will allow applications to take advantage of data by providing resources to
reuse a common structure.

Using SD-Data we have designed a generic framework for developing ontology-
based mediators, KOMF. The main advantage of using SD-Data is that the
mediators developed do not have to deal with the problems of managing rela-
tionships between data providing resources and domain ontologies. Moreover,
the architecture of KOMF allows developers to reuse components to develop
ontology-based mediators.

The development of the mediation solution as a framework will enable the
improvement of future versions, producing progress in this area of research by
taking advantage of a working system. Thus, we aim to incorporate the use of
further reasoning to optimize query plans, and the integration of other kinds of
data sources (i.e. knowledge-bases with reasoning capabilities).

The usability of the interfaces described in this chapter has been tested by
developing several tools. Thus, we describe both the instantiation of KOMF for
Systems Biology, and the development of two different tools (the ASP Model
Finder and the Systems Biology Metabolic Modeling), both of which take ad-
vantage of this mediator.

The ASP Model Finder has tackled the resolution of a well known bioin-
formatics problem by integrating a limited but increasingly growing number of
databases. The initial problem to be solved is summarized as follows, and the
use case developed to solve it is named AMMO-Prot: ”A common and useful
strategy to determine the 3D structure of a protein, which cannot be obtained
by its crystallization, is to apply comparative modelling techniques. These tech-
niques start working with the primary sequence of the target protein to finally
predict its 3D structure by comparing the target polypeptide to those of solved
homologous proteins [Baker et al. 2001].”

The System Biology Metabolic Modeling assistant (Figure ??) is a tool de-
veloped to search, visualize, manipulate and annotate identity data and to assist
in annotating the kinetic data.
2 this software will be made available as Open Source

3228 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



Acknowledgment

Supported by Grants TIN2008-04844 (Spanish Ministry of Education and Sci-
ence), and P07-TIC-02978 (Innovation, Science and Enterprise Ministry of the
regional government of the Junta de Andalućıa).

References

[Baader et al. 2003] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele
Nardi, and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press, 2003.

[Baker et al. 2001] David Baker and Andrej Sali. Protein structure prediction and
struc- tural genomics. Science, 294(5540):93-96, October 2001.

[Bancilhon et al. 1986] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey
D Ullman. Magic sets and other strange ways to implement logic programs. In Pro-
ceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database
systems, pages 1-15, New York, NY, USA, 1986. ACM.

[Beneventano et al. 2000] Domenico Beneventano, Sonia Bergamaschi, Silviana Cas-
tano, Al- berto Corni, R. Guidetti, G. Malvezzi, Michele Melchiori, and Mau- rizio
Vincini. Information integration: The momis project demon- stration. In Proceed-
ings of the 26th Intrnational Conference on Very Large Data Bases, pages 611-614,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[Bornhovd et al. 1999] Christof Bornhovd and Alejandro P. Buchmann. A prototype
for metadata-based integration of internet sources. In Proceedings of the Conference
on Advanced Information Systems Engineering, pages 439-445, 1999.

[Ding et al. 2004] Li Ding, Rong Pan, Tim Finin, Anupam Joshi, Yun Peng, and
Pranam Kolari. Finding and Ranking Knowledge on the Semantic Web. In the
Proceedings of the 4th International Semantic Web Conference, November 2005.

[Ehrig et al. 2004] M. Ehrig and Y. Sure. Ontology mapping - an integrated approach.
Proceedings of the European Semantic Web Conference, Heraklion, Greece, 2004;
76-91.

[Garcia-Molina et al. 21997] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J. Ullman, V. Vassalos, and J. Widom. The tsimmis aproach
to mediation: Data models and languages. Journal of Intelligent Information Sys-
tems, 8(2):117-132, 1997.

[Haas et al. 1996] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. An optimizer for
heterogeneous systems with nonstandard data and search capabilities. Data Engi-
neering Bulletin, 19:37-44, 1996.

[Halevy et al. 2001] Alon Y. Halevy. Answering queries using views: A survey. VLDB
Journal: Very Large Data Bases, 10(4):270-294, 2001.

[Hartmann et al. 2005] Jens Hartmann, York Sure, Peter Haase, Raul Palma, and
Maria del Carmen Suarez-Figueroa. Omv - ontology metadata vocabulary. In ISWC
2005 - In Ontology Patterns for the Semantic Web, 2005.

[In Silico Discovery 2010] In Silico Discovery. Semantic discovery system (2010) (last
visit January, 2010). http://www.insilicodiscovery.com.

[Kellenberger et al. 2006] Esther Kellenberger, Pascal Muller, Claire Schalon, Guil-
laume Bret, Nicolas Foata, and Didier Rognan. sc-pdb: an annotated database of
druggable binding sites from the protein data bank. Journal of Chemical Informa-
tion and Modeling, 46(2):717-727, 2006.

[Kitano et al. 2002] Hiroaki Kitano. Systems biology: a brief overview. Science,
295(5560):16621664, March 2002.

3229Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...



[Ksiezyk et al. 2001] Tomasz Ksiezyk, Gale Martin, and Qing Jia. Infosleuth: Agent-
based system for data integration and analysis. In Proceedings of the 25th Interna-
tional Computer Software and Applicartions Conference on Invigorating Software
Development, page 474, 2001.

[Langegger et al. 2008] Andreas Langegger and Wolfram W and Martin Blchl. A Se-
mantic Web Middleware for Virtual Data Integration on the Web. In the Semantic
Web: Research and Applications 2008. Tenerife, Canary Islands, Spain, June 1-5,
2008.

[Leger et al. 2007] Alain Leger, Asuncion Gomez-Perez, Diana Maynard, Dominik
Zyskowski, Jens Hartmann, Jerome Euzenat, Martin Dzbor, Michal Zaremba,
Maria del Carmen Suarez-Figueroa, Raul Garcia-Castro, Raul Palma, Stamatia Da-
siopoulou, Stefania Costache, and Tomas Vitvar. Architecture of the semantic web
framework. Technical report, February 2007.

[Mena et al. 1996] Eduardo Mena, Arantza Illarramendi, Vipul Kashyap, Amit P.
Sheth: OBSERVER: An Approach for Query Processing in Global Information Sys-
tems Based on Interoperation Across Pre-Existing Ontologies. Distributed and Par-
allel Databases 8(2): 223-271 (2000).

[Navas-Delgado et al. 2005] Ismael Navas-Delgado, Maria del Mar Roldan-Garcia,
Daniel Dianes-Mazorra, and Jose Francisco Aldana-Montes. Developing data ser-
vices. In Proceeding of the 17th Conference on Advanced Information Systems
Engimeering. Data Integration and the Semantic Web, DISWeb, pages 287-301,
Oporto, Portugal, March 2005. ISBN 972-752-077-4.

[Navas-Delgado et al. 2008] Ismael Navas Delgado and José Francisco Aldana Montes.
SD-Core: Generic Semantic Middleware Components for the Semantic Web. In Pro-
ceedings of KES 2008.

[Navas-Delgado et al. 2008B] Ismael Navas Delgado, Amine Kerzazi, Othmane
Chniber and José Francisco Aldana Montes. SD-Core: A Semantic Middleware Ap-
plied to Molecular Biology. In Proceedings of OTM Workshops 2008.

[Navas-Delgado et al. 2008C] Ismael Navas-Delgado, Ral Montaez, Almudena Pino-
ngeles, Aurelio A Moya-Garca, Jos Luis Urdiales, Francisca Snchez-Jimnez, and
Jos F Aldana-Montes. AMMO-Prot: amine system project 3D-model finder. BMC
Bioinformatics. 2008; 9(Suppl 4): S5.

[OpenLink Software 2010] OpenLink Software. OpenLink Virtuoso (last visit January
2010). http://www.openlinksw.com/virtuoso/

[Palma et al. 2006] Raul Palma, Peter Haase, and Asunción Gómez-Pérez.Oyster:
sharing and re-using ontologies in a peer-to-peer community. In Proceedings of the
15th international conference on World Wide Web. Edinburgh, Scotland, 2006.

[Prudhommeaux 2007] E. Prudhommeaux: Federated SPARQL (May 2007),
http://www.w3.org/2007/05/SPARQLfed/.

[Risch et al. 2001] Tore Risch and Vanja Josifovski. Distributed data integration by
object-oriented mediator servers. Concurrency and Comoutation: Practice and Ex-
perience, 14:1-21, 2001.

[Roldan-Garcia et al. 2008] Maria M. Roldan-Garcia and Jose F. Aldana-Montes.
Dbowl: Towards a scalable and persistent owl reasoner. In Proceeding of the In-
ternet and Web Applications and Services, 2008. ICIW ’08. Third International
Conference on, pages 174-179, June 2008.

[Sattler et al. 2005] K.U. Sattler and I. Geist and E. Schallehn: Concept-based query-
ing in mediator systems. The VLDB Journal 14(1), 97111 (2005).

[Tomasic et al. 1997] Anthony Tomasic, Remy Amouroux, Philippe Bonnet, Olga
Kapit- skaia, Hubert Naacke, and Louiqa Raschid. The distributed information
search component (disco) and the world wide web. In Proceeding of the 1997 ACM
SIGMOD International Conference on Management of Data, pages 546-548, 1997.

3230 Navas-Delgado I., Aldana-Montes J.F.: Extending SD-Core for Ontology ...


