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Abstract: Supply chain master planning strives for optimally aligned production,
warehousing and transportation decisions across a multiple number of partners. Its
execution in practice is limited by business partners’ reluctance to share their vital
business data. Secure Multi-Party Computation (SMC) can be used to make such
collaborative computations privacy-preserving by applying cryptographic techniques.
Thus, computation becomes acceptable in practice, but the performance of SMC re-
mains critical for real world-sized problems. We assess the disclosure risk of the input
and output data and then apply a protection level appropriate for the risk under the
assumption that SMC at lower protection levels can be performed faster. This speeds
up the secure computation and enables significant improvements in the supply chain.
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1 Introduction

Supply chain master planning (SCMP) strives for optimally aligned production,
warehousing and transportation decisions across multiple partners. In practice,
we can commonly observe a decentralized coordination mechanism (referred to
as upstream planning) that usually only leads to local optima rather than to
global supply chain optima [Dudek, Stadtler 2005]. At least in theory, optimal
master plans can be generated for the whole supply chain if some planning unit
has at its disposal all relevant information pertinent to the individual partners
in the supply chain. It is, however, a well known fact that companies are typ-
ically not willing to share sensitive private data (e.g. cost and capacity data)

Journal of Universal Computer Science, vol. 15, no. 15 (2009), 3019-3037
submitted: 1/2/09, accepted: 29/8/09, appeared: 1/9/09 © J.UCS



([Pibernik, Sucky 2006, Pibernik, Sucky 2007]). They perceive the risk that the
central planning unit or other parties misuse data to their disadvantage in order
to obtain additional benefits.
The major obstacles to centralized master planning can be removed if a mech-
anism for securely and privately computing the supply master plan is in place
[Atallah et al. 2009]. A central planning unit, e.g. a 4th party logistics provider
(4PL), could then determine globally optimal master plans and distribute these
to the individual partners involved in the supply chain. To this end, Secure
(Multi-Party) Computation (SMC) can be employed such that the relevant data
does not need to be disclosed even to the central planning unit. This offers the
ultimate level of protection, since no data sharing risk remains. In this paper we
propose a framework for secure centralized supply chain master planning (SS-
CMP). We introduce a basic model for centralized supply chain master planning
and, from this, derive the relevant data a central planning unit requires to opti-
mally coordinate manufacturing and transportation decisions. We then analyse
this data with respect to its ”criticality”. Criticality refers to how sensitive cer-
tain pieces of data are and how willing the different partners will be to share this
data. The criticality is determined by the perceived risks associated with data
sharing and its prior public knowledge. In this context, risk can be characterized
by the potential negative impact that occurs if a partner misuses the data to
its own benefit and the likelihood for this to happen. We derive an overall criti-
cality assessment for each data element that is relevant for supply chain master
planning and use information about on the prior (public) knowledge of the data
to determine an overall criticality score. This criticality score constitutes an in-
put to secure computation of centralized supply chain master plans. We map
criticality scores to protection levels which consist of certain technologies and
parameters for SMC. Lower protection levels lead to faster SMC implementa-
tions. We propose a mixed approach to SMC combining the different protection
levels in one implementation and propose modifications to Linear Programming
(LP) that optimize the effort involved by selecting the pivot element based on the
protection level. We experimentally verify the effectiveness of the new algorithm.

2 Related Work

Numerous works in the area of supply chain management exists on supply chain
master planning as well as information sharing and collaboration in supply
chains. In general, it is a well acknowledged fact that sharing relevant infor-
mation and planning in a collaborative fashion can improve supply chain per-
formance and mitigate the consequences of demand variability, especially with
respect to the well-known bullwhip effect (see for example [Chen et al. 1999,
Lee et al. 1997, Min et al. 2005, Yu et al. 2001]). With respect to supply chain
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master planning, numerous authors have proposed multi-stage models that can
be utilized to coordinate planning activities across multiple locations and firms
(e.g. [Fleischmann, Meyr 2003, Jayaraman, Pirkul 2001, Shapiro 2001]). Various
authors have stated that employing a centralized approach to master planning
will lead to better results as compared to decentralized approaches that are
most commonly employed in industry. [Simpson, Erengüc 2001], for example,
analyze the disadvantages of upstream coordination in comparison with cen-
tralized coordination. They compute the average gap between centralized and
upstream coordination for several test scenarios with varying cost parameters
and demand patterns. Similar findings are reported in [Pibernik, Sucky 2007].
However, centralized supply chain planning has not been widely adopted in
industry. [Holström et al. 2002] states: ”it is difficult, or maybe even impossi-
ble, to get a large network consisting of independent companies to agree on
and implement a centralised planning and control solution.” Reluctance to-
wards information sharing (a prerequisite for centralized master planning) has
been identified as the main obstacle that inhibits centralized master planning
([Pibernik, Sucky 2006, Pibernik, Sucky 2007]). For this reason, alternative ap-
proaches have been developed that either build on negotiation based coordina-
tion ([Dudek, Stadtler 2005]) or hybrid forms ([Pibernik, Sucky 2006]). So far
there has been no research on supply chain master planning based on mech-
anisms that privacy preserving data sharing and computation. To the best of
our knowledge the only approach to secure multi-party computation in the area
of supply chain management can be found in [Atallah et al. 2009]. The authors
develop secure protocols for a Collaborative Planning, Forecasting, and Replen-
ishment (CPFR) process. Next to the fact that we, in our paper, consider a
different problem setting, a major distinction between the research presented in
[Atallah et al. 2009] and our research is that they do not consider different pro-
tection levels for different risks of data to be shared. They follow the approach
to provide the highest protection for all data using a specially developed pro-
tocol. Their protocols are two-party protocols, while we consider a multi-party
problem. We will now review related work for SMC.
SMC allows a set of n players, P = P1, . . . , Pn, to jointly compute an arbitrary
function of their private inputs, f(x1, . . . , xn). The computation is privacy pre-
serving, i.e. nothing else is revealed to a player than what is inferable by his
private input and the outcome of the function. A cryptographic protocol is then
run between the players in order to carry out the computation. Even if there are
adversarial players, the constraints on correctness and privacy can be proven to
hold under well stated settings. These settings consider the type of adversary as
well as his computing power which can be bounded or unbounded. An adversary
can be passive, i.e. following the protocol correctly but trying to learn more or he
can be active, by arbitrarily deviating. For the two-party case it has been proven
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by Yao in [Yao 1982], that any arbitrary function is computable in privacy pre-
serving fashion, using garbled binary circuits. This approach has been extended
to the multi-party case in [Beaver et al. 1990, Goldreich et al. 1987]. Alternative
approaches base on secret sharing schemes. A player’s secret s is split into m

shares which are then distributed to m players. Players can compute intermedi-
ate results on the shares, and in the end a reconstruction is performed in order
to receive the final result. Other approaches utilize semantically secure homo-
morphic encryption (HE) [Damg̊ard, Jurik 2001], a public encryption scheme,
where E(x) · E(y) = E(x + y) and x cannot be deduced by E(x).
Using the general approach leads to solutions that have high complexity and
are therefore almost always not practically feasible [Li, Atallah 2006]. Thus, in
order to get a practical solution, a dedicated protocol should be constructed.
Atallah et al. constructed solutions for a couple of supply chain problems, e.g.
planning, forecasting, replenishment, benchmarking, capacity allocation and e-
auctions ([Atallah et al. 2009, Atallah et al. 2004, Atallah et al. 2003]). Their
cryptographic protocols base on additive secret sharing, homomorphic encryp-
tion and garbled circuits. A contribution of Atallah et al. which is closely re-
lated to ours is that of secure linear programming [Li, Atallah 2006]. It uses the
simplex method introduced by Dantzig in [Dantzig, Thapa 1997] to solve lin-
ear programs which get expressed as a matrix D. The method consists of two
steps: selecting the pivot element drs and pivoting all elements dij of D over this
element. The pivot step sets the new value of dij , denoted d′ij , by

d′ij = 1
drs

for i = r and j = s (pivot element)

d′ij = dij

drs
for i = r and j �= s (pivot row)

d′ij = −dij

drs
for i �= r and j = s (pivot column)

d′ij = dij−disdrj

drs
for i �= r and j �= s (all other elements).

The method is repeated until the optimal solution of the LP is found (resp., it
is stated that the problem is unbounded or infeasible). As input to the cryp-
tographic protocol, matrix D gets additively split between both parties (i.e.,
D = D(a) + D(b)). In order to not reveal additional information (e.g. by the
pivot column or row index), the matrix gets permuted at the beginning of each
iteration. Details are omitted here, but can be found in [Li, Atallah 2006]. The
pivot element selection and the pivot step are then carried out using crypto-
graphic tools additive splitting, homomorphic encryption and garbled circuits.

3 Supply Chain Master Planning

In this section we first provide a basic model for centralized supply chain master
planning. This model will be used to derive the relevant data that partners in
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Master planning parameters (input)
Dn

l Demand for final finished product n ∈ NI at customer location
l ∈ KI+1

αm,n Quantity of input product m required for manufacturing one unit
of output product n

βn
k Unit capacity requirement at location k ∈ Ki for output of prod-

uct n ∈ Ni

capi,k Production capacity at location k ∈ Ki

cpn
i,k Unit production costs of product n ∈ Ni at location k ∈ Ki

csn
i,k,l Unit shipping costs of product n ∈ Ni from location k ∈ Ki to

location l ∈ Ki+1

chn
i,k Unit holding costs of product n ∈ Ni at location k ∈ Ki

Master planning variables (output)
xn

i,k Production quantity of output product n ∈ Ni manufactured at
location k ∈ Ki

yn
i,k,l Shipping quantity of product n ∈ Ni shipped from location k ∈ Ki

to l ∈ Ki+1

the supply chain need to share for centralized master planning. We then propose
a simple approach to assess the criticality of the individual elements.

3.1 Model for Centralized Supply Chain Master Planning

As a basis for our subsequent analysis we utilize a simple generic supply chain
master planning model presented in [Pibernik, Sucky 2007]. Although rather
simple, this model is sufficient for the illustration of our concept and can easily be
extended in order to account for further practical requirements and restrictions.
We consider a supply chain with I stages on which different operations (e.g.
manufacturing, warehousing, etc.) are performed. We use index i (i = 1, . . . , I)
to distinguish the different stages. By I + 1 we denote the final customer stage.
By Ki we denote the set of nodes on stage i. Every node k ∈ Ki represents
one production facility or warehouse on stage i = 1, . . . , I. The final customer
locations are modelled through nodes k ∈ KI+1 on stage i = I + 1. By Ni we
denote the set of products produced on stage i and use m ∈ Ni−1 and n ∈ Ni as
indices for the input and output products of stage i. For a given supply chain,
master planning determines the production and inventory quantities for every
node and the material flows between the nodes for a given time period. We
introduce the following additional notation to formulate a centralized master
planning model:
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Objective function

Min C =
I∑

i=1

∑
k∈Ki

∑
n∈Ni

cpn
i,kxn

i,k +
I∑

i=1

∑
k∈Ki

∑
n∈Ni

chn
i,kxn

i,k+

I∑
i=1

∑
k∈Ki

∑
l∈Ki+1

∑
n∈Ni

csn
i,k,ly

n
i,k,l (1)

Constraints∑
k∈KI

yn
I,k,l = Dn

l ∀n ∈ NI , l ∈ KI+1 (2)

xn
i,k =

∑
l∈Ki+1

yn
i,k,l ∀n ∈ Ni, i ∈ {1, . . . , I}, k ∈ Ki (3)

∑
j∈Ki−1

ym
i,j,k =

∑
n∈Ni

αm,nxn
i,k ∀m ∈ Ni−1, i ∈ {1, . . . , I}, k ∈ Ki (4)

∑
n∈Ni

βn
k xn

i,k ≤ capi,k ∀i ∈ {1, . . . , I}, k ∈ Ki (5)

xn
i,k, yn

i,k,l ≥ 0 ∀n ∈ Ni, i ∈ {1, . . . , I}, k ∈ Ki (6)

The following deterministic, linear programming model can be used to deter-
mine a supply chain master plan. The objective of the model is to minimize the
total relevant costs of the SC for fulfilling final customer demand. The objec-
tive function (1) accounts for production costs, holding costs, and shipping costs
for finished products. Constraints (2) ensure that the final customer demand
at stage I + 1 is met. (3) and (4) represent finished product and intermedi-
ate product balance constraints. The capacity constraints (5) ensure that the
available capacity of any location will not be exceeded. Constraints (6) ensure
non-negativity of all decision variables.
The output of this model is a supply chain master plan for a single period that
specifies the production quantity for the individual products in each node and
the shipping quantities across the whole supply chain. From this basic model
we can directly infer the relevant data that needs to be shared in order to re-
alize centralized supply chain master planning. All parties in the supply chain
need to make the above listed input parameters available to the central planning
unit. After generating the supply chain master plan, the central planning unit
has to communicate the results (i.e. the values of the output variables) to the
corresponding partners. In typical industry settings, both the input parameters
and the master planning output constitute private data that is only accessible
to the planning units (firms, departments) responsible for individual nodes and
arcs. The willingness to share this data will depend on the risk the individual
data owners perceive. The perceived risk, however, is not identical for all of the
relevant data elements. A company may, for example perceive a low risk associ-
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ated with sharing forecast data, but a high risk when revealing production cost
or capacity information. While SMC can overcome the risk of data sharing in
theory with the highest protection level, in practice such solutions can become
too slow to be useful (e.g. if the computation takes longer than what the contin-
uous planning period is). We therefore use the result of the risk assessment, the
criticality scores, to optimize the SMC, such that each data element is handled
at its appropriate risk level. We achieve a significant performance improvement
in our experiments.

3.2 Data Criticality and Protection Levels

In this section we illustrate a simple approach to determine protection levels for
individual data elements in the context of centralized master planning. Although
it is rather straightforward to see that the risk will differ across the individual
data elements, it is not possible to determine general criticality levels that are
valid for any supply chain setting. Whether other partners in the supply chain
can use data to their benefit and to the disadvantage of the data owner depends
on factors such as the distribution of power among the partners, the type of
industry and product, the relative position in the supply chain, trust among
partners, etc. Production costs, for example are generally considered as critical
data that a data owner will not want to share. However, in many industries
(e.g. for commodities) production costs are known by different partners without
implying a negative impact. Because a general assessment of the criticality is
not likely to be attainable, an individual assessment has to be conducted for any
specific supply chain. We propose a simple scheme to support such a criticality
assessment. It is based on the following questions that need to be answered for
any one of the data elements identified in the previous section:

1. What disadvantage may a data owner potentially incur when sharing private
data?

2. What is the probability that a partner in the SC (mis-) uses the shared data
to the disadvantage of the data owner?

3. To what extent is the data prior knowledge?

With the first two questions we capture the individual components of the risk
induced by sharing a certain data element. When considering the potential nega-
tive impacts (question one), we have to consider that these may vary depending
on the position of the data source within the supply chain and the potential
incentives other partners in the SC may have to (mis-) use the data. We dif-
ferentiate between partners who are responsible for nodes on the same stage
(competitors) and those who are responsible for nodes on previous or subse-
quent stages (supplier-buyer-relationships). For each of the aforementioned cases
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Potential negative impacts
- induced by competitors:  impact   *   probability               score
- induced by suppliers: impact   *   probability                   + score
- induced by buyers: impact   *   probability + score

[0; 5]          [0; 5]                              [0; 25]

Overall risk assessment (Sum of individual scores):

- Public knowledge (pub): score (pub)
- Prior knowledge of specific stages (spe):     + score (spe)

[0; 5]

Prior knowledge (pk)

Prior knowledge weight:  (1- pk/10)

Criticality assessment
=  Overall risk assessment  *  prior knowledge weight:

[0; 75]

[0 ; 10]
[0; 1]

[0; 75]

Input for secure computation

Figure 1: Determination of criticality

it is necessary to assess the likelihood of a disadvantage on the side of the data
owner, i.e. the probability that another partner in the supply chain will actually
make use of the knowledge of the data element (question 2). The risk cannot be
considered independent of the prior knowledge about the data. It is reasonable
to assume that the criticality of certain data elements is lower if the data is
already accessible for some or all of the partners in the supply chain. Figure 3.2
illustrates our basic scheme for assessing the criticality of individual data ele-
ments. We propose a scoring range between zero and five to adequately assess
by discrete values the potential negative impact and the expected probability
of data misuse. Through multiplication of both scores, we obtain a particular
risk measure for negative impacts induced by competitors, suppliers, or buyers.
Their addition provides a measure for the overall risk. The overall risk for each
data element is then weighted with a value that expresses the prior knowledge
of data. Similarly, a scoring range from zero to five is used to measure the de-
gree of public knowledge in general as well as specific knowledge of individual
SC partners. The sum of both scores measures the level of prior knowledge. A
score of zero indicates that the data is pertinent to the data owner, while higher
scores indicate that the data may anyways be known prior to centralized master
planning. We determine an aggregate weight for the prior knowledge as in order
to derive the overall criticality level. In Figure 3.2 we provide an example of a
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Figure 2: Criticality levels of different types of data (example)

possible outcome of our criticality assessment. With our assessment scheme, a
criticality score between zero and 75 is assigned to each data element.

4 Secure Computation

4.1 Protection Levels

The data criticality analysis of section 3.2 shows that different variables in the
SCMP problem have different perceived risk and in order to mitigate this risk
require different protection. The data criticality scores of the variables range
from zero to 75. We map a data criticality score to a protection level.

A protection level specifies a concrete set of SMC technologies and their pa-
rameters for protecting a variable. These technologies and parameters are: the
computational setting (information-theoretic, cryptographic or best-effort), the
cryptographic tools (Homomorphic Encryption, SHA-1, etc.) and the tool param-
eters. Dependencies among the different parameters of a protection level are pos-
sible, e.g. there cannot be a SMC computation that is information-theoretically
secure, but uses homomorphic encryption as a tool. It is reasonable to arrange
the protection levels in order of the effort for an attacker to infer the protected
value and higher protection levels require higher computation and communica-
tion effort. Higher criticality scores map to higher protection levels. We currently
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Table 1: Linear Mapping

Protection Level 1 2 3 4 5
Criticality Score 0-15 16-30 31-45 46-60 61-75
Number of Data 3 4 0 2 2

do not take into account costs for converting data from from one protection level
to another.

For an implementation of protection levels, one may utilize different key sizes
for encryption schemes, hash algorithms of different strength, different share sizes
in secret sharing schemes or any other suitable security parameter.

4.2 Mapping

A monotone function maps the criticality score c to a protection level p = f(c).
We propose a linear mapping. Other mappings are possible and may depend
on the conrecte application context. We assume the ordered protection levels
differ in their effort by an almost constant factor. We define a linear mapping
function f(c) which maps data criticality score c to m protection levels by f(c) =
1 + �c · m/(cmax + 1)�, where cmax is 75 in Section 3.2. Applying this mapping
to the criticality scores of section 3.2, we receive the values of Table 2. Applying
Table 2 to the criticality scores of Figure 2, nine of eleven variables are assigned
a protection level below the maximum. Thus, we expect a significant reduction
in computational effort by applying risk-aware protection levels to the variables
compared to the straight-forward approach of applying maximum protection to
all variables.

4.3 Integration of Protection Levels

We adapt the secure linear programming protocol by Atallah et al. by intro-
ducing an additional matrix denoted P . Every element of P , pij , represents the
protection level of the corresponding data element in D, dij . Recall that the LP
is rewritten as a matrix D. Let

D =
(

cT −z0

A b

)

where cT denotes the vector of the objective function’s coefficients, z0 the out-
come, A the coefficients of the constraints and b the vector of the constraint
values. Atallah et al.’s secure linear programming protocol uses a slight adap-
tion of the Bland’s Rule [Bland 1977] as pricing scheme. The rule computes the
pivot column s as the left most column with a negative element.

s = argmin{j : cj < 0}
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The pivot row r is computed as the row with the minimum ration between a
row element in the pivot column and the corresponding element in b. In case of
equal ratios the one with the lowest row index is selected. More formally, the
pivot row is obtained by the condition

jr = min
{

ji : i ∈ argmin
{

bi

ais
: ais > 0

}}
.

All parties agree on the specifications of the protection levels and have plaintext
access to the matrix P of protection levels for the elements of the data matrix
D. P gets blinded and identically permuted as D in the original protocol. P may
leak little information, e.g. if there is a unique occurrence of a protection level.

Whenever a pivot step is performed in order to receive a new value d′ij , the
new protection level value p′ij is set to the highest protection level assigned to
any element of D involved in the computation. According to the pivot rules of
the Simplex algorithm the involved elements for element d′ij with pivot element
drs may be: drs, drj , dis and dij . Let pBr denote the protection level of the
variable assigned to row r in the current basis. The new protection level p′ij for
d′ij then is computed as

p′ij= pij for i = r and j = s (pivot element)
p′ij= max(pij , prs, pBr) for i = r and j �= s (pivot row)
p′ij= max(pij , prs) for i �= r and j = s (pivot column)
p′ij= max(pij , pis, prj, prs) for i �= r and j �= s (all other elements)

Over a number of iterations the elements of P will converge to the maximum
protection value. We introduce three approaches to counter a quick convergence
of P . Our goal is to minimize the effort of the cryptographic SMC operations.

4.4 An Optimized Rule for Row Selection

Existing pricing schemes for row selection only consider values of matrix D. We
construct a pivot selection rule which not only uses entries of D, but also entries
of P and moreover prevents P from fast convergence. Our first approach keeps
the algorithm of the Bland’s Rule for selecting the pivot column, but replaces
the algorithm for selecting the row. We select r for 0 < r ≤ m as

r = min(
br

ars
) : min

( m−1∑
i=0

n−1∑
j=0

max(prs, pis, prj, pij) − pij

)
.

This formula selects the element in the pivot column s from the set of el-
ements with minimum ratio as described in Section 4.3 which has the lowest
impact on the convergence of matrix P . Note that this rule will only deviate
from Bland’s rule if ties in the minimum ratio occur.
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4.5 An Optimized Rule for Column Selection

Existing pricing schemes for column selection only consider values of matrix
D as was the case for the row selection. Again, we change the rule to also
consider values of matrix P . We base the selection of s on two conditions: one
that cT

s < 0 necessary for decreasing the objective function and one that cT
s

has minimal expected impact on the convergence of matrix P . We express the
expected impact on the convergence of P as a weight w(i) for each column i.
Since the impact of the pivot selection can only be exactly determined after row
selection, we employ three different weight functions and experimentally evaluate
their effectiveness.

The first weight function wmax is the maximum protection level value in
column i.

wmax(i) = max(pji) for 0 ≤ j < m

The second weight function wsum is the sum (average) of the protection levels
in column i.

wsum(i) =
∑

pji for 0 ≤ j < m

The third weight function wfreq is the sum (average) of the squares of the
protection levels in column i. The intuition is to find a compromise between
average and maximum.

wfreq(i) =
∑

p2
ji for 0 ≤ j < m

We define the rule for selecting the pivot column s to

s = argminw(i) : cT
i < 0 for 0 ≤ i < n.

This rule requires the access to the protected elements cT
i and, as such, must

be partially performed as a secure computation. We suggest to use scrambled
circuits as in [Atallah et al. 2003].

4.6 Optimized Pre-sort

Instead of modifying the column selection rule and thereby modifying the SMC
protocol, we can pre-sort the columns, such that Bland’s rule is likely to find the
column with minimal impact on the convergence of P . Recall, that Bland’s rule
selects the leftmost column with cT

i < 0. Therefore, before engaging in the secure
linear programming protocol the parties sort the columns of D in ascending order
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of their initial weight w(i) as determined by the risk assessment. We emphasize
that the weights can change during protocol execution and it is not guaranteed
that the columns remain sorted and that Bland’s rule will always select the same
column as our modified column selection rule. We again experimentally evaluate
the effectiveness of the pre-sorting approach.

5 Experiments

We determine the most effective aproach of the three described in Section 4 by
experimentation based on the data gathered in Section 3. We also compare our
approaches to the straight-forward approach of always applying the maximum
protection level.

In our experiments we made the simplifying assumption that each product
and each party uses the same protection level, since our available data of critical-
ity scores from risk assessment is limited. In practice, one can assume a greater
variety of protection levels, likely to increase the variance of the expected benefit.

5.1 Setup

We replicated the linear programming algorithm used in Atallah et al.’s protocol
in local, non-secure implementaion. Note that it is not necessary to run the cryp-
tographic protocol in order to estimate the performance gain of our approaches.
We estimate the cost of the protocol as the sum of the costs of the updates to
matrix D. In each iteration, each element dij is updated to d′ij . We estimate the
cost of each update as its new protection level p′ij .

We sample the problem domain by randomly generated instances of the sup-
ply chain master planning (SCMP) problem. Our random SCMP generator takes
as input the number of stages, the number of producers per stage, the number
of products per stage and the number of customer. As output it produces a
random data matrix D and its corresponding protection level matrix P . Table 2
shows the six supply chain models used in our experiments. For each model we
generated 100 random instances.

Table 3 shows the combination of approaches used in our experiments. In each
run of the experiments we measured the cost of the protocol and the number of
pivot steps.

5.2 Results

As a baseline we used the cost of only using Bland’s rule and normalized all
costs accordingly. In Table 4 we give the resulting relative effort. In brackets we
denote the standard deviation. Figure 3 shows a graphical represention of the
results in Table 4.
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Table 2: Supply chain network characteristics (experiment)

Type Stages Producers Products Customer Dimension
(per Stage) (per Stage)

M0 2 2 2 8 93x141
M1 3 2 2 8 123x183
M2 2 3 2 8 137x215
M3 2 2 3 8 137x209
M4 3 3 2 8 188x290
M5 2 3 3 8 202x319

Table 3: Experiments setup details

Name Description
Bland Bland without any Protection Levels (i.e., Pmax)
BlandP Bland with Protection Levels
BlandPRow Bland with Protection Levels, optimized row selec-

tion
BlandPSortMax Bland with Protection Levels, Pre-sort (fmax)
BlandPSortSum Bland with Protection Levels, Pre-sort (fsum)
BlandPSortFreq Bland with Protection Levels, Pre-sort (ffreq)
BlandPRowSortMax Bland with Protection Levels, optimized row selec-

tion, Pre-sort (fmax)
BlandPRowSortSum Bland with Protection Levels, optimized row selec-

tion, Pre-sort (fsum)
BlandPRowSortFreq Bland with Protection Levels, optimized row selec-

tion, Pre-sort (ffreq)
BlandPColumnMaxRow Bland with Protection Levels, optimized column se-

lection (fmax), optimized row selection
BlandPColumnSumRow Bland with Protection Levels, optimized column se-

lection (fsum), optimized row selection
BlandPColumnFreqRow Bland with Protection Levels, optimized column se-

lection (ffreq), optimized row selection

In Table 5 we give the number of pivot steps relative to the Bland’s rule.
Values in brackets again denote the standard deviation. Figure 4 shows graphical
represention of the results in Table 5.

One can see that risk-aware protection levels already reduce the cost of the
protocol between 30-38% compared to always applying the maximum protection
level in our experiments, if only Bland’s rule is used. Using our row selection
approach, the costs have further been reduced by 5-12%. Using our column pre-
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Figure 3: Overview of effort of all experiments
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Figure 4: Overview of number of pivot steps of all experiments
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Table 4: Relative effort of all experiments (in % normalized to Bland)

Setup M0 M1 M2 M3 M4 M5

Bland 100 100 100 100 100 100
(19,87) (46,34) (20,58) (19,47) (36,47) (23,81)

BlandP 61,63 64,71 65,07 61,57 69,24 66,25
(24,24) (53,80) (23,76) (23,76) (39,54) (26,99)

BlandPRow 54,29 57,13 59,59 54,33 57,15 53,69
(23,26) (28,40) (26,64) (28,96) (30,97) (28,31)

BlandPSortMax 32,92 46,76 41,67 32,37 45,44 35,49
(34,51) (33,95) (35,45) (36,43) (31,80) (35,65)

BlandPSortSum 32,92 46,76 41,67 32,37 45,44 35,49
(34,51) (33,95) (35,45) (36,43) (31,80) (35,65)

BlandPSortFreq 32,92 46,76 41,67 32,37 45,44 35,49
(34,51) (33,95) (35,45) (36,43) (31,80) (35,65)

BlandPRowSortMax 32,01 45,36 41,85 31,18 43,61 38,19
(35,70) (34,08) (38,81) (39,35) (31,72) (35,88)

BlandPRowSortSum 32,01 45,36 41,85 31,18 43,61 38,19
(35,70) (34,08) (38,81) (39,35) (31,72) (35,88)

BlandPRowSortFreq 32,01 45,36 41,85 31,18 43,61 38,19
(35,70) (34,08) (38,81) (39,35) (31,72) (35,88)

BlandPColumnMaxRow 58,52 70,82 74,67 77,18 79,15 103,34
(33,52) (42,57) (37,29) (28,98) (33,36) 1(35,42)

BlandPColumnSumRow 58,52 70,82 74,67 77,18 79,15 103,34
(33,52) (42,57) (37,29) (28,98) (33,36) 1(35,42)

BlandPColumnFreqRow 58,52 70,82 74,67 77,18 79,15 103,34
(33,52) (42,57) (37,29) (28,98) (33,36) 1(35,42)

sorting we achieved cost savings of 53-67%. We received the highest cost savings
of 54-68% using column pre-sorting together with optimized row selection.

The results also show that using the optimized rule for row selection together
with pre-sorting is not significantly better than using Bland’s rule with pre-
sorting. For the model M5 the optimized rule with pre-sorting was even slightly
worse than Bland’s rule with a pre-sorting.

No improvement was achieved by our column selection rule. Using this rule
for the model M5 even resulted in an average effort greater than the use of
Bland’s rule with Pmax. This seemingly paradox result can be easily explained:
The application of the optimized rule for column selection led to a considerably
higher average number of pivot steps. Our column selection rule needs on average
226 steps in the model M5, while the average number of pivot steps for the other
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Table 5: Relative pivot steps of all experiments (in % normalized to Bland)

Setup M0 M1 M2 M3 M4 M5

Bland 100 100 100 100 100 100
(20,25) (46,57) (20,84) (19,48) (36,54) (23,98)

BlandP 100 100 100 100 100 100
(20,25) (46,57) (20,84) (19,48) (36,54) (23,98)

BlandPRow 90,24 89,87 92,85 90,47 84,11 83,44
(19,03) (24,19) (23,07) (23,19) (28,12) (24,45)

BlandPSortMax 95,12 96,2 102,38 95,23 83,17 88,96
(17,11) (21,78) (20,54) (17,12) (23,04) (19,88)

BlandPSortSum 95,12 96,2 102,38 95,23 83,17 88,96
(17,11) (21,78) (20,54) (17,12) (23,04) (19,88)

BlandPSortFreq 95,12 96,2 102,38 95,23 83,17 88,96
(17,11) (21,78) (20,54) (17,12) (23,04) (19,88)

BlandPRowSortMax 92,68 93,67 97,61 88,88 78,5 86,89
(17,03) (22,22) (22,48) (18,59) (23,59) (21,22)

BlandPRowSortSum 92,68 93,67 97,61 88,88 78,5 86,89
(17,03) (22,22) (22,48) (18,59) (23,59) (21,22)

BlandPRowSortFreq 92,68 93,67 97,61 88,88 78,5 86,89
(17,03) (22,22) (22,48) (18,59) (23,59) (21,22)

BlandPColumnMaxRow 104,87 113,92 120,23 128,57 117,28 155,86
(24,96) (36,07) (31,16) (23,53) (30,02) (31,47)

BlandPColumnSumRow 104,87 113,92 120,23 128,57 117,28 155,86
(24,96) (36,07) (31,16) (23,53) (30,02) (31,47)

BlandPColumnFreqRow 104,87 113,92 120,23 128,57 117,28 155,86
(24,96) (36,07) (31,16) (23,53) (30,02) (31,47)

runs is 126 to 145. We attribute this to the fact that our rule ignores the values
from the data matrix; only the protection level matrix is considered. Thus, a
modification of the selection rule might lead, as in this case, to a greater number
of pivot steps. We note that the lowest average effort does not necessarily cor-
respond to the lowest average number of pivot steps. The application of Bland’s
rule together with pre-sorting led to a greater average number of pivot steps
than the application of our row selection rule, while its average cost was lower.
However, the cost of the protocol is commonly linear in the average number of
pivot steps.

All three weight functions performed equally effective. We attribute this to
the particular distribution of our initial protection levels derived from the criti-
cality scores. Different risk assessments might result in different effectiveness of
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the weight functions.

6 Conclusion

We introduced Secure Supply Chain Master Planning (SSCMP), an approach
for centralized planning using secure computation. Traditional SCMP centrally
computes the optimal production and transportation plan across a number of
parties using Linear Programming. SSCMP can alleviate the perceived risk in
SCMP due to data disclosure, since secure computation protects the confiden-
tiality of the input values. We derived a methodology to assess these risks, the
criticality score, in supply chains. Not surprisingly, the criticality scores vary for
different input data.

We propose to modify the Linear Programming algorithm implemented in
secure computation handling each data item at its risk level in order to increase
the performance of SSCMP. We suggest three approaches modifying the Linear
Programming algorithm to take advantage of the risk assessment results. We
then assessed the effectiveness of our approaches in an experimental study. We
conclude that a pre-sorting of the columns of the LP matrix according to their
protection levels significantly and most effectively reduces the cost of the secure
computation.

Future work is to apply the method to other algorithms for linear optimiza-
tion, e.g. inner point methods, and to other supply chain optimization problems
also adapting the risk assessment.
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[Simpson, Erengüc 2001] Simpson, N., Erengüc, S.: “Modelling the order picking func-
tion in supply chain systems: formulation, experimentation, and insights”, in: IIE
Transactions 33(2), 2001.

[Yao 1982] Yao, A.: “Protocols for secure computations”. Proceedings of the 23rd IEEE
Symposium on the Foundations of Computer Science (FOCS), IEEE, 1982.

[Yu et al. 2001] Yu, Z., Yan, H., Cheng, T.: “Benefits of information sharing with sup-
ply chain management”, in: Industrial Management and Data Systems, 2001.

3037Schroepfer A., Kerschbaum F., Schuetz C., Pibernik R.: Optimizations ...


