
ModelSec: A Generative Architecture for

Model-Driven Security

Óscar Sánchez, Fernando Molina
Jesús Garćıa-Molina, Ambrosio Toval

(University of Murcia, Murcia, Spain
osanchez@um.es, fmolina@um.es, jmolina@um.es, atoval@um.es)

Abstract: Increasingly, the success of software systems depends largely on how their
security requirements are satisfied. However, developers are challenged in implement-
ing these requirements, mainly because of the gap between the specification and imple-
mentation, and the technical complexities of the current software infrastructures. Re-
cently, Model-Driven Security has emerged as a new software development area aimed
at overcoming these difficulties. This new paradigm takes advantage of the benefits
of the model driven software development techniques for modeling and implementing
security concerns. Following this trend, this paper proposes a model driven security
approach named ModelSec that offers a generative architecture for managing security
requirements, from the requirement elicitation to the implementation stage. This ar-
chitecture automatically generates security software artifacts (e.g. security rules) by
means of a model transformation chain composed of two-steps. Firstly, a security in-
frastructure dependent model is derived from three models, which express the security
restrictions, the design decisions and the information needed on the target platform.
Then, security software artifacts are produced from the previously generated model.
A Domain-Specific Language for security requirements management has been built,
which is based on a metamodel specifically designed for this purpose. An application
example that illustrates the approach and the Eclipse tools implemented to support it
are also shown.

Key Words: Requirements Engineering, Requirements Metamodelling, Model Driven
Engineering, Model Driven Security

Categories: D.2.1

1 Introduction

Security is a crucial aspect in current software systems. Thus, security require-
ments must be adequately considered in all the phases of software develop-
ment, from the consideration of requirements to the system implementation
[Fernández-Medina et al., 2009, Haley et al., 2008]. To address the complex is-
sue of developing secure systems which satisfy the desired security require-
ments, several model-based development approaches have recently appeared
[Basin et al., 2006, Jurjens, 2003, Reznik et al., 2007, Lang and Schreiner, 2008].
Models have been traditionally used in Software Engineering as an abstraction
mechanism for the analysis and design of software systems. For many years,
their usefulness was mainly focused on documenting and considering the system

Journal of Universal Computer Science, vol. 15, no. 15 (2009), 2957-2980
submitted: 1/2/09, accepted: 29/8/09, appeared: 1/9/09 © J.UCS



to be built but, in this decade, they have become first-class software compon-
ents, since source code can be generated from models specified by well-defined
modeling languages.

Model-driven Engineering (MDE) [Selic, 2008] has emerged as a new area in
software engineering, whose goal is the definition of theories, methods, tech-
niques and tools for applying this model-based development paradigm. The
Model Driven Architecture (MDA) initiative [OMG, 2003], promoted by the
OMG, is the most popular MDE approach, although there are others such as
Domain-Specific Development or Software Factories. Model driven approaches
are based on three main principles: i) The creation of modeling languages (also
named Domain Specific Languages, DSL) by applying metamodelling concepts,
ii) The use of these languages to model different aspects of a software system,
and iii) The automatic processing of the models built, by means of model trans-
formations in order to generate software artifacts (e.g. source code) that will be
part of the final application. On the other hand, most MDE tools are currently
integrated in the Eclipse platform [Eclipse, 2008a] that provides implementations
of the OMG specifications, for example, the Ecore metamodelling language. Be-
sides, the definition of new domain specific languages is a more widely used
practice than building UML profiles since the profiling mechanism allows for a
limited extension form [Kelly and Tolvanen, 2008].

Two seminal works [Jurjens, 2003, Basin et al., 2006] laid the foundations
for the application of the model-based development to the building of secure
systems. Firstly, Jurjens proposes UMLSec as an UML extension aimed at ex-
pressing and evaluating specifications for vulnerabilities using formal semantics.
Later, Basin et al. show how the MDE approach can be specialized to deal
with security needs, namely Model-Driven Security (MDS). They illustrate the
feasibility of the new MDS approach by using models to create software arti-
facts related to role-based access control infrastructure. A UML profile named
SecureUML was built to support visual modeling of access control require-
ments. It is worth noting that UMLSec has evolved into an MDS approach
[Jurjens et al., 2008].

In this paper we present an MDS approach, named ModelSec, which is based
on current MDE practices and tools. ModelSec proposes a generative architecture
for automatically generating security software artifacts (e.g. rules implementing
security policies or security code for a database) from security models. This
architecture is based on a model transformation chain composed of two steps.
Firstly, a model, dependent on the security infrastructure, is derived from three
models, expressing the security requirements, the design decisions made for im-
plementing them, and the information needed on the target platform. Instead of
UML profiles, a graphical DSL for expressing security requirements models has
been defined, which conforms to a metamodel that includes the more common

2958 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



concepts related to the security aspects of a software system. In the second step,
a model-to-code transformation generates software artifacts from the previously
generated model.

ModelSec provides a significant advantage compared to the existing ap-
proaches: the proposed process enables developers to apply a systematic pro-
cess. Modeling security requirements are separated from representing the design
decisions for their implementation and from specifying the information related
to the target platform needed for generating software. To accomplish this, a
security model is created at the analysis, design and implementation stages of
the development process. A novel feature of ModelSec is the possibility of mod-
eling design choices, so that the developers have to specify in separate models
what security requirements must be satisfied and how they are implemented. On
another hand, ModelSec is a general MDS approach, and not centered on any
specific aspect of security (e.g. access control). To achieve this, the DSL defined
for expressing security requirement models allows the representation of seven
different security aspects, and can also be easily extended in order to consider
any new kinds of security requirements. Besides, the gap between the security
requirements and the implementation code is reduced by introducing an inter-
mediate model, which is the target platform specific model mentioned above.

The approach and the tools implemented on Eclipse to support it will be
illustrated through an example of an application for medical information man-
agement, which shows how code for Oracle Label Security [ORACLE, 2008] and
XACML [OASIS, 2008] policies can be generated from security models. It is im-
portant to note that we show how ModelSec enables us to deal with two different
security aspects, but that other aspects could also be addressed in a similar way.

The remainder of the paper is organized as follows. Section 2 presents an
overview of the proposed MDE. Section 3 shows our proposal for security re-
quirement metamodelling. Sections 4 and 5 explain in detail the DSL implemen-
ted and how the architecture works as a whole. In Section 6, an example that
further illustrates the use of our approach and its automatic support is shown.
Section 7 analyses some related work. Finally, in Section 8, the main conclusions
are drawn and further lines of research are outlined.

2 A model driven approach for security requirements

This section presents an overview of our understanding of how model-based
development should be specialized in order to deal with security aspects. The
proposed generative architecture in ModelSec is intended to support this vision.
Figure 1 shows a schema of the designed process with the different models in-
volved. As can be observed, the system security is represented by specific models
which are separate from models concerning the rest of the requirements. At each

2959Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



stage of the development process a new security model is created, taking into
account the model of the previous stage. These models are used to automatically
generate a model dependent on the concrete platform chosen and, finally, code
of the final application can be produced. Next, the purpose of each model and
the relationships among them is described.

During the requirements analysis stage, the definition of two separate models
is proposed. Firstly, the developer creates a model for capturing the requirements
of the system. Then, security requirements are represented in a more detailed
way using a different model. Both models conform to the metamodel described
in Section 3, but while the requirements model is focused on the non-specific
requirements of the system, the security requirements model uses the security
concepts of the metamodel (e.g. assets or threats) in order to appropriately
represent the security requirements. This metamodel comes with a DSL aimed
at creating security requirement models. Commonly, use cases and conceptual
models are used to represent functional requirements. The requirement models
proposed are not intended to replace the textual descriptions of the use cases,
but are complementary. These models are needed to integrate requirements in an
MDE process for which the use cases templates, expressed in natural language,
are not suitable.

On the other hand, domain or conceptual models defining the domain vocab-
ulary are often represented by class models (e.g. UML class models). Since con-
ceptual models include all the assets, and therefore, the assets that need to be
secured, a relationship among security requirements models and domain mod-
els is established: an asset of a security model maps and a concept in a domain
model. This mapping will be used in the generative architecture to automatically
generate the instances of the assets from classes in the domain model.

When developers consider the system design, they must make design decisions
about how to implement every security requirement. These decisions (e.g., con-
cerning security protocols and technologies) are specified in a security design
model, which is created in two steps. First, a skeleton model is generated from
a security requirement model using model transformation, where a security re-
quirement is often expected to be mapped to the security decision that gives
a technological solution for it. Then, developers must complete the model with
information related to the design of the system security. Security design mod-
els do not include specific information about concrete protocols or technologies,
but refer to abstract platforms (e.g. EJB). A security implementation model is
another kind of platform dependent model aimed at representing this kind of
information on the concrete platform used to implement the security require-
ments (e.g. an implementation of EJB as BEA WebLogic). It is worth noting
that security design models and security implementation models are platform
dependent models, whereas security requirement models should be independent

2960 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 1: Overview of the models proposed by SecureModel

of any platform. Therefore, in the same way as with the MDA approach, our
proposal differentiates between platform independent models (PIM) and plat-
form specific models (PSM). In Section 6, specific examples of these models will
be shown through an example of an application.

The security models presented above are the input to a model-to-model trans-
formation whose result is a target platform model that conforms to a metamodel
representing a target technology. Security code of the final application is then
generated from this intermediate model. There will be a target platform model,
and therefore a security design model and a security implementation model, for
each security aspect considered for generating software. There are some reas-
ons for the existence of these intermediate models. Firstly, the semantic gap
between the business requirements and the implementation code is reduced and
a large transformation is replaced by two that are simpler. The existence of dif-
ferent transformations promotes reuse since the target platform metamodels and
model-to-code transformations can be used in several contexts. Another benefit
is that these models can be used to modify the code that is going to be generated
without the need of editing it by hand. Because the security design model and
the design models are not synchronized, in a few cases it cannot be expected
that generated code related to security would be completely synchronized with
the existing code.

2961Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 2: Proposed core requirements metamodel

In Section 5 the above security models in the context of the generative ar-
chitecture of ModelSec will be explained.

3 A metamodel for security requirements

3.1 Requirements metamodelling

Most traditional approaches to Requirement Engineering (RE) use textual de-
scriptions for the specification of requirements, which are organized in require-
ment documents that are rarely formally structured. Recently, the emergence
of the MDE paradigm, especially the metamodelling technique, has introduced
a new perspective for dealing with these requirements. Now metamodels are
used to formally define the concepts and relationships involved in the analysis
of requirements [Goknil et al., 2008].

Several approaches to metamodelling requirements have recently appeared
[Goknil et al., 2008, Vicente et al., 2007, Berre, 2006]. However, a reference
model has not yet been established and the existing approaches present a great
disparity with regard to the number or semantics of the concerns addressed.
Thus, a core requirement metamodel which contains the common concepts of the
proposed metamodels and several new concepts and relationships considered rel-
evant in our proposal (e.g. the concept of requirement reuse) has been defined.
Moreover, these existing metamodels do not distinguish among different non-
functional requirements, so an extension of the core metamodel, aimed at rep-
resenting the real concepts of security requirements has also been defined. Figure
2 shows the core metamodel while Figures 3 and 4 in Subsection 3.2 show the
extension proposed for including security concepts.

The key element in Figure 2 is that of requirement, which can be de-
scribed by using a set of attributes such as an identifier, its type and its

2962 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 3: Extending the metamodel of Fig. 2: general security concepts

textual description. Requirements can be classified as either functional or
non-functional. Each requirement is connected to the set of goals that it at-
tempts to satisfy. Each goal can be composed of other goals, and captures a
high-level objective from one or more stakeholders that propose it. Another
concern is related to the reuse of requirements, which is tackled by including a
catalogue concept and serves to gather a set of requirements extracted from one
or more sources (i.e., a law or a particular domain,) and that can be reused in
all the projects to which these sources are applicable. A detailed explanation of
the concepts on this core metamodel can be found in [Molina and Toval, 2009].

3.2 Extending the requirements metamodel with security concepts

The metamodel of Figure 2 has been extended with specific security concepts in
order to define a DSL for security requirements. This extension has been divided
into two modules in order to separate the access control mechanisms from the
rest of the concepts (see Figures 3 and 4). The reason for this separation is
that it is expected it will widen the range of control access mechanisms in the
foreseeable future, so changes made to this part of the metamodel should not
have side effects upon the rest of the metamodel. To facilitate the explanation,
the concepts have been divided into three categories: basic security concepts,
security requirements, and access control methods.

2963Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



The basic security concepts are Asset, Threat, Safeguard and Contingency

Plan. These terms conform to the standard ISO/IEC 15408 [ISO, 2005]. An
Asset is a physical or logical object that has value in itself and deserves to have
some guarantees with it. Assets can be of different types, for instance, docu-
ments, data tables, and so forth, and they have some importance for a business,
which is measured by an impact index. Assets refer to elements in the concep-
tual models specified by the linkedTo attribute, which can be implemented in
two main ways. An option is to implement it as an explicit reference to a con-
crete model. Reference to a UML class diagram could be possible, given that
an implementation of the UML metamodel exists in Ecore (i.e. the metamodel
language on the platform Eclipse used to implement our approach). Another
possibility could be to use identifier-based links, i.e. an identifier string that will
match an identifier in a conceptual model. The first option allows us straightfor-
ward navigation through the conceptual model, while the second one allows us
to decouple both models, although consistency between related elements in both
models is not ensured. The latter option has been chosen so that any conceptual
model can be used, not only concrete models such as UML class diagrams.

Assets can be damaged by a Threat, which has properties such as type,
frequency (modeled as an annual rate), a probability of concrete success and
degradation (that is, the level of damage caused in an asset if a threat achieves
its goal). Safeguards serve as an impediment to a risk, in order to reduce it. As
is shown in the type attribute, Safeguard Functions and Safeguard Measures

are distinguished. The former are actions which reduce the risk whereas the latter
are physical or logical devices or processes that reduce the risk. Two operational
modes are distinguished for the safeguards: preventive if they act before a threat
has taken place and curative if they act on damaged assets. For the sake of
reducing a threat that can give rise to damage, a detailed Contingency Plan

composed of a set of safeguards is recommended.
A standard classification for security requirements does not exist, so based

on [Rodŕıguez et al., 2007], seven categories have been considered, which tackle
seven categories of threats. These categories are: privacy, integrity, access con-
trol, authentication, availability, non-repudiation and auditing. Privacy consists
of ensuring that information only can be read by those who are allowed. Integ-
rity is the guarantee that the information stays complete and correct. Access
Control is used to constrain the users that are authorized to access to an asset.
These three kinds of requirements are related to authentication and can have
a condition, defined as an expression. Authentication refers to the parties in-
volved in a communication or interaction. Two kinds of authentication can be
defined: authentication of the users of the service, also known as target authen-
tication, and authentication of the data source, which is called source authentic-
ation. Availability consists of ensuring that authorized users have access to the

2964 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 4: Extending the metamodel of Fig. 2: access control mechanisms

information when needed. Non-repudiation is the ability to prove that parties
have been involved in a communication or action, in such a way that parties
cannot deny using the system. Finally, audit tries to log the use of services and
data. All these sorts of requirements can affect either particular assets or the
entire system.

Frequently, a set of requirements exist which are related to the same asset, re-
duce the effects of the same attack and achieve the same security objective. This
concept, extracted from [Mellado et al., 2007], is introduced in our metamodel
as a Security Requirements Cluster. Regarding privacy, integrity and ac-
cess control requirements, they are directly associated with an Access Control

Method which has a period of validity. The different methods considered are
permissions (Discretionary Access Control, DAC), security levels (Man-
datory Access Control, MAC) or Roles (Hierarchical Role-Based Access Control,
HRBAC) [Samarati and Capitani, 2000]. The concept of MAC Association has
been introduced for associating a security level and an operation with a role.
Note that security levels and roles are related, instead of security levels and
users. Users may change from time to time so it is not desirable to model users
at such a high level.

Bearing the above security concepts in mind, a security requirement
metamodel has been obtained by extending the core metamodel shown in Fig-
ure 2 with the specific security concepts shown in Figures 3 and 4. These two
figures only show the most important attributes of the concepts, and data types
in Figure 3 only include some of the possible values. As can be seen, the exten-
sion point of the core metamodel to add new non functional requirements is the
NonFunctional Requirement metaclass. Security Requirement is a specializ-
ation of Non-Functional Requirement intended to be root for the metaclasses

2965Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



representing security concepts.

4 A DSL for security requirements

In this section the DSL created to express the models which represent the security
requirements in a simple and intuitive way is explained. These models are named
security requirement models and they define the security needs to be satisfied,
in such a manner that platform details are not described. While most existing
approaches provides UML profiles (e.g. UMLsec and SecureUML), our approach
provides a DSL tailored to this domain and called SecML (Security Modeling
Language).

Nowadays, the implementation of a DSL is considered more appropriate than
defining an UML profile, because their design and implementation is not restric-
ted by the limitations of the profiling mechanism [Kelly and Tolvanen, 2008,
Voelter, 2008]. When metamodelling techniques are applied, a DSL consists of
three elements: an abstract syntax metamodel, concrete syntax, and semantics.
The abstract syntax defines the concepts that take part in the DSL and the
relationships between them, and also includes the rules which constrain how the
models can be created. The concrete syntax defines a notation for the abstract
syntax, and semantics is normally provided by means of model transformations
which transform a model expressed in the DSL into models expressed in lan-
guages with well-defined semantics [Kelly and Tolvanen, 2008].

In our case, the abstract syntax is given by the metamodels explained in
Section 3. The graphical representation of the concepts (i.e. the concrete syntax)
included in the DSL is as follows: (see Figure 8(a)). Basic security concepts,
security requirements and access control methods in the metamodel are depicted
by a rectangle with an icon in the upper-left corner. Each concept has a different
icon. For example, the clusters of security requirements have a padlock, security
requirements have a star of a different colour, depending on their type, and assets
are depicted with three small balls. Different from other elements, clusters have
compartments in which the security requirements are included. Some of the
relationships between concepts, such as the relationships between cluster and
threat or asset, have been explicitly represented by means of arrows. Finally,
model-to-model transformations from security requirements models to software
artifacts give semantics to our DSL.

The choice of a graphical DSL instead of a textual one has been determined
by the fact that non-expert users could use it. Graphical DSLs are more readable
and meaningful for representing relationships between concepts, such as relation-
ships between requirements and assets or, in our case, threats. In addition, they
are often easier to learn than textual DSL.

SecML plays a key role in our generative architecture. SecML models can
be created by users who only have business knowledge. The analyst can ex-

2966 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



press the security restrictions by using well-known domain concepts, while the
modeling of design decisions and implementation details are left to the experi-
enced developers. A SecML specification has been split into two views: a view for
modeling textual requirements and a view specifically designed to model security
requirements with SecML. The latter view is related to the former since it details
some of the requirements specified in the textual view. SecML has been imple-
mented on Eclipse using the Graphical Modeling Framework (GMF), a powerful,
practical and widespread framework for giving a graphical concrete syntax to an
abstract syntax expressed with Ecore metamodels. As we indicated, Eclipse is
a well known platform that provides, through several projects, the most widely
used tools and frameworks for MDE. Moreover, GMF has several interesting
features: it is open source like Eclipse, which means that anybody can customize
it; a DSL created with GMF takes advantage of the tools and features of the
Eclipse IDE; code generation is supported by different template languages; and,
tool interoperability is obtained by using XMI, the model serialization format of
Eclipse.

5 From security models to security software artefacts

This section explains how the ModelSec generative approach works. Previously
described security requirement models are completely platform independent and,
thus, other models are needed to represent platform specific security data. There-
fore, previous to presenting an overview of the approach, these models will be
described.

5.1 Making design decisions: the Security Design Model

Whereas security requirements models specify what security restrictions the final
system must satisfy, security design models specify how these restrictions will
be satisfied. These models conform to the security design metamodel shown in
Figure 5, which represents the design decisions related to security requirements
specified in SecML. The metamodel is simple, and contains a hierarchy of types
of design decisions along with a set of data types. The hierarchy has a metaclass
for each security aspect considered by the requirement specification (e.g. login,
authorization, and access control policy). The description of the attributes of
these metaclasses shows an idea of the type of information provided by means
of design security models.

Each requirement in a security requirement model is mapped to an in-
stance of SecurityDesignDecision. Currently, authentication requirements are
mapped to AuthenticationDecision, non-repudiation and audit requirements
are mapped to LoggingDecision, and authorization requirements are mapped

2967Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 5: Security Design Metamodel

to AccessControlDecision. Other security aspects available are not yet con-
sidered due to complexity in implementation in software. They will be considered
in further work.

The SecurityDesignDecision metaclass has four attributes, representing
properties common to any design decision. For each design decision, the list of
requirements related to it must be specified. If a requirement implies the use
of a network, the enableSecureChannel attribute indicates whether the com-
munications must be secured, and cipherSuite declares the set of protocols
and security algorithms to use. This suite includes the cryptographic protocol,
the public-key algorithm, the symmetric-key algorithm and the hash algorithm.
The implementationLevel attribute lets the developer declare whether the re-
quirement will be implemented by either a pre-defined or a custom solution.
Depending on the solution, different artifacts could be generated. For example,
authentication could be accomplished by a module server, and a skeleton of
the XML server configuration file that includes authentication could be auto-
matically generated. On the other hand, authentication could not rely on a
third-party solution, and Java Authentication and Authorization Service (JAAS)
[SUN, 2008] could be automatically generated.

Each metaclass inherited from SecurityDesignDecision adds its own at-
tributes. An AuthenticationDecision includes a type of authentication that
must be consistent with the security requirements model, if specified. The source
of the users (i.e. usersSource attribute) can also be indicated. There are some
other options available for authentication, such as useSingleSignOn,
useOneTimePassword, useFederatedIdentity that allow us to customize any

2968 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



features of the authentication needed.
A LoggingDecision has a type of log mechanism, a cipherFileAlgorithm

property that indicates whether the log file must be ciphered and which is the
symmetric-key algorithm involved, and a hashAlgorithm property that specifies
the algorithm used to perform a hash of the file, if desired.

With regard to the AccessControlDecision metaclass, the attribute
accessControlLanguage is used to specify that we are interested in writing
control policies explicitly with a suitable language, and exchangeLanguage in-
dicates that we would like to use an appropriate language for considering the
access control petitions and decisions.

As can be observed, this metamodel is expected to change in the future, given
that new protocols or technologies are constantly evolving, and new solutions
(i.e. design decisions) will be considered. For this reason, this metamodel includes
only the most common attributes we have detected at the present time.

5.2 Considering the platform: the Security Implementation Models

When design decisions have been taken into account, detailed information about
them must be provided in order to accomplish a proper generation of software
artifacts. This low-level information is dependent on the target platforms for
which these artifacts are generated. This justifies why our approach distinguishes
between security design models and security implementation models and
avoids mixing design decisions and platform specific data. Since there are too
many specific platform details at this level, metamodels are not shown, but some
examples of them can be found in Section 6.

One or more security implementation models are usually created for each
design decision. No implementation model will be defined if we are not in-
terested in generating some kind of predefined artifact or there is not a cur-
rent transformation available for the chosen technologies. For example, a policy
model should be created if we defined an access control decision enabling the
accessControlLanguage option. A skeleton of the implementation models can
be obtained from the design models through model-to-model transformations,
in the same way that a design model can be generated from the requirements
model. As indicated in Section 2, security design models and security imple-
mentation models are platform specific models (PSM). Notice that the former is
dependent on a platform at a more abstract level that the latter.

As a rule, in addition to the models derived from every design decision, an
implementation parameter model is required. The goal of this model is to provide
information about the whole target system, such as the type of application, the
concrete target platform, the technologies implementing the different layers, etc.
Moreover, this model allows us to decouple the declaration of application users
from the requirement models. Since users are frequently expected to change

2969Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 6: Overview of the generative architecture

throughout the life of the new system, it is desirable to declare them as late as
possible so they will not affect the higher level models.

5.3 Generative architecture overview

Figure 6 shows an overview of the presented generative architecture, which has
been implemented using Eclipse. As it was previously stated, once a security
requirement model is available, a security design model must be created, which
depends on the previous model. In the same way, security implementation models
must be defined based on the security design model. Making use of the gener-
ative approach, model-to-model transformations (M2M) have been defined for
generating skeletons of these dependences. Thus, a design model skeleton is de-
rived from a security requirement model that is created by means of the security
requirements DSL. Similarly, security implementation model skeletons can be
derived from the security design model by means of M2M transformations. This
chain of model transformations can be seen at the top of Figure 6. Notice that
design and implementation models are created by developers by adding inform-
ation to the generated skeletons.

Another chain of model transformations can be observed in Figure 6, which
is depicted vertically. This chain aims to automatically generate software arti-
facts from the previously created security models. A security requirement model,
together with the security design and security implementation models are the
input of a M2M transformation that generates several target platform models.
RubyTL [Sánchez et al., 2006] is the transformation language selected to imple-
ment these transformations, since it is compatible with Ecore, which allows us
to interoperate with all of the tools implemented. Finally, model-to-code (M2C)

2970 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



transformations are used for generating software artifacts related to the system
security. In this case, the MOFScript [Eclipse, 2008b] template language has
been chosen due to it being a simple but powerful language based on the use of
rules.

Note that the chain of model transformations of the generative architecture
works due to the fact that all the tools used are compatible, in the sense that
they serialize Ecore models in XMI format. Next section illustrates how this
architecture has been used for generating security code for Oracle and XACML
policies.

6 Application example

To illustrate how the ModelSec approach works, the example adapted from
[Fernández-Medina and Piattini, 2005] of a web application for the management
of medical patients will be used. This example, which includes the design of a
secure database, serves us to show how a role-based control access policy and
database security code can be automatically generated. An in depth explanation
of those models which are not related to security has been omitted since they
are not needed to understand the example but, when necessary, the dependences
among models will be shown.

As indicated in Section 2, the process starts with the definition of the re-
quirements of the system using the SecML. Figure 7 shows the view of the tool
provided for managing requirements, which is used by the analyst for editing
the textual description of the requirements. Instead of directly creating a model,
the analyst could use this view to introduce each requirement (description and
type), and then the corresponding model is generated and populated with an
instance for each requirement. Then, the analyst uses the graphical view of the
tool for the input of the values of the properties of each requirement. In Fig-
ure 7 an extract of a catalogue of requirements elicited by a hospital manager
related to the data of the hospital patients is shown. The upper part of the
catalogue includes a pair of functional requirements (labeled as REQ F1 and
REQ F2) whereas the lower part involves non-functional requirements (labeled
from REQ S1 to REQ S7). For reasons of simplicity, only some non-functional
requirements have been included. It is important to note that SecML could be
used for modeling both functional and non-functional requirements.

An excerpt of the security requirements model for this catalogue appears
in Figure 8(a), which shows a screenshot of the security view of the tool. The
window panel consists of two parts: the editing area and the element palette.
A model with different types of elements can be observed in Figure 8(a), while
the properties that describe the most relevant types of elements are presented in
Figure 8(b). In Figure 8 several elements are visualized: four clusters containing a

2971Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 7: An example of security requirements catalogue

total of seven security requirements, two assets, a hierarchy of roles, three threats,
three access control policies, and a contingency plan. Patient and MedicalHistory
are the main assets that need to be secured. The former represents the personal
information while the latter is a record of the illnesses and medical treatment of
a patient. These two assets reference classes in the conceptual model, which are
specified by the linkedTo attribute (an explanation of how this attribute can
be implemented was indicated in Section 2).

The CL1 cluster includes security requirements that restrict access to the
system to the medical staff. In CL1, the requirement REQ S1 restricts access to
previously registered users who must provide Login/Password credentials, and
REQ1 S2 states a constraint on access, since only those users with a staff role
who attempt to access between 9 a.m. and 5 p.m. are allowed (this is specified in
the condition attribute of REQ S2 in Figure 8(b)). Date, time and IP addresses
can be restricted by using the simple expression language defined. These require-
ments lead the analyst to create a role hierarchy whose root is the Staff role,
and with two sub-roles named Doctor and Nurse, which will be used afterwards.

The CL2 cluster is intended to prevent unauthorized staff accessing patient
information, and the CL3 cluster has a similar purpose, but related to Medic-
alHistory. The requirements contained in the cluster CL4 attempt to prevent
unauthorized modification of the patient data.

With regard to the control access policy, the analyst has decided to use MAC
for taking control over the users who attempt to query or modify patient data.
Thus, public, confidential and sensitive elements have been added to the model.
A confidential level has been assigned to the asset Patient, and sensitive to
MedicalHistory. Requirements of privacy and integrity must specify a security

2972 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 8: (a) Excerpt of a security requirements model (b) Attribute values

level by considering the labels established for patient data and histories. It is
important to note that although security levels are used, we need to specify
which group of users will be granted this level, so roles are used for this purpose.
For instance, REQ S3 assigns the confidential read level on the patient data to
the role Doctor, which means that the doctors can query the information related
to the patients because its level is the same as the Patient asset.

In the example we can see that the clusters refer to three threats and one
contingency plan. These two kinds of elements allow the specifying of information
that can be used to generate system documentation, for instance, weaknesses and
possible solutions. Although threats and contingency plan elements have been
depicted in the requirement model, they will not be considered in the rest of the
example because of lack of space.

Once the security requirement model is completed, a security design model
must be created in order to express the design decisions. As explained previ-
ously, due to the existing mapping among elements of both models, a design
model skeleton can be automatically generated from the requirement model,

2973Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



and then the developer specifies the information of the model elements. Fol-
lowing with our example, Figure 9(a) shows the four elements of this model:
one AuthenticationDecision, two AccessControlDecision and, finally, one
LogginDecision. Only those element properties that do not have the default
value (i.e., are different from NO or NULL) have been shown. No secure com-
munications have been included since they are not needed in this example.

The REQ S1 requirement of type authentication is mapped to an instance of
AuthenticationDecision. In REQ S1, password is specified as the value of
the attribute type, which means a login/password authentication. Therefore the
value of the type attribute of the AuthenticationDecision element also has
this value. The implementationLevel attribute has been established to custom,
because the authentication will not be automatically performed for any module,
but we will implement this control in our application. We also specify that the
users are registered in a LDAP server, but so long as we are going to implement
authentication manually, this annotation does not have further implications.

A custom implementation level has also been specified for the element
AccessControlDecision, which is linked to the REQ S2 requirement of type
AccessControl. This design decision is motivated by the fact that we intend to
implement the Policy Enforcement Point, the Policy Decision Point and
the whole authorization process by ourselves. As the access control policies need
to be automatically generated, XACML has been assigned to the
accessControlLanguage attribute in order to indicate the language for gener-
ating the policies. SAML assertions could also be generated, but this possibility
has not been considered, in order to simplify the example.

A second AccessControlDecision example refers to the requirements from
REQ S3 to REQ S6, and are those that prevent unauthorized reading or modific-
ation of any of the personal data or medical history of the patients (i.e. authoriz-
ation requirements). In this case, the implementation level of the authorizations
is expressed as database, which means that the access control method will be
implemented in the database management system and it will be responsible for
checking the access rights to the tables related to the assets.

Finally, a LoggingDecision element has been included for the REQ S7 re-
quirement of type auditing. The type attribute takes the value local, which in-
dicates that we will use a local log without any kind of protection and, its
implementation is the choice of the developer.

At this point, the security design model specifies how the security require-
ments will be implemented, but the information provided only indicates, at an
abstract level, which technological solutions will be used, but does not includes
details about target platforms. Thus, a security implementation model is used
to express the implementation details that refer to a concrete target platform
which are needed for generating software artifacts. In this example, the security

2974 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 9: (a) Security design model, (b) Policy model, (c) Oracle model, (d)
Target platform model

design model created is detailed in three security implementation models which
represent low-level data of the access control policy (Figure 9(b)), the secur-
ity database (Figure 9(c)) and the target platform (Figure 9(d)). Note that we
have a general access control policy model, which could be used with different
access control languages, while we have a specific database model for Oracle.
The reason for this disparity is that we cannot have a general database model,
because each database system has its own security solutions, so specific models
are needed.

The number and nature of the security implementation models depends on
the technologies chosen, for which software artifacts are generated. In our case, a
policy model has been defined to generate access control policies, and an Oracle
model to generate database code. A definition of an implementation model is
always required for any generation in order to provide some details about the
target platform, such as the application type, and a list of the users initially
registered in the system. Regarding the policy model, a few global parameters
must be specified, such as the target file and some data for each access control
requirement. To illustrate this, a permission rule for REQ S2 will be generated.

Although pair user-roles are defined in this model, it does not necessarily
imply that roles will be defined in the database. In the example, we define roles
because we need to assign security levels to users and we do not want to define
users in the security requirements model. However, no role definition code will
be generated. So, roles serve as a mechanism to decouple users and access control
methods.

All models created are input to a M2M transformation specified in RubyTL
that automatically generates target platform models. A model will be generated
for each security implementation model. In this example, a model for access
control policies and a model for database code will be generated. As indicated

2975Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



earlier, these models conform to the metamodels representing the target plat-
form; for this example a XACML metamodel and an Oracle Label Security
metamodel were defined. Finally, security software artifacts are automatically
generated from target platform models by means of M2C transformations spe-
cified in MOFScript. In this case, the software artifacts created have been a
XACML policy file and an Oracle PL/SQL script. It is remarkable that the tar-
get platform models as well as the code are automatically generated, and no
human intervention is required.

Figure 10 shows an excerpt of the XACML policy file generated. This is a
snippet of code that includes a rule that authorizes users classified as Staff to
access the resources between 9 a.m. and 5 p.m. The description of the rule is the
text of the security requirement itself. The subject of the rule (i.e. the role Staff )
and the condition that restricts the hours of access are both extracted from the
properties stated in the previous models. Figure 11 shows an excerpt of PL/SQL
Oracle Label Security code. As we specified in the Oracle model (Figure 9(c)), a
policy for controlling the reading of the Patient table has been generated. The
different security levels are created as well as the labels connected to them. After
this, the labels are assigned to the different users defined in the implementation
target model, according to the reading and writing restrictions declared in the
security requirement model. Finally the policy is applied to the table.

It is worth to remarking that the creation of security artifacts involves a great
deal of text even though only simple requirements have been considered.

7 Related work

The approach presented can be related to works both on requirement metamodel-
ling in the field of RE and MDS approaches. As mentioned in Section 3, different
requirement metamodels have been proposed [Goknil et al., 2008, Berre, 2006,
Vicente et al., 2007, Bolchini and Paolini, 2004]. These metamodels are focused
on the basic concepts of the RE and do not include concepts related to concrete
non-functional requirements such as, for example, security. We have defined a
requirement metamodel which combines a set of core requirement concepts with
a set of security concepts. The core concepts have been obtained by identifying
the concepts common to the existing metamodels. Moreover, most of the existing
approaches for metamodelling requirements have not considered the definition
of a concrete syntax (notation) or the automatic generation of software artifacts
from requirements.

As indicated above, two of the most relevant approaches in security modeling
are UMLSec [Jurjens, 2003] and SecureUML [Basin et al., 2006]. Both of them
provide UML extensions to specify security requirements. Whereas UMLSec

2976 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 10: Excerpt of the XACML policy file automatically generated

was conceived to verify formal security requirement specifications in the sys-
tem design, SecureUML was used to illustrate the MDS approach. Although
SecureUML is specific to role-based access control infrastructures, it shows how
an MDE strategy could be applied to generating code for any aspect of se-
curity, and since then a number of MDS approaches have been proposed. For
instance, [Reznik et al., 2007] presents an MDS solution to developing secure ap-
plications on a middleware platform which integrates an implementation of the
Corba Component Model with the OpenPMF security framework. In this ap-
proach, another UML profile is created in order to model access control policies.
[Lang and Schreiner, 2008] illustrates how the OpenPMF architecture can be
used to translate a security-related high-level regulatory requirement into en-
forceable authorization rules. In this case, the example considered is similar to
that presented in this paper: a healthcare security requirement is implemented
using XACML.

Our proposal has several characteristics that differentiate it from existing
MDS approaches. The generative architecture has been organized in two chains
of model transformations, as shown in Figure 6. This organization promotes a
systematic process for applying MDS, which separates specifications of secur-
ity requirements and design decisions of how they are implemented. In contrast
to other approaches, models are used to represent design decisions and imple-

2977Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



Figure 11: Excerpt of the Oracle automatically generated

mentation details about the target platforms. Model reuse is facilitated by this
separation. In order to reduce the semantic gap among security requirements
and generated software, ModelSec proposes an intermediate model which con-
forms to a target platform metamodel. This intermediate step promotes reuse of
transformations. Instead of building UML profiles, as with the other approaches,
a DSL for expressing security requirements has been defined, which has been
implemented by applying metamodelling techniques. Moreover, ModelSec is a
generic approach, while most MDS approaches have been focused on the access
control policies.

There exist other approaches in the scope of security requirements man-
agement that are not aligned to MDS and focus mainly on the elicitation of
security requirements more than in the generation of software artefacts from
them. That is the case of proposals as Secure Tropos [Bresciani et al., 2007],
[van Lamsweerde, 2004], that introduces the concept of antigoal, [Yu et al., 2007]
that uses ontologies or [Haley et al., 2008], which presents a framework composed
by a set of activities to deal with security requirements.

8 Conclusions and further work

Creating security software artifacts requires handling a large amount of text
in formats such as source code or XML text. In a similar way to other MDS
approaches, ModelSec offers a high level of automation of the generation of
code aimed at dealing with the security requirements of the system (e.g. secur-
ity policies), and which avoid a tedious, time consuming, costly and error-prone
manual process. However, in a different manner to the existing MDS approaches,
ModelSec proposes a generative architecture based on a chain of model trans-
formations involving several security models at different levels of abstraction.
Throughout this paper how this architecture promotes the reuse and provides a
more systematic process than the existing approaches has been shown. Another
significant contribution is that the DSL for security requirements is built on our
own requirement metamodel.

2978 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



As for further work, ModelSec will be extended by defining new target plat-
form metamodels that serve as a basis for the generation of other access control
and authorization policies. Moreover, ModelSec is being used for the generation
of code for real software projects, and it is expected that there will be interesting
feedback for the refinement and extension of this proposal.

Acknowledgements

This work has been partially supported by the projects DEDALO (TIN2006-
15175-C05-03) and PANGEA (TIN2009-13718-C02-02) from the Spanish Min-
istry of Science and Technology, MELISA-GREIS (PAC08-0142-335), the project
08797/PI/08 from the Fundación Séneca and the project 129/2009 from the Re-
gional Council of Murcia. Fernando Molina is partially funded by the Fundación
Séneca (Murcia).

References

[Basin et al., 2006] Basin, D., Doser, J., and Lodderstedt, T. (2006). Model driven
security: From uml models to access control infrastructures. ACM Trans. Softw.
Eng. Methodol., 15(1):39–91.

[Berre, 2006] Berre, A. J. (2006). Comet (component and model based development
methodology). http://modelbased.net/comet/.

[Bolchini and Paolini, 2004] Bolchini, D. and Paolini, P. (2004). Goal-driven require-
ments analysis for hypermedia-intensive web applications. Requirement Engineering
Journal, 9(2):85–103.

[Bresciani et al., 2007] Bresciani, P., Mouratidis, H., and Zanone, N. (2007). Modelling
security and trust with secure tropos. Integrating Security and Software Engineering:
Advances and Future Visions, pages 160–189.

[Eclipse, 2008a] Eclipse (2008a). Eclipse Modeling Framework Project (EMF).
http://www.eclipse.org/modeling/emf/.

[Eclipse, 2008b] Eclipse (2008b). Generative Modeling Technologies (GMT): MOF-
Script. http://www.eclipse.org/gmt/.

[Fernández-Medina et al., 2009] Fernández-Medina, E., Jurjens, J., Trujillo, J., and Ja-
jodia, S. (2009). Editorial: Model-driven development for secure information systems.
Inf. Softw. Technol., 51(5):809–814.

[Fernández-Medina and Piattini, 2005] Fernández-Medina, E. and Piattini, M. (2005).
Designing secure databases. Information & Software Technology, 47(7):463–477.

[Goknil et al., 2008] Goknil, A., Kurtev, I., and van den Berg, K. (2008). A metamod-
eling approach for reasoning about requirements. In ECMDA-FA, pages 310–325.

[Haley et al., 2008] Haley, C., Laney, R., Moffett, J., and Nuseibeh, B. (2008). Security
requirements engineering: A framework for representation and analysis. IEEE Trans.
Software Eng., 34(1):133–153.

[ISO, 2005] ISO (2005). ISO/IEC 15408 (Common Criteria v3.0): Information Tech-
nology Security Techniques-Evaluation Criteria for IT Security.

[Jurjens, 2003] Jurjens, J. (2003). Secure Systems Development with UML. Springer
Verlag.

[Jurjens et al., 2008] Jurjens, J., Schreck, J., and Bartmann, P. (2008). Model-based
security analysis for mobile communications. In ICSE, pages 683–692.

[Kelly and Tolvanen, 2008] Kelly, S. and Tolvanen, J. (2008). Domain-Specific Model-
ing: Enabling Full Code Generation. Wiley-IEEE Computer Society Press.

2979Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...



[Lang and Schreiner, 2008] Lang, U. and Schreiner, R. (2008). Managing business
compliance using model-driven security management. In Securing Electronic Busi-
ness Processes, pages 1–11.

[Mellado et al., 2007] Mellado, D., Fernández-Medina, E., and Piattini, M. (2007). A
common criteria based security requirements engineering process for the development
of secure information systems. Comput. Stand. Interfaces, 29(2):244–253.

[Molina and Toval, 2009] Molina, F. and Toval, A. (2009). Integrating usability re-
quirements that can be evaluated in design time into model driven engineering of
web information systems. Advances in Engineering Software, 40(12):1306–1317.

[OASIS, 2008] OASIS (2008). XACML: eXtensible Access Control Markup Language.
http://www.oasis-open.org/.

[OMG, 2003] OMG (2003). MDA Guide v1.0.1. http://www.omg.org/mda.
[ORACLE, 2008] ORACLE (2008). Oracle label security.

http://www.oracle.com/technology/deploy/security/database-security/label-
security/index.html.

[Reznik et al., 2007] Reznik, J., Ritter, T., Schreiner, R., and Lang, U. (2007). Model
driven development of security aspects. ENCTS, 163(2):65–79.

[Rodŕıguez et al., 2007] Rodŕıguez, A., Fernández-Medina, E., and Piattini, M. (2007).
A bpmn extension for the modeling of security requirements in business processes.
IEICE Transactions, 90-D(4):745–752.

[Samarati and Capitani, 2000] Samarati, P. and Capitani, S. D. (2000). Access con-
trol: Policies, models, and mechanisms. In FOSAD, pages 137–196.

[Sánchez et al., 2006] Sánchez, J., Garćıa-Molina, J., and Menárguez, M. (2006). Ru-
byTL: A Practical, Extensible Transformation Language. In ECMDA-FA, pages
158–172.

[Selic, 2008] Selic, B. (2008). Mda manifestations. The European Journal for the
Informatics Professional, IX(2).

[SUN, 2008] SUN (2008). JAAS: Java Authentication and Authorization Service.
http://java.sun.com/javase/technologies/security/.

[van Lamsweerde, 2004] van Lamsweerde, A. (2004). Elaborating security require-
ments by construction of intentional anti-models. In ICSE’04: 26th Int. Conf. on
Software Engineering, pages 148–157. IEEE Computer Society.

[Vicente et al., 2007] Vicente, C., Moros, B., and Toval, A. (2007). Remm-studio: an
integrated model-driven environment for requirements specification, validation and
formatting. Journal of Object Technology, Special Issue TOOLS EUROPE 2007,
6(9):437–454.

[Voelter, 2008] Voelter, M. (2008). Md* best practices. http://www.voelter.de/data
/articles/dslbestpractices-website.pdf.

[Yu et al., 2007] Yu, E., Liu, L., and Mylopoulos, J. (2007). A social ontology for
integrating security and software engineering. Integrating Security and Software En-
gineering: Advances and Future Visions, pages 70–109.

2980 Sanchez O., Molina F., Garcia-Molina J., Toval A.: ModelSec: A Generative ...


