
A System for Managing Security Knowledge using Case
Based Reasoning and Misuse Cases

Corrado Aaron Visaggio
(University of Sannio, Benevento, Italy

visaggio@unisannio.it)

Francesca de Rosa
(University of Sannio, Benevento, Italy

derosa@unisannio.it)

Abstract: Making secure a software system is a very critical purpose, especially because it is
very hard to consolidate an exhaustive body of knowledge about security risks and related
countermeasures. To define a technological infrastructure for exploiting this knowledge poses
many challenges. This paper introduces a system to capture, share and reuse software security
knowledge within a Software Organization. The system collects knowledge in the form of
misuse cases and makes use of Case Based Reasoning for implementing knowledge
management processes.

Keywords: Misuse case, Case Base Reasoning, Security Knowledge Management
Category: D.2.9

1 Introduction

Knowledge about software security is now acquiring an economic and strategic value
for Organizations: since a decade, a market of vulnerabilities has been developing
and expanding fast [Ahmad, 2007]. In order to improve security into software
products, hiring skilled professionals or leveraging individual competencies and
capability is not enough for successfully facing security concerns, according to
Johnson and colleagues [Johnson, 2007].

As pointed out by Barnum and McGraw [Barnum, 2005], critical knowledge built
during the usual problem solving activities concerning software security, should be
captured and widely shared within an organization. Once formalized and catalogued,
this knowledge could be used within the Organization with two purposes: training,
and supporting the problem solving process. Previous experience could be reused as
is, or could help produce the solution for a new problem. Threats modelling is a
central aspect of the security engineering process [Byers, 2007].

A way to model threats in terms of interaction with the system is the misuse case
[Steven, 2006]. A misuse case describes potential system behaviours that are not
acceptable by a system’s stakeholders. A misuse case defines a sequence of steps
which lead the user to misuse the system, i.e. to violate privacy or security policies.
These misuses either represent high-probability attacks or high-impact events that
negatively affect the system’s legitimate stakeholders. Misuse cases should be at a
level of detail that drives design activities, and they are convenient means for

Journal of Universal Computer Science, vol. 15, no. 15 (2009), 3059-3078
submitted: 1/2/09, accepted: 29/8/09, appeared: 1/9/09 © J.UCS

capturing knowledge about system’s security. A misuse case could leverage a security
flaw at three different levels of detail:
• domain level, i.e. when the user process allows illegal access to sensitive

resources; for instance, when web pages that should be accessed with https
protocol could be reached with a http connection, too;

• design level, i.e. when the design exposes security bugs; an example is the sql
injection vulnerability;

• technology level, i.e. when the bug is due to the specific technology
(programming language, dbms, frameworks, api’s, and so forth). An example of
this kind of vulnerabilities is discussed in [Lai, 2008].

Of course, the misuse case could also exploit flaws concerning more than one
level. The complexity of a security flaw is a source of project delay, cost increasing,
and, generally, risks, sharing as much as possible the knowledge regarding these
concerns is a good means to handle such a complexity and, consequently, reduce risks
and damages due to the incapability of dealing properly with security issues.

With this paper we present a system for capturing, sharing, and reusing security
knowledge into an Organization. The knowledge is formalized in the form of a misuse
case and stored into a knowledge base. When a process stakeholder needs to solve a
security flaw at any phase of software process (analysis, design, code, test), she can
submit a query to the knowledge base. The system finds those vulnerabilities which
were successfully solved (and whose solution could be retrieved in the knowledge
base) similar to the submitted one. If this similarity is enough high, the solution or
parts of it could be re-applied to solve the current security problem. This usually
happens when two vulnerabilities share one of the three levels but concern more than
one level. For instance, the sql injection mechanisms do not depend exclusively from
the technology, so a designer could re-use the same countermeasures, properly
adapted, as well as when using asp, jsp or php (technology level) and when
implementing different processes, i.e. different web applications’ features (domain
level). The paper is organized as follows: next section introduces the system; the third
section discusses an example of formalization of a misuse case. Section 4 shows
exemplar working of the algorithm. Section 5 discusses related work. Finally,
conclusions are drawn.

2 The proposed System

The system we propose in this paper aims at supporting the entire lifecycle of
knowledge about the software security flaws within a software Organization. The
knowledge lifecycle (see Figure 1) includes three phases:

1) Knowledge creation, during which knowledge is created. The basic
assumption is that knowledge is created when a solution for a new problem is
found and validated as working.

2) Knowledge retention, during which the new knowledge is embodied into the
existing knowledge base, so that knowledge can be shared among process
stakeholders.

3060 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

3) Knowledge usage. The existing knowledge is used by the process
stakeholders according to the needs which arise during the usual software
process.

As we are interested in the knowledge necessary to remove a security flaw into
the software system at any stage of development, a knowledge chunk is formalised as
a couple (problem, solution), i.e. a case.

2.1 The Knowledge lifecycle

The knowledge base is a set of security problems that could be encountered into the
development of a software system, paired with a suitable solution. Of course, the
suitability of the solution is validated by the experience, i.e. by applying that solution
when the correspondent problem arises and verifying that it works. The cases are not
static, as the proposed solution could fail: the case should be improved or it is needed
that a new case is created form scratch. Let’s analyse each phase of the knowledge
lifecycle.

2.1.1 Knowledge usage

The knowledge base has the main purpose of sharing the knowledge regarding
strategies to adopt for solving a security flaw. The system becomes a repository of
cases that any software process stakeholder could interrogate in order to obtain a
solution for a specific problem at any phase of the software process. Knowledge
usage is the very focus of this paper and it will be discussed in detail later. Roughly
speaking, this phase starts with the definition of the problem. The problem is defined
throughout a structured form that the process stakeholder could fill in by selecting
from a list of existing key words.

The system searches for similar cases, i.e. the set of cases which solve a problem
close to the one submitted by the process stakeholder. The similarity among two cases
is a mathematical function calculated according to a specific algorithm, which is one
of the key part of our system. An existing case could be completely used, i.e. the
solution proposed is successfully applied in practice. Otherwise, if it does not fit the
actual problem, a new case is created: this is the knowledge creation phase.

The usage of knowledge could also suggest an improvement initiative for an
existing case as the definition of either the problem or the solution (or both) could be
improper. This requires activities of knowledge retention.

2.1.2 Knowledge creation

A new case is created when a problem arises and there is not a case in the knowledge
base that provides a suitable solution for that problem. This could happen for two
reasons:

i) the problem was never encountered before, thus the solution does not
exist in the knowledge base

ii) similar problems were encountered before, but the existing solutions do
not fit the current problem. This happens because the problem has not a
proper grain, and needs to be further detailed. In this case the existing
solutions could be helpful to define the new solution. A new case is
created, even if the problem is similar to existing ones.

3061Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

2.1.3 Knowledge retention

When a new case is created it must be stored in the knowledge base. In order to
maintain the knowledge base consistent and usable two main activities should be
performed:

i) remove redundant cases. Redundant cases are due to two kinds of
anomalies. The first anomaly occurs when two cases have the same
formulation of the problem but different solutions, or vice versa, when
the same definition of the solution is related to different problems. This
could hide a flawed validation of the solution or the part in common –
problem or solution- needs to be better detailed. We recall that this is not
necessarily an anomaly, as a problem could have different solutions, or
the same solution can fit well to different problems. In this situation the
two cases must be merged in one. The second kind of anomaly occurs
when two cases are substantially equals and redundant, even if formally
different.

ii) align the similarity relationships between cases. Similarity among cases
is a mathematical relationship which helps to establish which is the most
suitable solution in the base for the problem submitted by the process
stakeholder. Similarity calculation depends on weights defined by the
base administrator. When new cases are created these weights could
need to be properly changed in order to keep effective the similarity
calculation. This aspect will be detailed in the following.

2.2 The Reasoning Model

With this paper we adapt the case base reasoning (CBR) [Riesbeck, 1989] mechanisms
for capturing, sharing, and reusing knowledge about security threats within a Software
Organization.

The case based reasoning is a problem solving technique which exploits the
learning from similar cases in order to solve a new problem. The CBR process for
problem solving is a four-steps cycle (Figure 2).

Once the new problem is described (new case), the engine searches for similar
problems stored into the base (retrieve phase) by calculating the similarity of the new
case with the previous cases. Two cases are similar when they correspond to similar
problems. Similarity functions are divided in two classes: the surface similarity, that
expresses the distance between two cases by a number into a range [0,1] or [0,100];
and the structural similarity, that considers cases as complex structures, as well as
graphs: similarity is a function which compares the properties of these structures into
the two cases.

The retrieved case which has the highest value of similarity is the candidate for
solving the new problem (reuse phase). Three classes of reuse exist: (i) replacing
parts of the solutions, namely substitution; (ii) altering part of the structure, namely
transformation; and finally (iii) applying the derivation of the (old problem’s)
solution to the new problem, namely generative adaptation. The proposed solution to
the new problem, i.e. the new case is than validated (revise phase). Finally the new
case must be integrated in the case base (retain phase).

3062 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Figure 1: The main phases of the System

Figure 2: The Case Based Reasoning Process

2.3 The model of searching

In this section the model for searching the case which fits the encountered problem is
introduced.

Let KB be the knowledge base KB and let Oj a case, than the knowledge base is
a collection of cases:

3063Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

KB= { O1, O2,…, Oj},
Let Oα{a1, a2, …, an} be a complex object with n attributes ai, where a subset of

these attributes represents the definition of the problem and the remaining set of
attributes represents the solution.

The n attributes make the Knowledge Base an n-dimensions space; consequently
we are able to define distances between each couple of objects so that any object has
its own position into the knowledge base. The distance between two objects Oi, Oj is
named GlobalSim Oα (Oi,Oj).

The possibility of identifying a position of an object in the objects’ space will
help us to properly retrieve the object we are looking for. As illustrated in Figure 3, if
the problem is formalised in the object O1, O3’s problem is most similar to O1’s than
O5’s, as the distance is smaller.

Figure 3: The Space of cases

The structure of the case refers to the specifications of misuse case provided by
Sindre et al. [Sindre, 2002], which are detailed in the Table 1, while a complete case
is provided in table 8 (missing attributes are empty in the case).

The user will define the case in natural language, but special literal values must
be used when the case is filled in. Such values, which are basically key words, are
named domain’s tag. The usage of domain’s tag help for the calculation of similarity
as explained later in the paper. These values will be the elements of the corresponding
attribute’s domain. As a matter of fact, each attribute is defined upon a finite and
discrete domain, which should increase over time. This happens because when the
number of cases in the knowledge base gets bigger, the need of a greater
expressiveness to describe misuse cases arises.

3064 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Name Name of the Misuse Case
Summary Brief description of the Misuse Case
Date Generation Date of the Misuse Case
Author Author of the Misuse Case
Basic Path Main sequence of steps needed to accomplish the

attack
Alternative
Paths

Alternative actions’ sequence for the attack

Mitigation
Points

Countermeasures for reducing the risks of the attack

Triggers Events which could activate the misuse case
Preconditions Characteristics and properties of the system

necessary to make the attack possible
Assumptions Conditions enabling the attack and which are

external to the system
Mitigation
Guarantee

Conditions to validate the mitigation of the threat

Related
Business
Rules

Business rules which are affected by the security
flaws.

Stakeholder
and Threats

Stakeholders and threats concerned by the misuse
case

Potential
Misuser
Profile

Competence, skill, and capability needed for
accomplishing the attack

Scope Impact of the misuse
Abstraction
Level

Design Portion interested by the misuse case

Precision
Level

Architectural component interested by the misuse
case

Table 1: Structure of a misuse case

The attributes which define the solution are: Mitigation Points, and mitigation
guarantee. The attributes which define the problem are all the remaining ones except
for Name, Summary, Date, and Author.

Let Otarget be the searched object in the case base; it describes the problem that
the user needs to solve. Otarget is a partially filled in case. As some attributes do not
help the retrieve phase, the candidate attributes to be compiled in the O target are:
triggers, preconditions, assumptions, related business rules, stakeholder and threats,
potential misuser profile, scope, abstraction level, and precision level. O target is a
matrix where each row represents an attribute of the misuse cases, and each column is
a value assumed by the attribute, i.e. a key for the search of similar cases. An
exemplar O target is shown in table 2.

3065Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Trigger Always true

Assumption Passwords are used to authenticate

Related Business Rule Restricted services

Give away the password to other Stakeholders and Threats

Potentially losing money

Table 2 : An exemplar problem

The exemplar problem consists of understanding how to mitigate the risk that
passwords used to authenticate for restricted services are captured by other users or
lost.

The system will search the most similar cases in the knowledge base. In order to
establish whether two cases are similar, a similarity measure must be defined. The
similarity between two objects is a function, called Global Similarity and defined in
the interval [0:1], where 1 corresponds to the maximum similarity. A similarity
measure fulfils these properties: reflexivity, symmetry, monotony, and triangle
equality. Let (O1,O2) be two instances of the Oα. First, the similarity between the
correspondent couple of values for each attribute ai of (O1,O2) should be calculated,
namely local similarity (localSimi). Thus, the global similarity is calculated by
including the local similarities for all the n attributes of the object. GlobalSim Oα

(O1,O2)= ∑
=

n

i
localSimi

n 1

1
. The way of local similarity calculation depends of the

kind of objects’ attribute. In case of: numbers, similarity is a distance; strings,
similarity is an evaluated comparison; symbols, similarity is calculate for each
possible combination; object, similarity is measured by a proper function which
considers all the object’s fields.

The soundness of a similarity measure is expressed through the gold standard.
This is a set of comparisons with a desired similarity value, defined by the user or a
domain expert. A key point of estimating the quality of a similarity measure will
always be the calculation of its deviation to the gold standard. This basically consists
of two steps: choosing pairs of objects to compare and choosing a meaningful
measure for calculating the deviation. Some algorithms have been proposed in order
to accomplish the first step; as this is not the focus of this paper, this argument will be

not discussed here. We used the formula: ∑
=

−
n

i
simValueigoldStdi

n 1
||1
, where n

is the number of comparisons, goldStdi is the gold standard value and simValuei is the
calculated value for the i-th comparison. Further methods includes the root mean
square error and the threshold error, which will not be treated here. Finally the fitness
function [Stahl, 2003], which is a hyperbolic function must be defined as

Fitness(deviation) = b
aaxdeviationM

z −
+

, where:

3066 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

a=
nfitnessMeafitnessMax

axdeviationMnfitnessMea
2

*
−

b=
nfitnessMeafitnessMax

nfitnessMeafitnessMax
2

*
−

z=)(* bfitnessMaxa +

• deviationmax, as the max measure of diversity, and varies between 1 and 100;
• fitnessmean, measures the quality of the comparison.
• fitnessmax, measures the maximum of similarity.

These can be used to adapt the hyperbola to the concrete needs one might

have, transforming a deviation to a fitness. These might be that a
defined maximal deviation leads to a fitness value of 0 and that a deviation of 0 leads
to a defined maximal fitness value (or infinity if a is chosen to be 0).

So if one defines two points which the hyperbola has to cross, namely, fitness(0)
= fitnessmax and fitness(deviationmax) = 0, it is possible to set up two equations for the
parameters (a, b and z) of the common hyperbola. So a third point of the hyperbola is
needed (i.e., can be chosen) to set up the third equation. Having these three points it is
possible to calculate the three parameter values. Let’s define a value fitnessmean, that
corresponds to the fitness function's value for the deviation of deviationmax/2.
Choosing this value to be fitnessmax /2 , the resulting function would be a straight
line.

The similarity function consists of a collection of similarity tables, one for each
attribute of the case. The similarity table defines the similarity between all the
possible couples of that attribute’s values.

Let a be an attribute and let ai, with i є [1,k] be a possible value assumed by a,
being a є A{ a1, a2, a3, a4,…,ak}, and A the domain in which a varies. A similarity
table, i.e. T_a, for the attribute a is a triangular table where each element on the l-th
row and j-th column is the local similarity between the tags al and aj, i.e. T_alj =
localSima (al, aj)

This is needed as the similarity between two values can be assigned only with
regard to the semantics of the attribute. Table 3 shows an exemplar excerpt of the
similarity table for the “Stakeholders and Threats” attribute in the function f2 (used in
the next section’s example). Local similarity values for the different tags are
provided.

In summary, the Knowledge Usage (which recalls the CBR’s retrieve phase)
phase is recalled: first, the user defines the target object to search, i.e., by
instantiating the matrix Otarget. The system calculates the global similarity for each
candidate case (Oretr_j) in the knowledge base, namely and GlobalSim (Otarget, Oretr_j) .
The system selects the Oretr_j which is able to maximize the fitness function.

The user can exploit a retrieved case Oretrieved in order to solve the new problem.
There are three situations. Oretrieved fits well the new problem: the solution is applied to
the problem (which is actually not a new one), i.e. knowledge is reused (CBR’s reuse
phase). Oretrieved partially fits the new problem: the solution proposed by Oretrieved can

3067Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

not be applied as is, but it could help user define the solution for the new problem: a
new case is created and stored, i.e. the knowledge base is enlarged (Knowledge
Creation). Finally Oretrieved is so different from O target that it does not provide any
help. In this latter situation, the existing knowledge is not enough to face the new
problem. CBR’s revise phase consists of verifying that the solution is effective.
Finally, the case is catalogued in the case base (Knowledge Retention). If new
attribute values are introduced with the new case, the similarity table must be properly
updated. The next section will discuss an example of the retrieve and reuse phase.

 Loss of

data
Potentially losing
money

Give away the
password to
others

Alteration of
data

Meeting with
No-relevant
people

Loss of data 1.0 0.3 0.2 0.7 0.1
Potentially
losing money

0.3 1.0 0.3 0.2 0.1

Give away the
password to
others

0.2 0.3 1.0 0.1 0.2

Alteration of
data

0.7 0.2 0.1 1.0 0.1

Meeting with
no-relevant
people

0.1 0.1 0.2 0.1 1.0

Table 3: Similarity table for “Stakeholders and Threats” attribute belonging to the
similarity function f2

3 An exemplar Case

In table 4 a misuse case is presented; it concerns the manipulation of the query
submitted to a database from a web form. SQL injection is a typical technique
exploited for this purpose.

The mitigation strategies suggested are two: the first one consists of hiding the
error page, from which the attacker can infer knowledge about the database structure
and to validate the input, in order to allow the execution only for the queries showing
a proper formulation. Domain tags are typed as bold.

4 Exemplar working of the algorithm

Let’s consider the following problem: how to mitigate the risk that passwords used to
authenticate for restricted services are captured by other users or lost. The problem is
formalised in table 4.

3068 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Name Tamper With DB
Summary A crook manipulates the web query submitted from a search form,

to update ordelete information or to reveal information that should
not be publicly available.

Date 2001.02.23
Author David Jones
Basic Path 1. The crook provides some values to a product web form (e.g. the

use case Register Account) and submits.
2. The system displays the result matching the query.
3. The crook alters the submitted URL, introducing an error in
the query and resubmits the query.
4. The query fails and the system displays the database error
message to the crook, revealing more about the database structure.
5. The crook further alters the query, for instance adding a nested
query to reveal secret data or update or delete data, and submits.
6. The system executes the altered query, changing the database or
revealing contentthat should have been secret.

Alternative Paths ap1. In step 3 or 5, the crook does not alter the URL in the address
window, but introduces errors or nested queries directly into
form input fields.

Mitigation Points mp1. In step 4, the exact database error message is not revealed to
the client. This will not entirely prevent the misuse, but the crook
will have a much harder time guessing table and field names in
step 5.
mp2. In step 6, the system does not execute the altered query
because all queries submitted from forms are explicitly checked in
accordance with what could be expected from that form. This
prevents the misuse case.

Triggers t1. Always true
Preconditions The crook is able to search for products, either because this

function is publicly available, or by having registered as a
customer.

Mitigation
Guarantee

crook is unable to access the database in an unauthorized manner
through a publicly available web form (cf mp2).

Related Business
Rules

The services of the e-shop shall be available to customers over the
internet.

Stakeholder and
Threats

st1. E-shop: Loss of data if deleted. Potential loss of revenue if
customers are unable toOrder Product, or if prices have been
altered. Badwill resulting from this.
st2. Customers: potentially losing money (at least temporarily) if
crook has malignantlyincreased product prices. Unable to order if
data lacking, wasting time.

Potential Misuser
Profile

Skilled. Knowledge of databases and Knowledge of query
language, at least able to understand published exploits on cracker
web sites.

Table 4: Misuse Case #557

For comprehension’ sake, let’s assume that there are four candidate cases into the
case base, namely the misuse cases # 524, #530, #557, and #541. In order to
understand how the system works, let’s consider two different similarity functions, f1

3069Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

and f2 . The example will show how similarity functions could affect the retrieval
results. Each similarity function consists of a similarity table for each attribute used to
define the problem. For space’s reasons, only parts of the two functions are showed in
table 5. Some values in the similarity function f1 are intentionally set wrong, in order
to emphasize the effects in the retrieve phase. For instance, in the “Related Business
Rule” attribute of f2, similarity between the tag “Available over the internet” with
itself corresponds to 0.1, while it should reasonably be 1.0.

Similarity Function f1 – Related Business Rule

Related Business
Rule

Available over the
internet Restricted services Restricted access

Available over the
internet 0.1 1.0 1.0

Restricted services 1.0 0.1 0.2
Restricted access 1.0 0.2 0.1

Similarity Function f1 – Assumption
Assumption Uses the network to

log
Passwords are used

to authenticate
Not-encrypted

Uses the network
to log

0.1 0.2 0.7

Passwords are
used to

authenticate

0.2 0.1 0.7

Not-encrypted 0.7 0.7 0.1
Similarity Function f2 – Related Business Rule

Related Business
Rule

Available over the
internet

Restricted services Restricted access

Available over the
internet

1.0 0.1 0.1

Restricted services 0.1 1.0 0.8
Restricted access 0.1 0.8 1.0

Similarity Function f2 – Assumption
Assumption Uses the network to

log
Passwords are used

to authenticate
Not-encrypted

Uses the network
to log

1.0 0.6 0.2

Passwords are
used to

authenticate

0.6 1.0 0.2

Not-encrypted 0.2 0.2 1.0

Table 5: Comparing similarity tables of functions f1 and f2

3070 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

 Loss of

data
Potentially losing
money

Give away the
password to
others

Alteration
of data

Meeting with
No-relevant
people

Loss of data 1.0 0.3 0.2 0.7 0.1
Potentially
losing money

0.3 1.0 0.3 0.2 0.1

Give away the
password to
others

0.2 0.3 1.0 0.1 0.2

Alteration of
data

0.7 0.2 0.1 1.0 0.1

Meeting with
no-relevant
people

0.1 0.1 0.2 0.1 1.0

Table 6: Similarity table for “Stakeholders and Threats” attribute belonging to the
similarity function f2

f1 f2
Misuse case

ID
Fit. mean

0.05
Fit. mean

1.00
Fit. mean

0.05
Fit. mean

1.00
524 100 100 100 100
530 46 57 12 26
557 37 37 44 44
541 22 35 13 26

Table 7: Comparing retrieval results by applying the two similarity functions f1 and
f2.

The fitness mean is a parameter for evaluating the quality of comparison. The
higher this parameter is the better is the evaluation of the retrieved case. As a matter
of fact, for both the functions, the values obtained by setting the parameter at 1.00 are
higher than when the parameter is 0.05. Let’s analyze now the results of the retrieve
phase. In both the cases the misuse case #524 (see table 7) scored the maximum,
which is 100. This case is perfectly correspondent to the problem description, i.e. the
case will be reused as is, indeed. The #524 summary quotes: “A crook obtains
passwords for user accounts belonging to someone else, for the e-shop application
typically e-shop clerks or system administrators.” In order to get the complete picture
of the differences, let’s compare the misuse case #530 which is considered the worst
one for f2, with #541, that is the worst one for f1 (see table 8).

The #541 regards disclosing the agreement about the date of the meeting to other
people who are not authorized. The #530 describes the case when the misuser gains
access to the system by trying large sets of passwords. Accordingly to f1’s results,
#530 is much more suitable than #541.

This evaluation is not satisfactory, as #530 description misses two attributes’
value, i.e. the problem is much more general than the problem we need to solve, and
consequently the solution, too. In conclusion the results provided by f2 are more
realistic, as both #530 and # 541 have a close similarity, while the similarity with the
Otarget is definitely low. Let’s analyse briefly the points of strength and weakness of

3071Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

the solution presented here. Pros are: it is possible to manage security knowledge
without introducing further structures, or tools.

As a matter of fact, the system exploits directly misuse cases that should be
integrated in the security engineering process. The main drawbacks are related to the
similarity functions. Maintenance is costly, as every change to the similarity tables
affects other tables. Furthermore, if the similarity tables are not properly set up, the
retrieval could be scarcely effective.

4.1 An exploratory case study

With the following brief case study we will show how important is the definition of
the similarity function for the success of the retrieve phase. Let’s take into account the
problem illustrated in table 10, regarding a real vulnerability of PDF files.

Our case base is populated with fourteen different cases, and we consider two
different similarity function f3 and f4, whose details are not provided here. Results are
depicted in table 11.

 Problem Retrieved Case: #530 Retrieved Case: #541

Trigger. Always true Always true Always true
Assumptions Passwords are

used to
authenticate

No Value Agreement is not encrypted

Related
Business
Rules

Restricted
services

No Value Information about the
meeting should be available
only to the concerned
meeting participants.

Stakeholders
and threats

Give away the
password to
other

Possible loss of data;
possible disclosure of
data, possible alteration
of data. May disrupt
business and affect
customer relations

No Value

Table 8: Comparing #530 and #541 misuse cases.

Attributes Problem Retrieved Case:
#524

Trigger Always true No Value
Assumption Passwords are used to

authenticate
Passwords are used to authenticate e-
shop clerks and administrators

Related Business
Rule

Restricted services Only authorized users shall be able to
access restricted services

Stakeholders and
Threats

Give away the password
to other

[…]the crook may also sell or give
away the password to others who have
an interest in harming the e-shop [..]

Table 9: Evaluating suitable of Retrieved Case #524.

3072 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Trigger Always true

Preconditions User is connected to Internet
User uses Internet Explorer
User opens PDF file with Adobe Acrobat or
Acrobat Reader

Assumption User has extended privileges
User executes a vulnerable version of application

Mitigation Guarantees Access to PDF file from trusted or known sources
Prevent IE from automatically opening PDF
documents

Related Business Rule User may convert any PDF documents

Stakeholders and Threats Loss of data
User loses control over its PDF file
denial-of-service

Table 10: Problem formulation of the case study

f3 f4
Misuse case

ID
Fit. mean

0.05
Fit. Mean

1.00
Fit. mean

0.05
Fit. mean

1.00
560 16 27 19 30
562 12 23 28 39
563 17 28 26 37
564 20 31 18 28
565 34 34 25 25
566 27 27 47 47
567 32 32 39 44
568 18 26 21 28
569 17 27 17 27
570 31 31 31 31
571 16 24 25 34
572 17 25 31 40
573 38 45 22 42
574 33 41 32 32

Table 11: Comparing results generated by similarity functions f3 and f4.

According to f3 the most similar case is #573, where as according f4, the most
similar case is #566. Let’s compare the two cases (tables 12-13).

We observe that both the cases concern denial of services, but the two
vulnerabilities reported into the two cases are very different. In the case of #573 the
midi files vulnerability lets to execute malicious code, that is very close to our
problem. Conversely, #566 deals with a flawed garbage collection mechanism, which
is very different from the kind of problem we are trying to solve.

3073Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

Name Apple Quicktime fails to properly process specially crafted MIDI

files
Summary The Apple Quicktime player contains a heap buffer overflow

vulnerability. This vulnerability may allow an attacker to execute
arbitrary code or create a denial-of-service condition.

Date 06/03/2007
Author Apple Computer, Inc.
Basic Path 1. Browser (on Mac OS X or Microsoft Windows/XP/Vista operative

system)
automatically opens a midi file using QuickTime (versions prior
7.1.5) without
user interaction
2. Attacker triggers the overflow and execute arbitrary code

Alternative Paths Ap1. In step 1, User opens a specially crafted midi file with
QuickTime. The file
is supplied on a web page, in an email from attacker
Ap2. In step 2, Attacker triggers the overflow and create a denial-of-
service
Condition

Mitigation Points Mp1. In step 1, User uses a QuickTime version later to 7.1.5 or he
doesn't use
Mac OS X or Microsoft Windows/XP/Vista as operative system
Mp1. In step 1, Browser doesn't automatically open a midi file using
QuickTime
or user has a good antispam system
Mp2. In step 2, Attacker can't trigger the overflow because user has
reduced
privileges.

Triggers The crafted midi file is open using QuickTime
Preconditions P1. User has extended privileges
Assumptions P1. User accepts to open a (crafted) midi file using QuickTime or

Browser
automatically open this file without user interaction

Mitigation
Guarantee

Apple has released an update to address this issue. Until updates can
be applied,
do not allow web browser to open files associate with QuickTime
automatically.
Do not open multimedia files that are from untrusted or unknown
sources.
Running QuickTime with reduced privileges may help mitigate the
effects of
this vulnerability.

Related Business
Rules

User may use the system with reduced privileges.

Stakeholder and
Threats

1. Loss of data
2. Impossible to access to own system

Potential Misuser
Profile

Misuser is able to write and use an exploit code

Table 12: Misuse case #573.

3074 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

This exploratory case study suggests that the correct formulation of the
similarity functions is very important for a successful retrieval of cases.

Name Mozilla Firefox JavaScript engine fails to properly handle garbage

collection
Summary Mozilla Firefox JavaScript engine fails to properly handle garbage

collection. This vulnerability result in memory corruption. A remote,
unauthenticated attacker may be able to cause a vulnerable version of the
Firefox browser crash

Date 18/04/008
Author Mozzilla
Basic Path 1. User opens a vulnerable version of Firefox browser (version prior

2.0.0.14)
2. Attacker exploits the vulnerability, to crash the Firefox application

Alternative
Paths

Ap1. In step 1, User open a vulnerable version of Thunderbird (prior
2.0.0.24)
or SeaMonkey (prior 1.1.10)

Triggers Always
Preconditions 1. User is connected to Internet
Assumptions 1. User executes a vulnerable version of Firefox application
Mitigation
Guarantee

User has to update to Firefox 2.0.0.14, Thunderbird 2.0.0.14, or
SeaMonkey
1.1.10. Using th Mozilla Firefox NoScript extension to whitelist web sites
that
can run scripts and access installed plugIns will mitigate this
vulnerability.

Stakeholder
and Threats

User is unable to use Firefox application
Misuser causes the crash of Firefox application

Potential
Misuser
Profile

Misurer is able to exploit the Firefox vulnerability

Table 13: Misuse case #566.

5 Related Work

At the best knowledge of the authors the problem of capturing and reusing security
knowledge modelled as misuse case has been not faced. Ingalsbe et al. [Ingalsbe, 2008]
introduce a process of threat modelling basically aimed at risk mitigation. Modelling
the threats is used as a basis for evaluating related risks. This paper copes with the
organizational aspects of threat modelling. Some authors [Raman, 2008] highlight the
need for interleaving and aligning security engineering and software engineering
processes. The paper does not face the problem of collecting knowledge about
security risk mitigation. Authors in [Li, 2008] present a unified threat model for
assessing threats in web applications, by extending the threat tree model. They utilize
historical statistical information contained in this model to design threat mitigation
schemes.

The threat assessing results and mitigation schemes should help direct secure
coding and testing. In order to solve the problems of evaluating system security threat

3075Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

in the complex system, Liu and Liu [Liu, 2008] introduce a threat model based on
the attacking-tree graph. First, an evaluating standard of the feasibility and harmful
level of the vulnerability exploitation is given. Then an attacking-tree graph of the
target system is constructed based on the relationship among exploitations of
vulnerabilities. This model is able to calculate the impact of all kind of threats on the
system security.

Paper [Malik, 2008] presents an approach for addressing the threat modeling in
pervasive computing; the model could also support the risk analysis. To improve
trustworthiness of software design, paper [Xu, 2006] presents a formal threat-driven
approach, which explores explicit behaviours of security threats as the mediator
between security goals and applications of security features.

To specify the intended functions, security threats, and threat mitigations of a
security design as a whole, authors’ method relies on aspect-oriented Petri nets as a
unified formalism. All these papers focus on the problem of threat modelling. Paper
[Wang, 2007] proposes a threat model-driven security testing approach for detecting
undesirable threat behaviour at runtime. The threat model guides the code
instrumentation; instrumented code is tested while the execution traces are collected
and analyzed to verify whether the undesirable threat traces are matched. This paper
applies threat modelling for strengthening security testing. Matulevičius et al.
[Matulevicius, 2008] analyse how to improve the misuse case in order to better support
the risk management activities. Their research is aimed at integrating misuse case into
the software analysis phase rather than use them for sharing security knowledge
within organizations. Whittle and colleagues [Whittle, 2008] merge three different
techniques in order to implement an executable modelling system for misuse case,
that allows users to animate misuse case into the related use case. This system is
mainly oriented to the design and testing phase. Pauli and Xu [Pauli, 2006] model
functional requirements with use cases and use the STRIDE threat categories from the
threat modelling approach to identify misuse cases. The interplay between misuse
cases and use cases drive the identification of mitigation use cases that preserve the
goals of security. These cases are then systematically decomposed to allow the
details of each case to be specified for the benefit of security requirements. Okubo
and Tanaka [Okubo, 2008] extend misuse case description with fine classification of
mis-actors, additional definition of data asset elements and fine classification of
misuse case endpoints. Saleh and Habil [Saleh, 2008] propose a model to elicit threats
mitigation trough the design of systems and analysis of misuse case. In summary,
misuse cases are used mainly for supporting design and testing phase in the software
process, rather than for capturing knowledge.

6 Conclusions and Future Work

On the one hand security is becoming a critical quality factor of software systems. On
the other hand, the increasing complexity of software technology makes really hard to
elaborate successful solutions to security flaw.

This situation could be faced by sharing within software organizations the
knowledge about software security built during the mitigation or removal of a security
flaw. The system uses the model of case based reasoning for managing the lifecycle
of knowledge, that is formalized as set of misuse cases.

3076 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

In the near future we plan to improve the form of similarity function in order to
understand which is the one that fits properly the search needs.

References

[Ahmad, 2007] Ahmad, D., Arce, I., Vulnerability Bazaar, IEEE Security and Privacy, IEEE
Computer Society, 2007, pp. 69-73.

[Barnum, 2005] Barnum, S., McGraw, G., Knowledge for Software Security, Security &
Privacy, IEEE, 2005, pp. 74-78.

[Byers, 2007] Byers, D., Shahmehri, N., Design of a Process for Software Security, in Proc. of
the The Second International Conference on Availability, Reliability and Security (ARES),
IEEE Computer Society, 2007, pp. 301-309.

[Ingalsbe, 2008] Ingalsbe, J. A., Kunimatsu, L., Baeten, T., Mead, N. R., Threat Modeling:
Diving into the Deep End, IEEE Software, IEEE Computer Society Press, 2008, pp. 28-34.

[Johnson, 2007] Johnson, M. E. , Goetz, E., Embedding Information Security into the
Organization, Security & Privacy, IEEE Computer Society, 2007, pp. 16-24.

[Lai, 2008] Lai, C. Java Insecurity: Accounting for Subtleties That Can Compromise Code,
IEEE Software, IEEE Computer Society, 2008, pp. 13-19.

[Li, 2008] Li, X. , He, K. ,A Unified Threat Model for Assessing Threat in Web Applications,
Proceedings of the 2008 International Conference on Information Security and Assurance (isa
2008), IEEE Computer Society, 2008, pp. 142-145.

[Liu, 2008] Liu, X., Liu, Z. , Evaluating Method of Security Threat Based on Attacking-Path
Graph Model, Computer Science and Software Engineering, 2008 International Conference on,
2008, pp. 1127-1132.

[Malik, 2008] Malik, N. A., Javed, M. Y., Mahmud, U., Threat Modeling in Pervasive
Computing Paradigm, New Technologies, Mobility and Security, 2008. NTMS '08, 2008, pp.
28-34.

[Matulevičius, 2008] Matulevičius, R., Mayer, N., Heymans, P., Alignment of Misuse Cases
with Security Risk Management, Proceedings of The Third International Conference on
Availability, Reliability and Security, 2008, IEEE Computer Society, pp. 1399-1404.

[Okubo, 2008] Okubo, T., Tanaka, H., Identifying Security Aspects in Early Development
Stages, proc.of The Third International Conference on Availability, Reliability and Security
2008, IEEE Computer Society, pp. 1150-1155.

[Pauli, 2006] Pauli, J., Xu, D., Integrating Functional and Security Requirements with Use Case
Decomposition, Proceedings of the 11th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS'06), 2006.

[Raman, 2008] Raman, A., Muegge, S., An integrated approach to security in software
development methodologies, in Proceedings of Canadian Conference on Electrical and
Computer Engineering. 2008, pp. 002011-002014.

[Riesbeck, 1989] Riesbeck, C., Schank, R., Inside Case-Based Reasoning, Riesbeck/Schank,
1989.

3077Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

[Saleh, 2008] Saleh, K., Kabhil, M., The Security Requirements Behavior Model for
Trustworthy Software, Proceedings of 2008 International MCETECH Conference on e-
Technologies, 2008, IEEE Computer Society, 235:238.

[Sindre, 2002] Sindre, G. , Opdahl, A.L. , Brevik, G.F. , Generalization/Specialization as a
Structuring Mechanism for Misuse Cases, 2nd Symposium on Requirements Engineering for
Information Security (SREIS’02), 2002.

[Stahl, 2003] Stahl, A., Gabel, T. , Using Evolution Programs to Learn Local Similarity
Measures, in Proceedings of the 5th International Conference on Case-Based Reasoning
(ICCBR 2003), Trondheim, Norway, June 2003.

[Steven, 2006] Steven, J. , Peterson, G. Defining Misuse within the Development Process,
IEEE Security and Privacy, IEEE Computer Society, 2006.

[Xu, 2006] Xu, D., Kendall, K. N. Threat-Driven Modeling and Verification of Secure
Software Using Aspect-Oriented Petri Nets, IEEE Transactions on Software Engineering,
IEEE Press, 2006, pp. 265-278.

[Wang, 2007] Wang, L. , Wong, E., Xu, D. , A Threat Model Driven Approach for Security
Testing, Proceedings of the Third International Workshop on Software Engineering for Secure
Systems (International Conference on Software Engineering), IEEE Computer Society, 2007, p.
10.

[Whittle, 2008] Whittle, J., Wijesekra, D., Hartong, M., Executable Misuse Case for modelling
Security Concerns, proc. of Int’l Conference on Software Engineering, 2008, IEEE Computer
Society, 121-130.

3078 Visaggio C.A., de Rosa F.: A System for Managing Security Knowledge ...

