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Abstract: Due to the absence of side effects, reasoning about functional programs
is simpler than reasoning about their imperative counterparts. However, because of
the absence of practical debuggers, finding bugs in lazy functional languages has been
more complex until quite recently. One of the easiest to use Haskell debuggers is Hood.
Its behavior is based on the concept of observation of intermediate data structures.
However, although using Hood can be simple when observing some structures, it is
known that it can be hard to understand how it works when dealing with complex
situations. In fact, the author of Hood recognizes that it is necessary to formalize its
behavior to explain better what should be expected, and also to allow to check whether
the different implementations work properly.

In this paper, we formalize the behavior of the Hood debugger by extending Sestoft’s
natural semantics. Moreover, we also show how to derive an abstract machine including
such debugging information. By doing so, we do not only provide a formal foundation,
but we also provide an alternative method to implement debuggers. In fact, we have
already made a prototype of the abstract machine presented in this paper.
Key Words: Parallel functional programming, debugging, semantics, abstract ma-
chines.
Category: F.3.2, D.2.5, D.3.1, D.3.2

1 Introduction

In lazy functional languages, values are only evaluated when it is completely sure
that the value will be needed for the final result of the programs. This interesting
feature complicates the task of debugging lazy functional programs. Although
not much attention was paid to it in the past (see e.g. [Wad98]), during the
last years there have been several proposals for incorporating execution traces
into lazy functional languages. In particular, we can highlight the work done
with Hat [WCBR01, Chi05, DC06], HsDebug [EP03b, EP03c], Rectus [MK06],
the declarative debuggers Freja [Nil98, Nil01] and Buddha [PN03, Pop05], the
last approach implemented in GHCi [Him06, MIBPG07] and specially the work
done with the Haskell Object Observation Debugger (Hood) [Gil01, Rei01]. All
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of them are designed to be used with the language Haskell [Pey03], the de facto
standard in the lazy-evaluation functional programming community.

The approaches followed in each of the previous debuggers are quite different,
both from the user and the implementation points of view. For instance, from
an implementation point of view, most of them strongly depend on the compiler
being used, while that is not the case in Hood. From the user point of view,
Freja and Buddha are question-answer systems that direct the programmer to
the cause of an incorrect value, while Hat allows the user to travel backwards
from a value along the redex history leading to the incorrect value. In this paper
we will not concentrate on those differences (the interested reader can find a
detailed comparison between Freja, Hat and Hood in [CRW01], while [PPRS01]
presents a common framework to describe all of them). In contrast, we will
concentrate on how to provide a formal foundation for one of them.

Among all of the Haskell debuggers, Hood has an interesting advantage over
the rest, as it can be used with different Haskell compilers. The reason is that
it is implemented as an independent library that can be used from any Haskell
compiler, provided that the compiler implements some quite common exten-
sions. Hood can currently be used with the Glasgow Haskell Compiler [PHH+93],
Hugs98 [JP99], the Yhc [Tea97], and also with nhc98 [Röj95]. Due to its porta-
bility, Hood has become one of the most used Haskell debuggers.

The way Hood works is relatively simple. First, the programmer instruments
the program marking the variables he wants to observe and, after finishing the
execution of the program, the system produces a printing of their final value. Let
us remark that final value does not necessarily mean normal form (lambda ab-
stractions, constructor applications, and primitive values), but evaluation to the
degree required by the lazy computation. Unfortunately, it is sometimes tricky
to understand what should be observed by using Hood in special situations. In
fact, as the author recognizes in [Gil01], the semantics of observe (the principal
debugging combinator of Hood) should be clearly defined to help understanding
its behavior.

In this paper, we continue our previous work [ELR06] to propose a formal-
ization of the Hood debugger allowing both to reason about it and to implement
it in a different and systematic way. What we propose is an extension of Sestoft’s
natural semantics2 [Ses97] that incorporates new rules to deal with Hood ob-
servations. Moreover, in this paper we introduce an equivalent abstract machine
with respect to the semantic defined, and we prove their equivalence. By doing so,
we obtain two main benefits. First, the semantics of the Hood observe operator
is clearly defined. Second, we can reuse the work done in [EP02, EP03a, EP09]
to effectively implement a debugging system. In fact, we have already made a
prototype of the abstract machine presented in this paper.

Summarizing, we propose a cleaner and more modular approach to the trace
problem in lazy functional programming, allowing to easily provide both imple-
mentations and formal foundations for them.

The rest of the paper is structured as follows. In the next section we in-
troduce the main characteristics of Hood. Then, in Section 3 we briefly review
2 Sestoft’s semantics is an extension of the original natural semantics introduced by

Launchbury in [Lau93].
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the main characteristics of Sestoft’s semantics. Next, in Section 4 we show how
to modify the original semantics to include debugging information equivalent
to that obtained by Hood. Afterwards, in Section 5 we introduce an abstract
machine equivalent to our new semantics. Then, in Section 6 we explain some
details about the implementation of the debugging system. Finally, in Section 7,
in addition to presenting our conclusions and lines for future work, we briefly
describe some details about our current implementation of the debugger. Fi-
nally, in the Appendix of the paper we present the proofs of the propositions
introduced in the paper.

2 An Introduction to Hood

In this section we show the basic ideas behind Hood. The interested reader is
referred to [Gil01, Gil00] for more details about it.

When debugging programs written in an imperative language (such as: Pas-
cal, C, etc.), the programmer can explore not only the final result of the com-
putation, but also the intermediate values stored in the variables being used by
the program at any moment of the computation. Moreover, it is simple to follow
how the value of each variable changes along time.

Unfortunately, this task is not that simple when dealing with lazy functional
languages. However, Hood allows the programmer to observe something similar
to an imperative environment. In fact, Hood provides a way to observe any inter-
mediate structure appearing in a program. Moreover, by using GHood [Rei01],
that is a graphical interface for the debugger Hood, we can also observe the
evolution in time of the evaluation of the structures under observation.

In order to illustrate what kind of observations can be obtained by using
Hood, let us consider the example introduced in [Gil01]. It will be complex
enough to highlight important aspects of Hood, but also relatively simple to be
easily understandable without requiring deep knowledge about Haskell. Given a
natural number, the following Haskell function returns the digits base 10 of that
number:

natural :: Int -> [Int]
natural = reverse

. map (‘mod‘ 10)

. takeWhile (/= 0)

. iterate (‘div‘ 10)

The first line of the definition only provides the type declaration of the func-
tion: given an integer it returns a list of integers. The other four lines define the
sequence of functions to be applied to obtain the overall effect, being reverse
the last one to be applied. In order to better understand the previous source
code, let us consider an application example. For instance, natural 3408 re-
turns the list 3:4:0:8:[], where [] denotes the empty list and : denotes the
list constructor. In order to compute the final result, three intermediate lists
were produced in the following order:

-- after iterate
3408:340:34:3:0:_
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-- after takeWhile
3408:340:34:3:[]
-- after map
8:0:4:3:[]

Notice that the first intermediate list is infinite because the iterate function
produces an infinite list applying (‘div‘ 10) recursively to the last calculated
number. Notice also that only the first five elements are computed. Since it is not
necessary to evaluate the rest of the list, it is represented as (the underscore
char).

By using Hood we can annotate the program in order to obtain the output
shown before. In order to do that, we have to use the observe combinator that
is the core of Hood. The type declaration of this combinator is:

observe :: String -> a -> a

From the evaluation point of view, observe only returns its second value.
That is, observe s a = a. However, as a side effect, the value associated with a
will be written, attaching to it the label s, in a file that will be analyzed after the
evaluation finishes. It is important to remark that observe returns its second
parameter in a completely lazy, demand–driven manner. That is, the evaluation
degree of a is not modified by introducing the observation, in the same way that
it is not modified when applying the identity function id. Thus, as the evaluation
degree is not modified, Hood can deal with infinite lists like the one appearing
after applying iterate (‘div‘ 10).

If we consider again our previous example, we can observe all of the interme-
diate structures by inserting the observe function before each function we want
to observe:

natural :: Int -> [Int]
natural = reverse

. observe "after map"

. map (‘mod‘ 10)

. observe "after takeWhile"

. takeWhile (/= 0)

. observe "after iterate"

. iterate (‘div‘ 10)

After executing natural 3408, we will obtain the desired result. Remember
that the first function that will be applied to the integer value 3408 is iterate
(‘div‘ 10), the second is observe "after iterate" and so on. Then, by in-
troducing the previous three observations we observe the result of the interme-
diate values. With the observation observe "after iterate" we will get the
list produced after applying iterate (‘div‘ 10) and so on.

Hood does not only observe simple structures like those shown in the previous
example. In fact, it can observe anything appearing in a Haskell program. In
particular, we can observe functions. For instance,

observe "sum" sum (4:2:5:[])

will observe the application of function sum to its parameter (that is, the list
4:2:5:[]), returning
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-- sum
{ \ (4:2:5:[]) -> 11
}

Notice that what we observe can be read as when the function receives as
input the list 4:2:5:[], it returns as output the value 11. The elements 4, 2 and
5 appear explicitly because they were really demanded to evaluate the output.
However, when observing something like

observe "length" length (4:2:5:[])

we will obtain the following observation:

-- length
{ \ (_:_:_:[]) -> 3
}

That is, we are observing a function that when it receives a list with three
elements, it returns the number 3 without evaluating the concrete elements ap-
pearing in the list. Note that in order to obtain the length of a list it is only
relevant the number of elements that the list has, but not the value of the
concrete elements. The function length is a polymorphic function that can be
applied to lists of any type (i.e. list of integers, list of chars, etc.).

As it can be expected, higher-order functions (functions that take one or
more functions as an input or output parameter) can also be observed. This
is done in a similar way as in the previous cases. For instance, in our initial
example, instead of observing the intermediate structures, we can observe the
higher-order function iterate:

natural :: Int -> [Int]
natural = reverse

. map (‘mod‘ 10)

. takeWhile (/= 0)

. observe "iterate" iterate (‘div‘ 10)

This higher-order function iterate applies infinite times the first function
it receives. For instance, applying iterate (+3) 1 returns the following infinite
list: 1:4:7:10:13:.... Now, observe only affects to the function iterate, so in
this case we are observing the behavior of this function. In this situation, when
we apply the new definition of natural to 3408, Hood returns:

-- iterate
{ \ { \ 3 -> 0

, \ 34 -> 3
, \ 340 -> 34
, \ 3408 -> 340
} 3408
-> 3408 : 340 : 34 : 3 : 0 : _

}

That is, it observes that it is a function that returns 3408:340:34:3:0:_
when it receives as second parameter 3408 and as first parameter a function
(‘div‘ 10) that has been observed with four different input values: 3408, 340,
34 and 3.

2840 de la Encina A., Llana L., Rubio F.: A Debugging System ...



It is important to remark that Hood has to analyze who was responsible for
evaluating each data. That is, if we are observing a structure in a given envi-
ronment, we are not interested in the parts of the structure that were evaluated
due to other environments. For instance, if we are observing function length in
the following example3:

let xs = take 5 (1:2:3:4:5:6:7:[])
in (observe "length" length xs) + (sum xs)

we will obtain the output

-- length
{ \ (_:_:_:_:_:[]) -> 5
}

That is, even though all the elements of the list xs where actually computed
(due to function sum), they were not needed at all to compute any application
of the function length.

3 A Semantics for Lazy Evaluation

We begin by reviewing the language and semantics given by Sestoft [Ses97] as
an improvement to Launchbury’s semantics [Lau93]. A well-known work from
Launchbury defines a big-step operational semantics for lazy evaluation. The
only machinery needed is an explicit heap where bindings are kept. A heap
is considered to be a finite mapping from variables to expressions, i.e., dupli-
cated bindings to the same variable are disallowed. The proposals of Launchbury
and Sestoft share the language given in Figure 1, where Ai denotes a vector
A1, . . . , An of subscripted entities. It is a normalized λ-calculus, extended with
recursive let, constructor applications and case expressions. Sestoft’s normaliza-
tion process forces constructor applications to be saturated and all applications
to only have variables as arguments. Weak head normal forms are either lambda
abstractions (i.e. functions that given an input variable x returns as a result the
evaluation of expression e) or constructions (i.e. data types). Throughout this
section, w will denote (weak head) normal forms.

Sestoft’s semantic rules are given in Figure 2. There, a judgement is repre-
sented as Γ : e ⇓ Δ : w and denotes that expression e, with its free variables
bound in heap Γ , reduces to normal form w and produces the final heap Δ.
Let us remark that, if the configuration Γ : e reduces to normal form, then Δ
and w are unique, because the semantics rules are deterministic (that is, mu-
tually exclusive). Then, in each derivation it is only possible to apply one rule.
Thus, in the rest of the paper, we will assume this fact to avoid introducing
extra quantifiers in our formalizations. Let us also remark that the notation ê
in rule Letrec means the replacement of the variables xi by the fresh pointers
pi. This is the only rule where new bindings are created and added to the heap.
3 let expression stores a new binding in the heap and then goes on computing the

expression appearing after the keyword in. In this case, xs is bound with the value
of the expression take 5 (1:2:3:4:5:6:7:[]), and then it is computed the body of
the expression, in this case (observe "length" length xs) + (sum xs)
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e → x -- variable
| λx.e -- lambda abstraction
| e x -- function application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression

Figure 1: Sestoft’s normalized λ-calculus

Γ : λx.e ⇓ Γ : λx.e Lam

Γ : C pi ⇓ Γ : C pi Cons

Γ : e ⇓ Δ : λx.e′ Δ : e′[p/x] ⇓ Θ : w

Γ : e p ⇓ Θ : w App

Γ : e ⇓ Δ : w

Γ ∪ [p �→ e] : p ⇓ Δ ∪ [p �→ w] : w Var

Γ ∪ [pi �→ êi] : ê ⇓ Δ : w

Γ : letrec xi = ei in e ⇓ Δ : w
where pi are fresh

Letrec

Γ : e ⇓ Δ : Ck pj Δ : ek[pj/xkj ] ⇓ Θ : w

Γ : case e of Ci xij → ei ⇓ Θ : w Case

Figure 2: Sestoft’s natural semantics

We use the term pointers to refer to dynamically created free variables, bound
to expressions in the heap, and the term variables to refer to (lambda-bound,
let-bound or case-bound) program variables. We consistently use p, q, . . . to de-
note pointers and x, y, . . . to denote program variables. The notation Γ [p �→ e]
means that (p �→ e) ∈ Γ , and Γ ∪ [p �→ e] represents the disjoint union of Γ and
(p �→ e).

The first two rules (Lam, and Cons , in Figure 2) only establish that normal
forms are λ-abstractions or constructions, as they reduce to themselves. The App
rule reduces the function application e p to w if the body of the application e
reduces to the lambda form λx.e′, and this λ-form applied to p (that is e′[p/x])
reduces to the normal form w. If the expression bound in the heap with the
variable p (that is, e) reduces to the normal form w, the rule Var reduces the
variable p to w. Moreover, in order to avoid re–evaluation of e, the rule also
updates the heap with the reduced value w, The rule Letrec reduces the letrec
expression to w if the body of the letrec expression (that is, e) reduces to w
in a heap where the new bindings have been introduced. Finally, the rule Case
reduces the case expression to w if the discriminant of the case expression
(that is, e) reduces to the constructor Ck pj and the body of the corresponding
alternative (that is, ek) reduces to w.
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4 Semantics with Debugging Features

4.1 Low level details of the real behavior of Hood

In order to better understand how we should define the rules of our seman-
tics, it is convenient to describe some details of the implementation of Hood.
When Hood is in action, it produces internal annotations that have this form:
(portId, parent, change). The portId corresponds to a pointer to the place
where the annotation is made: in the implementation it corresponds to a line
number in the file of annotations. In order to be able to post-process the file, when
a function or a constructor is evaluated, its arguments need to know the place
where they were invoked. That is, we need to access the parent of the arguments;
formally, parent is a tuple (observeParent, observePort), where observeParent
is the portId of the parent and the observePort is the position of the argument.
Finally, parameter change corresponds to the type of observation carried out,
and it can have one of the following forms:

– Observe String is generated when we enter in a binding annotated with
the corresponding string. This kind of observation has no parent because
it is the first observation produced, actually it has the general parent, that
corresponds to (0, 0). This is the first annotation generated when we start
the evaluation of an annotated binding.

– Enter is generated when the evaluation of a binding starts.

– Cons Int String is generated when the evaluation arrives at a construc-
tor. The integer appearing in the annotation is the arity of the constructor,
and the string is the name of the constructor. The arguments of this con-
structor that is under observation will be annotated with (parentPortId, 1),
. . . (parentPortId, arity), where parentPortId is the place where the an-
notation Cons has been written. In this way, it is easy to reconstruct the
evaluation tree.

– Fun is generated when an observed lambda expression is applied. In the
observations of Hood, lambdas have only one argument and one result. The
argument of the lambda is annotated with the parent (parentPortId, 0)
and the result of the lambda is annotated with (parentPortId, 1), where
parentPortId is the place where the annotation Fun has been written.

Therefore, in Hood it is not only possible to observe the normal forms of the
bindings, but also when the bindings start the evaluation. Using this, it is easy
to observe which bindings are demanded by another one. These annotations are
processed and are shown in a useful way to the user.

4.2 Hood semantics

Let us consider now how to introduce Hood-like observations in the semantics.
Let us remind that Hood users can annotate their programs to mark which struc-
tures have to be observed. Thus, we have to be able to annotate any structure.
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e → x -- variable
| x@str -- observed variable
| λx.e -- lambda abstraction
| e x -- function application
| letrec xi = ei in e -- recursive let
| C xi -- constructor application
| case e of Ci xij → ei -- case expression
| p@(r,s) -- observed pointer (internal)
| λ@[(ri,si)]x.e -- observed lambda abstraction (internal)

Figure 3: Sestoft’s normalized λ-calculus extended

Besides we need to write these annotations in a structure. In order to simplify
the semantics we have decided to use a file. This file has to be post-processed to
show the flattened observations.

So a semantic rule take the form Γ : e �f ⇓ Δ : w �f ′, which is read as
“the evaluation of the expression e reduces to the normal form w, transforms
the heap Γ into Δ and adds observations to f generating a new file f ′.”

To achieve this, the judgments will have the form Γ : e�f ⇓ Δ : w�f ′. As
in the previous section, that means that expression e is evaluated in the heap
Γ , we obtain as a result the expression w and the new heap is Δ. The difference
is that now we have added the file f where we write the annotations that are
produced during the reduction. The information in the file is added sequentially.
Thus, we will write f ◦〈ann〉 to indicate that we add the annotation ann at the
end of the file f . The annotations that we will make will have the following form:

ann → (observeParent observePort ) Observe str
| (observeParent observePort ) Enter
| (observeParent observePort ) Cons arity nameConstr
| [(observeParent i observePort i)] Fun

They are similar to the ones Hood makes, there exist only two differences. The
first difference, is that we omit the portId of Hood’s annotations because, in our
case, it corresponds to the line number in the file where the annotation has been
produced. Then, observeParent and observePort are integers that correspond
to the parent of Hood’s annotations, that is the line number. To handle this
we will need the function length f that returns the total number of lines in the
file f . We will consider that the first line in the file is the 0 line. The second
difference is produced in the λ-abstractions annotations: now they have a list
of pairs observeParent and observePort corresponding with the list of closures
that are observing the λ-abstraction behavior. We have decided to introduce this
modification because λ-abstractions can be observed from different points and
our aim is to show in a simple way the semantic rules.

We also have to be able to annotate any structure. This can be trivially done
by allowing to annotate as observable any variable. Thus, we only need to slightly
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modify the language presented in Figure 1 to include an extra construction as
shown in Figure 3. The expression x@str is the equivalent to the Hood expression
observe str x. Note that, according to the syntax, these observations cannot
appear directly in applications or constructor applications. However, this is not
a drawback, since they may appear in a recursive let. Once the language allows
to include observations, we have to deal with them in the rules. Besides we need
a new kind of normal form λ@(r,s)x.e: an observed lambda expression; and a new
kind of observed pointers p@(r,s): pointers that are observed and refer to their
parents. It is important to note that the programmer is not allowed to write this
kind of expressions, as they only appear as auxiliary expressions in the rules.
The notation (r, s) means that the parent of the pointer or lambda observed is
r and this pointer or lambda is the sth-child of r.

The rules in the original Sestoft’s natural semantics (Figure 2) do not deal
with observations. Thus, they are rewritten with the natural modification to
include the annotation file. This file stores the observation in order to post-
process it. For instance, our new Case rule is

Γ : e�f ⇓ Δ : Ck pj �f ′ Δ : ek[pj/xkj ]�f ′ ⇓ Θ : w�f ′′

Γ : case e of Ci xij → ei �f ⇓ Θ : w�f ′′

The rest of the rules in Figure 2 should be modified in the same way, that
is, adding the file argument in all the configurations. However, in addition to
rewriting these rules, it is also necessary to write completely new rules to deal
with the new expressions, that is: observed variables, observed pointers, and
observed lambda abstractions. The new rules we add to the system are those
shown in Figure 4. Let us briefly describe their meaning:

– Rule Var@S . When we have to evaluate a binding annotated with the string
str, we have to generate an annotation in the file 〈0 0 Observe str〉 and we
have to continue to evaluate that binding but with an annotation that indi-
cates its parent, in this case p@(n,0) (n = length f is the length of the file at
that point of the evaluation).

– Rule Var@C . When evaluating an expression such as p@(r,s), a new annota-
tion 〈r sEnter〉 is generated indicating that we enter to evaluate that bind-
ing. Then p@(r,s) evaluates to a constructor, so the observation 〈r sCons k C〉
is generated. This indicates that the binding whose parent is (r, s) has been
reduced to the constructor C (whose arity is k). New bindings pointing to
each argument of that constructor are generated. These bindings are anno-
tated to indicate that they are being observed. Moreover, in this annotation
we must indicate the argument number of the constructor and that its parent
is in the corresponding line in the file.

– Rule Var@F and Var@FO . Now we have to evaluate p@(r,s). As in the pre-
vious case, we generate the annotation 〈r sEnter〉, but in this case p reduces
to a function. So we need to annotate this function saying that is being
observed from (r, s). The difference between the rules depends on whether
the function was previously annotated with an observation or not, rules
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Γ : p@(length f,0) �f ◦〈0 0 Observe str〉 ⇓ Δ : w�f ′

Γ : p@str �f ⇓ Δ : w�f ′ Var@S

Γ : p�f ◦〈r sEnter〉 ⇓ Δ : C pi
k �f ′

Γ : p@(r,s) �f ⇓ Δ ∪ [qi �→ p
@(length f ′,i)
i ] : C qi �f ′◦〈r sCons k C〉

qi fresh
Var@C

Γ : p�f ◦〈r sEnter〉 ⇓ Δ : λx.e�f ′

Γ : p@(r,s) �f ⇓ Δ : λ@(r,s)x.e�f ′ Var@F

Γ : p�f ◦〈r sEnter〉 ⇓ Δ : λ@obsx.e�f ′

Γ : p@(r,s) �f ⇓ Δ : λ@(r,s):obsx.e�f ′ Var@FO

Γ : λ@obsx.e�f ⇓ Γ : λ@obsx.e�f Lam@

Γ : e�f ⇓ Δ : λ@[(ri,si)]x.e′�f ′

Δ ∪
[

q �→ e′[q′/x],
q′ �→ p@(length f ′,0)

]
: q@(length f ′,1) �f ′◦〈 [(ri, si)]Fun〉 ⇓ Θ : w�f ′′

where q, q′ fresh

Γ : e p�f ⇓ Θ : w�f ′′ App@

Figure 4: Hood’s natural semantics

Var@FO and Var@F respectively. In both cases, we add the observation
to the function and continue to evaluate a new kind of normal form, an
observed λ-abstraction.

– Rule Lam@ establishes that λ@obsx.e is actually a normal form.

– Rule App@ is the fundamental part of the new semantics. We are evaluating
the application of an observed function. First, we generate the annotation
in the file indicating that we are applying an observed function (note that
length f ′ is the line where the annotation is made). Then we mark its argu-
ment as observable, and we use (length f ′, 0) as its parent. In order to observe
the result, we create a new observed binding whose parent is (length f ′, 1).
The ports are different to remember that one is the argument and the other
is the result of the lambda.

Note that it is not necessary to specify the application to an observed pointer
e p@(r,s). The reason is that, in the syntax, we have restricted the places
where an observed variable may appear, and in the rules we never substitute
a variable by an observed pointer.

4.3 Correctness and equivalences between semantics

One important thing we must prove is that the observation marks do not change
the meaning of an expression. That is, if we evaluate a marked expression and
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the equivalent one without marks, we should obtain the same normal form. Let
us remark that this property must be satisfied because Hood observations do
not modify the normal computation of Haskell programs.

The first difference of our semantics with respect to the original one consists
in the observation marks. Thus, in order to compare them we need to provide
a function to remove the observations. Thus, we define the following simple
function that transforms any Sestoft’s expression with observations, that we call
Sestoft@, into an expression without observations.

Definition 1 We define the function that removes the observations as R :
Sestoft@ → Sestoft. It is recursively defined, and all cases are trivial but the
case of observed expressions:

R x
def
= x

R x@str def
= x

R (λ x.e)
def
= λ x.R e

R (e x)
def
= (R e) x

R (letrec xi = ei
n in e)

def
= letrec xi = R ei

n
in R e

R (C xi)
def
= C xi

R (case e of Ci yij → ei)
def
= case R e of Ci yij → R ei

R p@(r,s) def
= p

R λ@obsx.e
def
= λx.R e

This function is extended to work with heaps, and configurations. Basically,
R Γ corresponds to {p �→ R e | (p �→ e) ∈ Γ} and R (Γ : e) = R Γ : R e.

But the most difficult problem is that in our rules we introduce new pointers
and the expressions appearing in the rules contain pointers. Thus, we have to
prove that the expressions appearing in both formalisms are equivalent. The
pointers are kept in a heap; our new rules Var@C and App@ add new pointers
to the heap. These pointers point to the original ones, but they are marked
remembering that they are under observation. We would like to define Γ : w 

Γ ′ : w′ if w in Γ has the same value as w′ in Γ ′, that is, if we obtain the same
expressions by following the pointers. We can do that as follows: if p is a pointer
in w and (p �→ e) ∈ Γ , let us substitute the occurrences of p in w by e. By doing
so, we obtain new expressions that may have pointers; in that case, we iterate
the process. Analogously, we perform the same process to deal with w′. If both
processes end, then we look at the final expressions: if both expressions are the
same, we can say that w and w′ have the same value. The problem appears when
one of the processes does not end. In that case, we have to take the limit of both
sequences: w and w′ have the same value if one sequence is a subsequence of the
other.

Definition 2 Let e be an expression and Γ be a heap.

– We denote by rp e the substitution of all pointers in e by the symbol ⊥.
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– We denote Γ e as the application of Γ to the expression e. It is defined
recursively, and all cases are trivial but the case of a pointer:

Γ p
def
= rp e if (p �→ e) ∈ Γ

Γ p
def
= ⊥ if (p �→ e) /∈ Γ

Γ p@str def
= (Γ p)@str

Γ λ x.e
def
= λ x.Γ e

Γ e p
def
= Γ e Γ p

Γ letrec xi = ei in e
def
= letrec xi = Γ ei in Γ e

Γ (C qi)
def
= C Γ qi

Γ (case e of Ci yij → ei)
def= case Γ e of Ci yij → Γ ei

Γ p@(r,s) def
= (Γ p)@(r,s)

Γ λ@obs x.e
def
= λ@obs x.Γ e

Definition 3 Let e, e′ be expressions and Γ, Γ ′ be heaps. Let us consider the
possibly infinite sequences

s = [e, Γ e, Γ 2 e, Γ 3 e, . . .] and s′ = [e′, Γ ′ e′, Γ ′2 e′, Γ ′3 e′, . . .]

where the superscripts indicate the number of times that the heap Γ is applied
to the expression e.
We say that:

– Γ : e 
 Γ ′ : e′ if

1. rp e = rp e′

2. ∀i ∃j ≥ i, rp Γ i e = rp Γ ′j e′

3. ∀j, rp Γ ′j e′ �= rp Γ ′j+1 e′ ⇒ ∃i ≤ j, rp Γ i e = rp Γ ′j e′

– Γ : e 
R Γ ′ : e′ if Γ : e 
 R (Γ ′ : e′)

According to the previous definition, if Γ : e 
 Γ ′ : e′ we have that e and
e′ are equivalent, and the only differences may appear in the pointers that the
expressions have. First we require that rp e = rp e′: if e is a lambda expression,
an application, a recursive let, a constructor or a case expression, so must be
e′, and vice versa; the constructors and variables appearing at the top level
must be the same. We do not require that the pointers be the same or that
they point to the same expressions; what we require is that whenever there
is a pointer in e, (p �→ e1) ∈ Γ , then there must be a sequence of pointers
[q1 �→ q2, . . . qn �→ en] ⊆ Γ ′ such that q1 appears in e′, and if we apply all the
corresponding substitutions in e and e′ and then remove the pointers, we obtain
the same expression. This is expressed in Definition 3.2 and Definition 3.3.

We need to prove the equivalence between the evaluation of a marked ex-
pression and the corresponding one without marks:
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Theorem 1 For all e ∈ Sestoft and all e@ ∈ Sestoft@ such that e = R e@

then:

{ } : e@ �〈 〉 ⇓ Δ@ : w@ �f iff { } : e ⇓ Δ : w

and Δ : w 
R Δ@ : w@

In order to prove this theorem we need to take into account some consider-
ations. First, in order to simplify the proof, we substitute the rule Var with a
new one:

Γ : e ⇓ Δ : w

Γ [p �→ e] : p ⇓ Δ � [p �→ w] : w Var ′

The equivalence between the evaluation is maintained. The only difference
with the original one is that now we do not remove the binding (p �→ e), that is
under evaluation, to evaluate the expression e. Besides, in this case Δ � [p �→ w]
means to update in Δ the expression corresponding to the pointer p with the
expression w. It is very easy to prove the equivalences between both rules. If
in the evaluation of Γ : e the binding (p �→ e) had been used, we would have
entered in a “black hole,” as we need p to evaluate p. In that case, with the
new rule Var ′ the evaluation would not have finished and with the rule Var the
evaluation would have stopped without finishing.

Proposition 1 Γ : e ⇓ Δ : w iff Γ : e ⇓ Δ : w with the rule Var ′.

Proof. The proof is made by rule induction. All rules are trivial except the proof
of rule Var . The relevant implication is ⇐.

We know that Γ : e ⇓ Δ : w, so two alternatives can occur. In the first case,
if binding p �→ e was not used in this derivation, then we can apply induction
hypothesis and the proof finishes. The second possibility is that it was used, then
it is impossible that Γ : e ⇓ Δ : w; because at some point in the derivation we
have to evaluate Γ [p �→ e] : p again, but in that case we would obtain an infinite
derivation and we would never reach the normal form. �

From now on, in the rest of this section, we will consider that we use rule Var ′

instead of rule Var . We also need to observe some properties that are invariant
during the evaluation.

Definition 4 Γ : e is a good configuration if all the reachable pointers from e
are bound in the heap.

Proposition 2 Let Γ : e be a good configuration. If Γ : e ⇓ Δ : w then Δ : w
and Δ : e are good configurations.

Proof. The proof is made by rule induction. The proof is very easy, as we only
need to take care of rules that removes or creates new bindings. The only rule
removing bindings was Var , but with the new rule Var ′ no binding is removed
from the heap. Moreover, rules Letrec and App@ are the only rules that creates
bindings, but both rules maintain the property. �
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In order to prove the main theorem we take advantage of some properties
that the relations 
 and 
R satisfy. It is very easy to prove them by considering
the definition and, in some cases, by applying rule induction.

Property 1 Let be Γ : e a good configuration then ∀p fresh, Γ : e 
 Γ ∪ [p �→
e] : p

1. If Γ : e 
 Γ ′ : e′ and Γ ′ : e′ 
 Γ ′′ : e′′ then Γ : e 
 Γ ′′ : e′′

2. If Γ : e 
 Γ ′ : e′ then R (Γ : e) 
R Γ ′ : e′

3. If Γ : e 
R Γ ′ : e′ and Γ ′ : e′ 
 Γ ′′ : e′′ then Γ : e 
R Γ ′′ : e′′

4. If Γ : e 
 Γ ′ : e′ and Γ ′ : e′ 
R Γ ′′ : e′′ then Γ : e 
R Γ ′′ : e′′

5. If Γ : e 
R Γ ′ : e′ then ∀(q �→ e′) ∈ Γ ′, Γ : e 
R Γ ′ ∪ [q′ �→ q@] : e′ [q′/q]

6. If Γ : e 
R Γ ′ : e′ then Γ : e 
R Γ ′ ∪ [qi �→ q@
i−1

n
] : q@

n , n ≥ 0 and q0 = e′

7. Let be Γ [qi �→ q@
i−1

n
] : qn, n ≥ 0 and q0 = e

If Γ : e ⇓ Δ : w then Γ : qn ⇓ Δ ∪ [qi �→ wi
n
, q′i �→ q′′@i ] : w0, ∀i ∃j, w =

(R Δ)jwi and q′i are fresh.

Let us briefly describe them: the Property 1.1 reflects the fact that the re-
lation 
 is transitive. Property 1.2 reflects the relation between 
 and 
R .
Property 1.3 and Property 1.4 explain how to combine both equivalences, 
,
and 
R . Property 1.5 reflects the fact that the relation 
R is not affected if
we add in the second configuration intermediate pointers. Property 1.6 reflects
the fact that it is equivalent for relation 
R to have an expression in the con-
figuration or a pointer that points to it. Finally, Property 1.7 reflects that the
semantic reduction ⇓ is equivalent if we have an expression in the configuration
or a pointer that points to it.

Using these properties, we can prove a proposition that is more general than
the original Theorem 1. In addition to the equivalence between both semantics,
we have to prove a companion property Δ : e′ 
R Δ@ : e′@ for any expression
e′. This is an auxiliary result needed in the proof.

Proposition 3 Let be e, e′ ∈ Sestoft, all e@, e′@ ∈ Sestoft@, Γ : e, Γ@ : e@,
Γ : e′ and Γ@ : e′@ good configurations, such that Γ : e 
R Γ@ : e@ and
Γ : e′ 
R Γ@ : e′@ then:

Γ@ : e@ �f ⇓ Δ@ : w@ �f ′ iff Γ : e ⇓ Δ : w, Δ : w 
R Δ@ : w@

and Δ : e′ 
R Δ@ : e′@

Proof. Here we only present a sketch of the proof. The interested reader can
find the complete proof in the appendix of the paper. The proof is made by
rule induction. In order to make the proof easier to read, we will drop the ob-
servation file from the rules since it does not participate in the evaluation of
the expressions. This file is only a side effect of the evaluation. Notice that, if
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Heap Control Environment Stack rule

Γ (e x) E ∪ [x �→ p] S app1
=⇒ Γ e E ∪ [x �→ p] p : S

Γ λy.e E p : S app2
=⇒ Γ e E ∪ [y �→ p] S

Γ ∪ [p �→ (e′, E′)] x E ∪ [x �→ p] S var1
=⇒ Γ e′ E′ #p : S

Γ λy.e E #p : S var2
=⇒ Γ ∪ [p �→ (λy.e, E)] λy.e E S

Γ letrec {xi = ei} in e E S letrec (1)
=⇒ Γ ∪ [pi �→ (ei, E′)] e E′ S

Γ case e of alts E S case1
=⇒ Γ e E (alts, E) : S

Γ Ck xi E ∪ [xi �→ pi] (alts, E′) : S case2 (2)
=⇒ Γ ek E′ ∪ [yki �→ pi] S

Γ C xi E #p : S var3
=⇒ Γ ∪ [p �→ (C xi, E)] C xi E S

(1) pi are distinct and fresh w.r.t. Γ , letrec {xi = ei} in e, and S. E′ = E ∪ [xi �→ pi]
(2) Expression ek corresponds to alternative Ck yki → ek in alts

Figure 5: Abstract machine Mark-2

configurations are good, the last case considered in Definition 2 ( (p �→ e) /∈ Γ )
cannot occur. However, the definition must take the case into account for the
sake of completeness. �

Finally, as an immediate corollary of the previous proposition, we have that
Theorem 1 holds.

5 Abstract Machine

In this section we introduce an abstract machine equivalent to the semantics
shown in the previous section. In order to do that, we extend one of the abstract
machines defined by Sestoft in [Ses97]. In that work, he introduced several ab-
stract machines in sequence, respectively called Mark-1, Mark-2 and Mark-3.
The principal difference between those machines are the bindings in the heap.
The Mark-1 machine binds pointers with expressions, while the Mark-2 machine
binds pointers with closures, that is a pair of expression an environment, and
the Mark-3 machine maps pointers with expressions where the variables have
been changed by the De Bruijn index [DB72, DB78]. We will use the machine
Mark-2 for deriving the new rules for our semantics because it is close enough
to reality and it does not have many low–level details as Mark-3 machine.

Definition 5 A configuration of Mark-2 is a quadruple of the form (Γ, e, E, S)
where Γ represents the heap, e is the expression that is currently under evaluation
(denoted by control expression), E is the environment, and S is the stack:
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– The environment E binds the free variables of the control expression e with
the corresponding pointers.

– The heap Γ binds pointers to closures which, in turn, is a pair (e, E), where
e is an expression and E represents the environment which maps the free
variables of e to the corresponding pointers.

– The stack S stores three kinds of objects: arguments pi of pending applica-
tions, case alternatives (alts , E) of pending pattern matchings, and marks
#p of pending updates.

In Figure 5 the operational rules of the Mark-2 machine are shown. The rules
app1 and app2 are needed to evaluate an application, and they correspond to
semantic rule App. Rule app1 begins the computation corresponding to the left
subtree, while app2 begins the computation corresponding to the right subtree.
Rules var1, var2 and var3 reduce the evaluation of a variable, like semantic
rule Var . Rule var1 starts the computation of the variable. Note that when
the evaluation reach the normal form, it is necessary to update the heap. Thus,
rule var1 pushes in the stack the update mark to remember this fact. When
it is reached the corresponding normal form, λ-abstraction or constructor, the
update is produced by rules var2 or var3 respectively. Rule letrec evaluates a
letrec expression, and it corresponds to semantic rule Letrec. Finally, rule case1
begins the computation corresponding to the left subtree, while case2 begins the
computation corresponding to the right subtree.

The main theorem proved by Sestoft, is that successful derivations of the
machine are exactly the same as those of the semantics. The reason why the
environments are needed is because control expressions, lambda expressions and
alternatives keep their original variables, and in execution we need to know their
associated pointers. Basically, the machine consists of a flattening of the semantic
tree.

Following the same ideas, we have derived new machine rules for the new se-
mantic rules. These new rules are presented in Figure 6. To include observations
in our machine we need to add some modifications to the original machine. First,
we need a new column of side effects for the rules containing the observations.
In fact, we have to include the side effect column in all the rules appearing in
Figure 5, but we do not show it because it is quite straight forward (it is neces-
sary to include that column with no modifications in the file) since these rules
do not have to deal with observations and they do not generate observations.
Second, we need to add a new type of objects in the stack. This kind of objects
@(r, s) corresponds to pending observations. Let us remark the following facts:

– The side effects are produced at the same time as the evaluation of the
program takes place.

– Observations can be obtained even if the program does not finish its com-
putation, because they are written to a file.

Let us briefly describe the new rules introduced into Mark-2 machine to deal
with the new expressions:
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Heap Control Environment Stack Side Effect rule

Γ x@str E S f var@S
=⇒ Γ x@(length f,0) E S f ◦〈0 0 Observe str〉

Γ x@(r,s) E S f var1@
=⇒ Γ x E @(r, s) : S f ◦〈r sEnter〉

Γ λy.e E @(r, s) : S f var2@
=⇒ Γ λ@[(r,s)]y.e E S f

Γ λ@obsy.e E @(r, s) : S f var2@@
=⇒ Γ λ@(r,s):obsy.e E S f

Γ C xi E @(r, s) : S f var3@ (1)

=⇒ Γ ∪ [qi �→ (x@(length f,i)
i , E)] C xi [xi �→ qi] S f ◦〈r sCons k C〉

Γ λ@[(ri,si)]y.e E p : S f app2@ (2)

=⇒ Γ ∪
[

q �→ (e, E ∪ [y �→ q1]),
q1 �→ (arg@(length f,0), [arg �→ p])

]
ap@(length f,1) [ap �→ q] S f ◦〈 [(ri, si)]Fun〉

(1) qi are distinct and fresh w.r.t. Γ , C xi, and S.
(2) q, q1 are distinct and fresh w.r.t. Γ , λ@[(ri,si]y.e, and S.

Figure 6: Abstract machine Mark-2@, rules for Hood

var@S When the control expression is a variable under observation with the
string str , we add in the file the corresponding observation saying that the
reduction of the observation has started and modify consequently the control
expression. This rule corresponds to the semantic rule Var@S .

var1@ When the control expression is a closure under the internal observation
@(r, s), we add in the file the observation saying that the machine has started
to reduce that closure. This rule corresponds to the first part of the premises
of the semantics rules Var@F and Var@C .

var2@ and var2@@ When we arrive at a λ-abstraction and on the top of the
stack there is a pending observation, we only annotate the λ-abstraction
with the corresponding observation mark. Rule var2@ corresponds to the
premises of the semantic rule Var@F and rule var2@@ corresponds to the
premises of the semantic rule Var@FO . The same applies to the semantic
rules Var@F and Var@FO : the only difference between these rules depends
on whether the lambda abstraction was previously observed or not, rules
var2@ or var2@@ respectively.

var3@ When we arrive at a constructor and on the top of the stack there is
a pending observation, we perform the observation, that indicates that the
closure has been reduced to a constructor, and continue the evaluation con-
sidering that now we are observing the constructor arguments. This rule
corresponds to the second part of the premises of the semantic rule Var@C .

app2@ When the evaluation arrives at a function that is being observed, first the
observation is done and afterwards the body of the function is evaluated. And
so it is possible to remember that not only the argument of the function is
being observed but also the result. This is done by adding the corresponding
bindings in the heap. This rule corresponds to the semantic rule App@.
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5.1 Correctness and equivalences between abstract machines

Now we have to prove the correctness of the new machine, that we call Mark-2@,
with respect to the new semantics (Figure 4). Since we have proved that our
semantics and the original one are equivalent, as a corollary we will also have
that Mark-2@ and Mark-2 are equivalent.

In order to prove the correctness, we need to take into account that the se-
mantic heap, and the Mark-2@ heap are structurally different. The Mark-2@

heap has environments that map the free variables of the expression associated
to the environment with its corresponding pointers; whereas, in the semantic
heap, the free variables are substituted with their corresponding pointers. Thus,
we need to define an equivalence between them, applying the corresponding en-
vironment to the corresponding expression, that is what the following definition
establish.

Definition 6 Let Γ be a heap of the Mark-2@, Γenv denotes the following heap
[p �→ E e | (p �→ (e, E)) ∈ Γ ]

Theorem 2 For all e ∈ Sestoft@ then:

{ } : e�〈 〉 ⇓ Δ : w�f iff ({ }, e, { }, [ ], 〈 〉) =⇒∗ (Δ′, w′, E′, [ ], f ′)

and Δ = Δ′
env , w = E′ w′, f = f ′

To prove this theorem and to separate the ideas over the environments from
the principal proof, we define an auxiliary machine, Mark-1@, which is similar
to Mark-2@. The technical difference is that it does not have the environment
component (see Figure 7) in the control expression, in the stack and in the
heap’s bindings. For example, rule app1 now has as control expression e p, while
in Mark-2@ machine the expression was e x and the environment contained the
binding {x �→ p}. In both cases, they push in the stack the pointer p and follows
with the evaluation of the expression e. Remember that the environment can
be considered as a delayed substitution, so if we apply it to each corresponding
expression we get the Mark-1@ machine. Now, we need to prove that Mark-1@

is equivalent to the Hood’s natural semantics (Figure 4) and to the machine
Mark-2@. As a corollary we get Theorem 2.

First, we prove the equivalence between both machines. To do that we define
an equivalence between the configuration of the machine Mark-1@ and Mark-2@.

Definition 7

1. Let S be a stack of the Mark-2@ then Senv denotes the following stack:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p : S′
env if S = p : S′;

#p : S′
env if S = #p : S′;

@(r, s) : S′
env if S = @(r, s) : S′;

E alts ′ : S′
env if S = (alts ′, E) : S′;

[ ] if S = [ ];
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Heap Control Stack Side Effect rule

Γ (e p) S f app1
=⇒ Γ e p : S f

Γ λy.e p : S f app2
=⇒ Γ e[p/y] S f

Γ ∪ [p �→ e] p S f var1
=⇒ Γ e #p : S f

Γ λy.e #p : S f var2
=⇒ Γ ∪ [p �→ λy.e] λy.e S f

Γ letrec {xi = ei} in e S f letrec (1)
=⇒ Γ ∪ [pi �→ êi] ê S f

Γ case e of alts S f case1
=⇒ Γ e alts : S f

Γ Ck pi alts : S f case2 (2)
=⇒ Γ ek[pi/yki] S f

Γ Ck pi #p : S f var3
=⇒ Γ ∪ [p �→ Ck pi] Ck pi S f

Γ p@str S f var@S
=⇒ Γ p@(n,0) S f ◦〈0 0 Observe str〉

Γ p@(r,s) S f var1@
=⇒ Γ p @(r, s) : S f ◦〈r sEnter〉

Γ λy.e @(r, s) : S f var2@
=⇒ Γ λ@[(r,s)]y.e S f

Γ λ@obsy.e @(r, s) : S f var2@@
=⇒ Γ λ@(r,s):obsy.e S f

Γ C pi
k @(r, s) : S f var3@ (3)

=⇒ Γ ∪ [qi �→ p
@(n′,i)
i ] C qi S f ◦〈r sCons k C〉

Γ λ@[(ri,si)]y.e p : S f app2@ (4)

=⇒ Γ ∪
[
q �→ e[q1/y],
q1 �→ p@(n′,0)

]
q@(n′,1) S f ◦〈 [(ri, si)]Fun〉

(1) pi are distinct and fresh w.r.t. Γ , letrec {xi = ei} in e, and S. ê = e[pi/xi]
(2) Expression ek corresponds to alternative Ck yki → ek in alts
(3) qi are distinct and fresh w.r.t. Γ , C pi, and S.
(4) q, q1 are distinct and fresh w.r.t. Γ , λ@[(ri,si)]y.e, and S.

Figure 7: Abstract machine Mark-1@

2. Let (Γ, e, E, S, f) be a configuration of the Mark-2@ then:

(Γ, e, E, S, f)env denotes the Mark-1@ configuration (Γenv , E e, Senv , f)

3. Let (Γ, e, S, f) be a configuration of the Mark-1@, (Γ ′, e′, E′, S′, f ′) be a con-
figuration of the Mark-2@ then (Γ, e, S, f) ≡env (Γ ′, e′, E′, S′, f ′) if:

(Γ, e, S, f) = (Γ ′, e′, E′, S′, f ′)env
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Definition 7 expresses how to convert a stack (Definition 7.1), and a con-
figuration (Definition 7.2) of Mark-2@ machine into a corresponding stack, or
configuration of Mark-1@ machine, basically applying the environments, and es-
tablishing an equivalence between the configurations of Mark-1@ and Mark-2@

machines (Definition 7.3), that is that Mark-1@ machine configuration is equal
to remove the environments in Mark-2@ machine configuration. The following
property establishes the equivalence between both machines.

Proposition 4 Given a configuration (Γ, e, S, f) of the Mark-1@ machine and a
configuration (Γ ′, e′, E′, S′, f ′) of the Mark-2@ machine such that (Γ, e, S, f) ≡env

(Γ ′, e′, E′, S′, f ′) then:

(Γ, e, S, f) =⇒∗ (Δ, w, S, f) iff (Γ ′, e′, E′, S′, f ′) =⇒∗ (Δ′, w′, E′, S′, f ′′)

and (Δ, w, S, f) ≡env (Δ′, w′, E′, S′, f ′′).

Proof. It is proved by induction over the rules. It is trivial, as all the rules are
equivalent via ≡env .

Now, following the ideas presented by Sestoft, in order to prove the equiv-
alence between the machine and the semantic rules, we will need the idea of
balanced traces. First, let us concentrate in the abstract machine without obser-
vations. Intuitively, a balanced trace corresponds to the evaluation of a complete
expression but starting with a non-empty stack. In this context the trace is a
sequence of rules of the abstract machine. The main characteristics of a balanced
trace are:

– The original stack remains untouched. None of the rules applied in a balanced
trace change or even consult a value in that stack. The rules may put new
values on top of the original stack only.

– At the end of the execution of the trace the final stack is the original one.
No new values are on top of the stack when the execution of the trace ends,
the final stack is the same as the original one.

Since a balanced trace is the execution of a complete expression, any non-
empty balanced trace must begin with app1, var1 or let. A balanced trace cannot
start with app2 nor var2 because in both cases at the top of the stack there is a
pending pointer that indicates that evaluation of a expression had already been
started.

If the trace begins with app1, it produces an intermediate stack of the form
p : S. Since the only rule that uses the pointer and restores the stack is app2, it
must appear later in the trace. Now, in the control we have to evaluate expression
e, so the subtrace between app1 and its corresponding app2 is a balanced one.
Analogously, if the trace starts with var1 it should end with either var2 or var3;
if it starts with case1, case2 eventually appears (in this case the evaluation may
continue with the corresponding expression in the alternatives).

So, in the abstract machine Mark-1, the balanced traces are the ones derived
from the following grammar:

bal ::= ε | app1 bal app2 bal | var1 bal var2 | let bal |
var1 bal var3 | case1 bal case2 bal
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Now let’s get back to our machine Mark-1@. The new rule var@S does not
modify the stack, then a balanced trace can be of the form var@S bal that cor-
responds to the natural semantic rule Var@S . Our rule var@1 follows the same
reasoning as the rule var1. Thus, var1@ bal var2@ and var1@ bal var3@ are
also balanced traces that correspond to the semantic rules Var@F and Var@C
respectively. And the ε trace corresponds to the Cons , Lam or Lam@ rule.

Definition 8

– A balanced trace is a sequence of rules that can be derived from:

bal ::= ε | app1 bal app2 bal | var1 bal var2 | var1 bal var3 | let bal |
case1 bal case2 bal | app1 bal app2@ bal | var@S bal |
var1@ bal var2@ | var1@ bal var2@@ | var1@ bal var3@

– Let Γ1, Γ2 be two heaps, e1, e2 ∈ Sestoft@, S1, S2 be two stacks, and f1, f2 be
two files; we say that the computation

(Γ1, e1, S1, f1) =⇒∗ (Γ2, e2, S2, f2)

is balanced if S1 = S2 and no rules involved in the computation consult any
value in S1.

Then it is easy to prove that a balanced computation of the machine Mark-1@

corresponds to a balanced trace.

Proposition 5 Let Γ1, Γ2 be two heaps, e1, e2 ∈ Sestoft@, S1, S2 be two stacks,
and f1, f2 be two files. The computation

(Γ1, e1, S1, f1) =⇒∗ (Γ2, e2, S2, f2)

is balanced iff the sequence of rules applied is a balanced trace.

Proof.

=⇒ The discussion above shows that any balanced computation must start with
one of the following rules:

app1. Then any balanced computation must have one of the following forms:
app1 bal app2 bal or app1 bal app2@ bal.

let. The balanced computation must have the form let bal.

case1. The balanced computation must be case1 bal case2 bal.

var@S. The balanced computation must be var@S bal.

var1 or var1@. In this case, we put an element on the top of the stack
that must be removed by one of the following rules: var2, var3, var2@,
var2@@, or var3@. The computation in between must be balanced and
then generated by a balanced trace. The trace might be followed by
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another balanced computation. But since the control after var2, var2@,
and var2@@ is a lambda, and after var3 and var3@ is a constructor,
only a rule that reads the top of the stack can be applied. If that were the
case, the computation would not be any longer balanced. So the balanced
trace must end at the rule var2, var3, var2@, var2@@, or var3@.

⇐= The proof is made by structural induction on the form of the balanced
trace. The induction base is when the trace is ε which is trivial, since there
is no computation. All the induction cases are similar, so let us concentrate
on app1 bal app2@ bal.
In this case we have e1 = e′ x, so

(Γ1, e x, S1, f1) =⇒ (Γ ′, e′, p : S, f ′)

that meets the requirements of this Proposition. Then, by structural induc-
tion, we have a computation that verifies the thesis of the current Proposi-
tion. Thus, we have

(Γ ′, e′, p : S, f ′) =⇒∗ (Γ ′′, e′′, p : S, f ′′)

Then we have an application of app2@:

(Γ ′′, e′′, p : S, f ′′) =⇒ (Γ ′′′, e′′′, S, f ′′′)

which meets this Proposition. Finally, by structural induction, we have a
computation that meets the thesis of this proposition:

(Γ ′′′, e′′′, S, f ′′′) =⇒∗ (Γ2, w2, S2, f2)

The following proposition proves the equivalence between the semantics and
the Mark-1@ machine.

Proposition 6 Given Γ a heap, e ∈ Sestoft@, S a stack, f a file then:

Γ : e�f ⇓ Δ : w�f ′ iff (Γ, e, S, f) =⇒∗ (Δ, w, S, f ′) is balanced.

Proof. The complete proof can be found in the appendix of this paper and it
consists on an extension of the proof that appears in [Ses97], but taking into
account the new rules and the file used to store the observations.

As a corollary of Proposition 6 and Proposition 4 we get Theorem 2. Also,
as a corollary of Theorem 1, Theorem 2 and Sestoft’s equivalence theorems
(see [Ses97]) we get the equivalence between the original Mark-2 and our Mark-
2@ with observations.

Corollary 1 For all e ∈ Sestoft , e@ ∈ Sestoft@ such that e = R e@ then:

({ }, e, { }, [ ]) =⇒∗ (Δ, w, E, [ ]) derivation of Mark-2
iff

({ }, e@, { }, [ ], 〈 〉) =⇒∗ (Δ@, w@, E@, [ ], f) derivation of Mark-2@

and Δenv : E w 
R Δ@
env : E@ w@.
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Figure 8: Debugging environment: Produces textual output (left) or graphical
output (right)

6 Implementation Issues and Reduction Example

In this section we briefly describe some details of our implementation. As we said
in the introduction, we have implemented a prototype of the abstract machine
presented in this paper. In order to do that, we have followed the work done
in [EP09], where we presented a very simple imperative machine. That machine
was used as an intermediate step between the STG abstract machine and the
C code generated by the GHC compiler. By using that intermediate machine, a
translation scheme was provided allowing to translate the language expressions
presented in that paper into executable code. Moreover, in [EP09] a proof of
correctness was also provided for the translation and two different models of
implementations were analyzed: the so-called push-enter model, and the new one
based on an eval-apply style. In the case of the current paper, the implementation
is simpler than there because we need to implement a simple machine (the Mark-
2 machine) and the language being used has not so many optimizations as there.
The main difference between this machine and the STG machine is that the λ-
abstraction application in Mark-2 machine is made one by one to its arguments,
while in the STG a λ-abstraction is applied to all its arguments in a single step,
so all the steps proposed in [EP09] can be followed in a similar way to get the
final implementation.

The only feature of our current machine that is more difficult to handle than
in [EP09] is dealing with the observations file. Let us remind that the observation
annotations have been produced in an external file. This has the advantage
that even when the computation does not finish we get the observations. The
observation file of the implementation has exactly the same structure presented
in this paper. In order to obtain a flattened observation equivalent to that of
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Hood, the file needs to be post-processed. This post-process is very simple, and
it can be done analyzing the lines in the file in a sequential way. For each str
observation mark, it is produced a tree with the observations that depends on
that str . These trees are then flattened to show a Hood observation. For the
sake of clarity, this process is shown in the next example (see Section 6.1).

In order to asses the usefulness of a debugger, it is important to obtain
experimental results by using the system to debug a benchmarks collection.
Fortunately, such work has already been done in [CRW01], where errors were
introduced in several programs (ranging form 100 to 900 lines of source code)
and a set of programmers used the debugger to find those errors. The results
were quite satisfactory, certifying that Hood is a useful debugger.

Finally, we would like to comment that in our environment (see Figure 8)
we do not only generate plain text as observations. In fact, the user can choose
between observing the output of the observations by using plain text (with the
same style as in Hood) or by using the GHood [Rei01] graphical environment.
By using GHood, we do not only observe the degree of evaluation of the observed
structures, but also the order of evaluation of them.

In order to better understand the behavior of the implementation, we present
an example of execution of an expression with observations at Mark-2@ level.

6.1 Example of reduction of and expression in the Mark-2@

As we have proved that the Mark-2@ machine and the semantics rules are equiv-
alent, the reduction of an expression produces the same result. Thus, we will only
show the details of the example at Mark-2@ level. In order to better understand
how the evaluation produces the annotations in the file and how this can be
post-processed to obtain a flattened observation, we will show an example where
an expression with observation marks is reduced in the Mark-2@ machine.

Example 1 In this example we observe a number with two different observation
marks. We start with the following initial expression that we call e0:

l e t r e c
ten = 10
tenO = ten@{obs1 }
tenOO = tenO@{obs2 }

in tenOO

Now we present the reduction steps of this expression in the Mark-2@ ma-
chine. Note that in the Mark-2@ machine there is no optimization of the envi-
ronments related with each expression. Thus, they have all the variables instead
of only having the free variable of each expression. In the reduction of e0 only
one environment is produced that we will call it E0, and it is the following:

E0 =

⎧⎨
⎩

ten �→ p1

tenO �→ p2

tenOO �→ p3

⎫⎬
⎭

In order to simplify the presentation, in the steps where some of the configuration
components do not change, we will show them with: “. . . ”.
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Heap Control Env. Stack Side effect rule{}
e0

{}
[ ]

{}
letrec

=⇒

⎧⎪⎨
⎪⎩

p1 �→ (10, E0)
p2 �→ (ten@obs1, E0)
p3 �→ (tenO@obs2, E0)

⎫⎪⎬
⎪⎭ tenOO E0 [ ]

{}
var1

=⇒
{

p1 �→ (10, E0)
p2 �→ (ten@obs1, E0)

}
tenO@obs2 E0 [#p3]

{}
var@S

=⇒ {
. . .

}
tenO@(0,0) E0 [#p3]

{
0 0 Observe obs2

}
var1@

=⇒ {
. . .

}
tenO E0 @(0, 0) : [. . .]

{
. . .
0 0 Enter

}
var1

=⇒ {
p1 �→ (10, E0)

}
ten@obs1 E0 #p2 : [. . .]

{
. . .

}
var@S

=⇒ {
. . .

}
ten@(2,0) E0 [. . .]

{
. . .
0 0 Observe obs1

}
var1@

=⇒ {
. . .

}
ten E0 @(2, 0) : [. . .]

{
. . .
2 0 Enter

}
var1

=⇒ {}
10 E0 #p1 : [. . .]

{
. . .

}
var3

=⇒ {
p1 �→ (10, E0)

}
10 E0 @(2, 0) : [. . .]

{
. . .

}
var3@

=⇒ {
. . .

}
10 E0 #p2 : [. . .]

{
. . .
2 0 Cons 0 10

}
var3

=⇒
{

p1 �→ (10, E0)
p2 �→ (10, E0)

}
10 E0 @(0, 0) : [. . .]

{
. . .

}
var3@

=⇒ {
. . .

}
10 E0 [#p3]

{
. . .
0 0 Cons 0 10

}
var3

=⇒
⎧⎨
⎩

p1 �→ (10, E0)
p2 �→ (10, E0)
p3 �→ (10, E0)

⎫⎬
⎭ 10 E0 [ ]

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 0 Observe obs2
0 0 Enter
0 0 Observe obs1
2 0 Enter
2 0 Cons 0 10
0 0 Cons 0 10

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

The first configuration in the previous table corresponds with the initial
configuration where the heap, environment, stack, and observation file are empty.
The name of the rule in that line (letrec) corresponds to the rule that is applied
and the result of this application is shown in the next row, and so on. As it can
be seen, the reduction of this simple expression involves a lot of rules, so that
showing the complete reduction is cumbersome. Anyway, it is very interesting to
analyze the stack. It can be considered that it has a set of continuations. In this
case, when the control expression reach a normal form it is needed to analyze
the top of the stack to follow with the computation.

Now, adding the line numbers to the observation file (shown in column side
effect) we get the following file:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Line Observation
0 0 0 Observe obs2
1 0 0 Enter
2 0 0 Observe obs1
3 2 0 Enter
4 2 0 Cons 0 10
5 0 0 Cons 0 10

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

This file has more information than Hood shows to us. It is ordered in the
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same way as the reduction of the closures has been produced. As previously said,
this extra information can be used by GHood to produce graphical animations.
The first observed closure that has been demanded is the one that refers to
the observation mark obs2, that is tenOO. The following annotation in the file
indicates that we have entered to reduce that closure. Before this closure has
reduced to normal form, it has been demanded the evaluation of the closure
annotated with obs1, that is tenO. The machine has entered to reduce tenO (line
3), and has reached its normal form (line 5). Notice that in order to generate
the Hood observations it is not needed the Enter annotations.

Now we will analyze how to generate the Hood annotations from this file.
First, we will generate a tree with the observations. The way to generate this
tree with the observations is considering first the observations with the form
Observe str . Each Observe str will be considered as a root of a different tree
annotated with the string str . From that point it is only needed to analyze in
a sequential way the annotations in the file. In this case, there are only two
interesting marks (those starting with Cons): the annotation in line 4 refers to
the line 2, so its parent is in that line. It is the same for the annotation in line 5,
this refers to the line 0, so its parent is there. Therefore, this simple file produces
the following two independent observation trees:

obs1

10

obs2

10

The observation that Hood produces is trivially obtained by flattening these
observation trees, and the result is the following:

−− obs1
10

−− obs2
10

7 Conclusions

In this paper we have presented a new view of the Hood debugger allowing
both to clarify its formal foundations and to implement different variations of
it. In particular, we have described how to embed Hood inside Sestoft’s natural
semantics. Note that the approach we have followed to codify Hood inside the
natural semantics can also be used to provide a formal foundation for any other
Haskell debugger. In this sense, it could be used as a common framework for
describing (and also implementing) all of them.

In order to obtain an implementation of our modified semantics, we have
used the abstract machine Mark-2@. To derive an implementation of it, we have
reused the work done in [EP09].

As future work, we plan to extend our framework to deal with parallel ex-
tensions of Haskell. In this sense, we will pay special attention to the language
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Eden [KLPR01, LOP+02]. In fact, in [ERR06] we have already implemented a
parallel extension of Hood to deal with Eden programs. Our extension includes
a parallelization of the basic Hood library and also a set of tools to allow check-
ing the amount of speculative work that the parallel programs are performing.
However we have not provided yet a semantics for our parallel observations. In
this sense, we plan to extend the work done in the present paper to deal with
parallel semantics. In order to do that, the best choice is to try to embed the
debugging method inside the Jauja language [HO03], a very simple parallel func-
tional language whose semantics are clearly defined in terms of an extension of
Launchbury’s natural semantics, and that has already been used as a common
framework to describe three different languages, namely GpH, Eden and pH.
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A Proofs of the propositions

In this appendix we will use q@ and λ@ to denote, respectively, a pointer and a
lambda that could be observed. We will also use the non-standard abbreviation
i.h. that will stand for induction hypothesis.

Proof. Proposition 3
The proof is made by rule induction.
As we have said in the sketch of the proof, we will not consider the observa-

tions file, since it does not participate in the evaluation of the expressions. We
will also consider that the pointers and the program variables belong to disjoints
sets. With this consideration, the freshness of variables can be locally checked,
as it is only necessary to create a new pointer that does not belong to the heap.

Proof of the first implication: ⇒
Lam or Cons

Hypothesis:
H1 Γ : e 
R Γ@ : e@

H2 Γ : e ⇓ Δ : w
H3 By rule Lam or Cons :

a) Δ : w = Γ : e
b) e = λx.e′ or e = C pi

H4 Γ : e′ 
R Γ@ : e′@
Thesis:

T1 Γ@ : e@ ⇓ Δ@ : w@

T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1 and H3(b):

e@ = λ@x.e′@ or e@ = C qi

P2 By rule Lam, Lam@ or Cons :
Γ@ : e@ ⇓ Γ@ : e@ (T1)

P3 By H3(a) and H1:
Δ : w = Γ : e 
R Γ@ : e@ (T2)

P4 By H3(a) and H4:
Δ : e′ = Γ : e′ 
R Γ@ : e′@ (T3)

Letrec
Hypothesis:

H1 Γ : letrec xi = ei in e 
R Γ@ : e@
0

H2 Γ : letrec xi = ei in e ⇓ Δ : w
H3 By rule Letrec:

a) Γ ∪ [pi �→ êi] : ê ⇓ Δ : w
b) pi fresh in Γ

H4 Γ : e′ 
R Γ@ : e′@
Thesis:

T1 Γ@ : e@
0 ⇓ Δ@ : w@

T2 Δ : w 
R Δ@ : w@

2865de la Encina A., Llana L., Rubio F.: A Debugging System ...



T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e@
0 = letrec xi = e@

i in e@

P2 By H1, H3(b), H4, P1 and Proposition 2:

a) Γ ∪ [pi �→ êi] : ê 
R Γ@ ∪ [qi �→ ê@
i ] : ê@ if qi are fresh

b) Γ ∪ [pi �→ êi] : e′ 
R Γ@ ∪ [qi �→ ê@
i ] : e′@ if qi are fresh

P3 By P2 and i.h. on H3(a):

a) Γ@ ∪ [qi �→ ê@
i ] : ê@ ⇓ Δ@ : w@

b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

P4 By P3(a) and rule Letrec:
Γ@ : letrec xi = e@

i in e@ ⇓ Δ@ : w@ (T1)

Case
Hypothesis:

H1 Γ : case e of Ci xij → ei 
R Γ@ : e@
0

H2 Γ : case e of Ci xij → ei ⇓ Δ : w
H3 By rule Case:

a) Γ : e ⇓ Θ : Ck pj

b) Θ : ek[pj/xkj ] ⇓ Δ : w
H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ@ : e@

0 ⇓ Δ@ : w@

T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@
Proof:

P1 By H1:
e@
0 = case e@ of Ci xij → e@

i

P2 By H1 and P1:
Γ : e 
R Γ@ : e@

P3 By H1, P2, H4 and i.h. on H3(a):
a) Γ@ : e@ ⇓ Θ@ : w@

0

b) Θ : Ck pj 
R Θ@ : w@
0

c1) Θ : e′ 
R Θ@ : e′@

c2) Θ : case e of Ci xij 
R Θ@ : e@
0

P4 By P3(b):
w@

0 = Ck qj

P5 By P3(b), P4 and P3(c2):
Θ : ek[pj/xkj ] 
R Θ@ : e@

k [qj/xkj ]
P6 By P5, P3(c1) and i.h. on H3(b):

a) Θ@ : e@
k [qj/xkj ] ⇓ Δ@ : w@

b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)
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P7 By P3(a), P4, P6(a) and rule Case:
Γ@ : case e@ of Ci xij → e@

i ⇓ Δ@ : w@ (T1)

App
Hypothesis:

H1 Γ : e p 
R Γ@ : e@
0

H2 Γ : e p ⇓ Δ : w
H3 By rule App:

a) Γ : e ⇓ Θ : λx.e1

b) Θ : e1[p/x] ⇓ Δ : w
H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ@ : e@

0 ⇓ Δ@ : w@

T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e@
0 = e@ q

P2 By H1 and P1:
a) Γ : e 
R Γ@ : e@

b) Γ : p 
R Γ@ : q
P3 By P2, H4 and i.h. on H3(a):

a) Γ@ : e@ ⇓ Θ@ : w@
0

b) Θ : λx.e1 
R Θ@ : w@
0

c1) Θ : e′ 
R Θ@ : e′@

c2) Θ : p 
R Θ@ : q
P4 By P3(b):

w@
0 = λ@x.e@

1

P5 By P3(b), P4 and P3(c2):
Θ : e1[p/x] 
R Θ@ : e@

1 [q/x]
P6 By P5, P3(c1) and i.h. on H3(b):

a) Θ@ : e@
1 [q/x] ⇓ Δ@ : w@

b) Δ : w 
R Δ@ : w@ (T2, case w@
0 = λx.e@

1 )
c) Δ : e′ 
R Δ@ : e′@ (T3, case w@

0 = λx.e@
1 )

Now by cases on P4:
w@

0 = λx.e@
1

P7 By P3(a), P4, P6(a) and rule App:
Γ@ : e@ q ⇓ Δ@ : w@ (T1)

w@
0 = λ@(r,s)x.e@

1

P7 Property 1.5 applied to P5:
Θ : e1[p/x] 
R Θ@ ∪ [q′′ �→ q@(l,0)] : (e@

1 [q/x])[q′′/q]
P8 Property 1.6 applied to P7:

Θ : e1[p/x] 
R Θ@ ∪ [q′ �→ e@
1 [q′′/x], q′′ �→ q@(l,0)] : q′@(l,1)

P9 By P6(c), Proposition 2 and q′, q′′ fresh:
Θ : e′ 
R Θ@ ∪ [q′ �→ e@

1 [q′′/x], q′′ �→ q@(l,0)] : e′@

P10 By P8, P9 and i.h. on H3(b):
a) Θ@ ∪ [q′ �→ e@

1 [q′′/x], q′′ �→ q@(l,0)] : q′@(l,1) ⇓ Δ′@ : w′@
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b) Δ : w 
R Δ′@ : w′@ (T2)
c) Δ : e′ 
R Δ′@ : e′@ (T3)

P11 Applying rule App@ to P3(a) and P10(a):
Γ@ : e@ q ⇓ Δ′@ : w′@ (T1)

Var ′

Hypothesis:
H1 Γ : p 
R Γ@ : e@

0

H2 Γ : p ⇓ Δ ∪ [p �→ w] : w
H3 By rule Var ′:

a) (p �→ e) ∈ Γ
b) Γ : e ⇓ Δ : w

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ@ : e@

0 ⇓ Δ@ : w@

T2 Δ ∪ [p �→ w] : w 
R Δ@ : w@

T3 Δ ∪ [p �→ w] : e′ 
R Δ@ : e′@
Proof: By cases on e:

e = p′

P1 By H3(a):
Γ : p′ 
 Γ : p

P2 Property 1.4 applied to P1 and H1:
Γ : p′ 
R Γ@ : e@

0

P3 By P2, H4 and i.h. on H3(b):
a) Γ@ : e@

0 ⇓ Δ@ : w@ (T1)
b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

e �= p′

P1 By H1:
a) Γ@ : e@

0 = Γ@
0 ∪ [qi �→ q@

i−1

n
] : qn with n ≥ 0

b) q0 = e@

c) rp (e) = R (rp (e@))
P2 By H1 and P1:

Γ : e 
R Γ@ : e@

P3 By P2, H4 and i.h. on H3(b):
a) Γ@ : e@ ⇓ Δ@

0 : w@

b) Δ : w 
R Δ@
0 : w@

c) Δ : e′ 
R Δ@
0 : e′@

P4 Property 1.6 applied to P3(a) and P1:
a) Γ@ : qn ⇓ Δ@ ∪ [qi �→ w@i

n
, q′i �→ q′′@i ] : w@0 (T1)

b) ∀i∃j|w = (R Δ)jwi

c) q′i are fresh
P5 By H1, H3(a), P1, P3(b) and P4(b):

Δ ∪ [p �→ w] : w 
R Δ@ ∪ [qi �→ w′@i
n
, . . .] : w′@0 (T2)

P6 By P4(b,c), P3(c), P1 and H1:
Δ ∪ [p �→ w] : e′ 
R Δ@ ∪ [qi �→ w′@i

n
, . . .] : e′@ (T3)
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Proof of the second implication: ⇐
Lam , Lam@ or Cons

Hypothesis:
H1 Γ : e 
R Γ@ : e@

H2 Γ@ : e@ ⇓ Δ@ : w@

H3 By rule Lam , Lam@ or Cons :
a) Δ@ : w@ = Γ@ : e@

b) e@ = λ@x.e′@ or e = C qi

H4 Γ : e′ 
R Γ@ : e′@
Thesis:

T1 Γ : e ⇓ Δ : w
T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1 and H3(b):

e = λx.e′ or e = C pi

P2 By P1 and rule Lam or Cons :
Γ : e ⇓ Γ : e (T1)

P3 By H1 and H3(a):
Γ : e 
R Γ@ : e@ = Δ@ : w@ (T2)

P4 By H4 and H3(a):
Γ : e′ 
R Γ@ : e′@ = Δ@ : e′ (T3)

Letrec
Hypothesis:

H1 Γ : e0 
R Γ@ : letrec xi = e@
i in e@

H2 Γ@ : letrec xi = e@
i in e@ ⇓ Δ@ : w@

H3 By rule Letrec:

a) Γ@ ∪ [qi �→ ê@
i ] : ê@ ⇓ Δ@ : w@

b) qi fresh in Γ@

H4 Γ : e′ 
R Γ@ : e′@
Thesis:

T1 Γ : e0 ⇓ Δ : w
T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e0 = letrec xi = ei in e
P2 By H1, H3(b), H4, P1 and Proposition 2:

a) Γ ∪ [pi �→ êi] : ê 
R Γ@ ∪ [qi �→ ê@
i ] : ê@ if pi fresh

c) Γ ∪ [pi �→ êi] : e′ 
R Γ@ ∪ [qi �→ ê@
i ] : e′@ if pi fresh

P3 By P2 and i.h. on H3(a):
a) Γ ∪ [pi �→ êi] : ê ⇓ Δ : w
b) Δ : w 
R Δ@ : w@ (T2)
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c) Δ : e′ 
R Δ@ : e′@ (T3)
P4 By P3(a) and rule Letrec:

Γ : letrec xi = ei in e ⇓ Δ : w (T1)

Case
Hypothesis:

H1 Γ : e0 
R Γ@ : case e@ of Ci xij → e@
i

H2 Γ@ : case e@ of Ci xij → e@
i ⇓ Δ@ : w@

H3 By rule Case:
a) Γ@ : e@ ⇓ Θ@ : Ck qj

b) Θ@ : e@
k [qj/xkj ] ⇓ Δ@ : w@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e0 ⇓ Δ : w
T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e0 = case e of Ci xij → ei

P2 By H1 and P1:
Γ : e 
R Γ@ : e@

P3 By H1, P2, H4 and i.h. on H3(a):
a) Γ : e ⇓ Θ : w0

b) Θ : w0 
R Θ@ : Ck qj

c1) Θ : e′ 
R Θ@ : e′@

c2) Θ : e0 
R Θ@ : case e@ of Ci xij → e@
i

P4 By P3(b):
w0 = Ck pj

P5 By P3(b), P4 and P3(c2):
Θ : ek[pj/xkj ] 
R Θ@ : e@

k [qj/xkj ]
P6 By P5, P3(c1) and i.h. on H3(b):

a) Θ : ek[pj/xkj ] ⇓ Δ : w
b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

P7 By P3(a), P4, P6(a) and rule Case :
Γ : case e of Ci xij → ei ⇓ Δ : w (T1)

App
Hypothesis:

H1 Γ : e0 
R Γ@ : e@ q
H2 Γ@ : e@ q ⇓ Δ@ : w@

H3 By rule App:
a) Γ@ : e@ ⇓ Θ@ : λx.e@

1

b) Θ@ : e@
1 [q/x] ⇓ Δ@ : w@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e0 ⇓ Δ : w
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T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e0 = e p
P2 By H1 and P1:

a) Γ : e 
R Γ@ : e@

b) Γ : p 
R Γ@ : q
P3 By P2, H4 and i.h. on H3(a):

a) Γ : e ⇓ Θ : w0

b) Θ : w0 
R Θ@ : λx.e@
1

c1) Θ : e′ 
R Θ@ : e′@

c2) Θ : p 
R Θ@ : q
P4 By P3(b):

w0 = λx.e1

P5 By P3(b), P4 and P3(c2):
Θ : e1[p/x] 
R Θ@ : e@

1 [q/x]
P6 By P5, P3(c1) and i.h. on H3(b):

a) Θ : e1[p/x] ⇓ Δ : w
b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

P7 By P3(a), P4, P6(a) and rule Var :
Γ : e p ⇓ Δ : w (T1)

App@
Hypothesis:

H1 Γ : e0 
R Γ@ : e@ q
H2 Γ@ : e@ q ⇓ Δ@ : w@

H3 By rule App@:
a) Γ@ : e@ ⇓ Θ@ : λ@obsx.e@

1

b) Θ@ ∪ [q′ �→ e@
1 [q′′/x], q′′ �→ q@(l,0)] : q′@(l,1) ⇓ Δ@ : w@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e0 ⇓ Δ : w
T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

e0 = e p
P2 By H1 and P1:

a) Γ : e 
R Γ@ : e@

b) Γ : p 
R Γ@ : q
P3 By P2, H4 and i.h. on H3(a):

a) Γ : e ⇓ Θ : w0

b) Θ : w0 
R Θ@ : λ@obsx.e@
1

c1) Θ : e′ 
R Θ@ : e′@
c2) Θ : p 
R Θ@ : q
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P4 By P3(b):
w0 = λx.e1

P5 By P3(b), P4 and P3(c2):
Θ : e1[p/x] 
R Θ@ : e@

1 [q/x]
P6 Property 1.5 applied to P5:

Θ : e1[p/x] 
R Θ@ ∪ [q′′ �→ q@(l,0)] : (e@
1 [q/x])[q′′/q]

P7 Property 1.6 applied to P6:
Θ : e1[p/x] 
R Θ@ ∪ [q′ �→ e@

1 [q′′/x], q′′ �→ q@(l,0)] : q′@(l,1)

P8 By P7 and i.h. on H3(b):
a) Θ : e1[p/x] ⇓ Δ : w
b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

P9 By P3(a), P4, P8(a) and rule App:
Γ : e0 ⇓ Δ : w (T1)

Var ′

Hypothesis:
H1 Γ : e0 
R Γ@ : q
H2 Γ@ : q ⇓ Δ@ ∪ [q �→ w@] : w@

H3 By rule Var ′:
a) (q �→ e@) ∈ Γ@

b) Γ@ : e@ ⇓ Δ@ : w@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e0 ⇓ Δ : w
T2 Δ : w 
R Δ@ ∪ [q �→ w@] : w@

T3 Δ : e′ 
R Δ@ ∪ [q �→ w@] : e′@

Proof:
P1 By H1 and H3(a):

Γ : e0 = Γ [p �→ e] : p
Now we proceed by analyzing cases on e@ and e. Notice that it is
impossible that e@ �= q′@ and e = p′, by definition of 
R :
e@ = q′@ and e �= p′

P2 By H1 and P1:
Γ : e0 
R Γ@ : q′@

P3 By P2, H4 and i.h. on H3(b):
a) Γ : e0 ⇓ Δ : w (T1)
b) Δ : w 
R Δ@ : w@

c) Δ : e′ 
R Δ@ : e′@
P4 By P3(b,c), Proposition 2, H1 and P1:

a) Δ : w 
R Δ@ ∪ [q �→ w@] : w@ (T2)
b) Δ : e′ 
R Δ@ ∪ [q �→ w@] : e′@ (T3)

(e@ �= q′@ and e �= p′) or (e@ = q′@ and e = p′)
P2 By P1, H1 and H3(a):

Γ : e 
R Γ@ : e@

P3 By P2, H4 and i.h. on H3(b):
a) Γ : e ⇓ Δ : w
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b) Δ : w 
R Δ@ : w@

c) Δ : e′ 
R Δ@ : e′@

P4 By P3(a) and applying rule Var ′:
Γ [p �→ e] : p ⇓ Δ ∪ [p �→ w] : w (T1)

P5 By P3(b), H1 and P1:
a) Δ ∪ [p �→ w] : w 
R Δ@ ∪ [q �→ w@] : w@ (T2)
b) Δ ∪ [p �→ w] : e′ 
R Δ@ ∪ [q �→ w@] : e′@ (T3)

Var@S
Hypothesis:

H1 Γ : e 
R Γ@ : q@str

H2 Γ@ : q@str ⇓ Δ@ : w@

H3 By rule Var@S :
Γ@ : q@(r,s) ⇓ Δ@ : w@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e ⇓ Δ : w
T2 Δ : w 
R Δ@ : w@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

Γ : e 
R Γ@ : q@(r,s)

P2 By P1, H4 and i.h. on H3:
a) Γ : e ⇓ Δ : w (T1)
b) Δ : w 
R Δ@ : w@ (T2)
c) Δ : e′ 
R Δ@ : e′@ (T3)

Var@C
Hypothesis:

H1 Γ : e 
R Γ@ : q@(r,s)

H2 Γ@ : q@(r,s) ⇓ Δ@ ∪ [q′i �→ q
@(l,i)
i ] : C q′i

H3 By rule Var@C :
a) Γ@ : q ⇓ Δ@ : C qi

b) q′i fresh in Δ@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e ⇓ Δ : w

T2 Δ : w 
R Δ@ ∪ [q′i �→ q
@(l,i)
i ] : C q′i

T3 Δ : e′ 
R Δ@ ∪ [q′i �→ q
@(l,i)
i ] : e′@

Proof:
P1 By H1:

Γ : e 
R Γ@ : q
P2 By P1, H4 and i.h. on H3(a):

a) Γ : e ⇓ Δ : w (T1)
b) Δ : w 
R Δ@ : C qi

c) Δ : e′ 
R Δ@ : e′@

P3 By P2(b) and H3(b):
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a) Δ : w 
R Δ@ ∪ [q′i �→ q
@(l,i)
i ] : C q′i (T2)

b) Δ : e′ 
R Δ@ ∪ [q′i �→ q
@(l,i)
i ] : e′@(T3)

Var@F
Hypothesis:

H1 Γ : e 
R Γ@ : q@(r,s)

H2 Γ@ : q@(r,s) ⇓ Δ@ : λ@[(r,s)]x.e@

H3 By rule Var@F :
Γ@ : q ⇓ Δ@ : λx.e@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e ⇓ Δ : w
T2 Δ : w 
R Δ@ : λ@[(r,s)]x.e@

T3 Δ : e′ 
R Δ@ : e′@

Proof:
P1 By H1:

Γ : e 
R Γ@ : q
P2 By P1, H4 and i.h. on H3:

a) Γ : e ⇓ Δ : w (T1)
b) Δ : w 
R Δ@ : λx.e@

c) Δ : e′ 
R Δ@ : e′@ (T3)
P3 By P2(b):

Δ : w 
R Δ@ : λ@[(r,s)]x.e@ (T2)

Var@FO
Hypothesis:

H1 Γ : e 
R Γ@ : q@(r,s)

H2 Γ@ : q@(r,s) ⇓ Δ@ : λ@(r,s):obsx.e@

H3 By rule Var@F :
Γ@ : q ⇓ Δ@ : λ@obsx.e@

H4 Γ : e′ 
R Γ@ : e′@

Thesis:
T1 Γ : e ⇓ Δ : w
T2 Δ : w 
R Δ@ : λ@(r,s):obsx.e@

T3 Δ : e′ 
R Δ@ : e′@
Proof:

P1 By H1:
Γ : e 
R Γ@ : q

P2 By P1, H4 and i.h. on H3:
a) Γ : e ⇓ Δ : w (T1)
b) Δ : w 
R Δ@ : λx.e@

c) Δ : e′ 
R Δ@ : e′@ (T3)
P3 By P2(b):

Δ : w 
R Δ@ : λ@(r,s):obsx.e@ (T2)

�

2874 de la Encina A., Llana L., Rubio F.: A Debugging System ...



Proof. Proposition 6

Proof of the first implication: ⇒
The proof is made by semantic rule induction. It is very easy, as it is only
necessary to apply induction hypothesis and to compound the results.
Lam, Lam@ or Cons

Hypothesis:
H1 Γ : e�f ⇓ Γ : e�f

Proof:
(Γ, e, S, f) =⇒0 (Γ, e, S, f)

Letrec
Hypothesis:

H1 Γ : letrec xi = ei in e�f ⇓ Δ : w�f ′

H2 By rule Letrec:
a) Γ ∪ [pi �→ êi] : ê�f ⇓ Δ : w�f ′

b) pi fresh in Γ
Proof:

(Γ, letrec xi = ei in e, S, f) {let}
=⇒ (Γ ∪ [pi �→ êi], ê, S, f ′) {i.h. on H2(a)}
=⇒∗ (Δ, w, S, f ′)

√

Case
Hypothesis:

H1 Γ : case e of Ci xij → ei �f ⇓ Δ : w�f ′′
H2 By rule Case:

a) Γ : e�f ⇓ Θ : Ck pj �f ′

b) Θ : ek[pj/xkj ]�f ′ ⇓ Δ : w�f ′′

Proof:
(Γ, case e of alt i, S, f) {case1}

=⇒ (Γ, e, alt i : S, f ′) {i.h. on H2(a)}
=⇒∗ (Θ, Ck pj , alt i : S, f ′) {case2}
=⇒ (Θ, ek[pj/xkj ], S, f ′′) {i.h. on H2(b)}
=⇒∗ (Δ, w, S, f ′′)

√

App
Hypothesis:

H1 Γ : e p�f ⇓ Δ : w�f ′′
H2 By rule App:

a) Γ : e�f ⇓ Θ : λx.e′�f ′

b) Θ : e′[p/x]�f ′ ⇓ Δ : w�f ′′
Proof:

(Γ, e p, S) {app1}
=⇒ (Γ, e, p : S, f) {i.h. on H2(a)}
=⇒∗ (Θ, λx.e′, p : S, f ′) {app2}
=⇒ (Θ, e′[p/x], S, f ′) {i.h. on H2(b)}
=⇒∗ (Δ, w, S, f ′′)

√

Var
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Hypothesis:
H1 Γ ∪ [p �→ e] : p�f ⇓ Δ ∪ [p �→ w] : w�f ′

H2 By rule Var :
Γ : e�f ⇓ Δ : w�f ′

Proof:
(Γ ∪ [p �→ e], p, S) {var1}

=⇒ (Γ, e, #p : S, f) {i.h. on H2}
=⇒∗ (Δ, w, #p : S, f ′) {var2 or var3}
=⇒∗ (Δ ∪ [p �→ w], w, S, f ′)

√

Var@S
Hypothesis:

H1 Γ : q@str �f ⇓ Δ : w�f ′

H2 By rule Var@S :
Γ : q@(r,s) �f ◦〈0 0 Observe str〉 ⇓ Δ : w�f ′

Proof:
(Γ, q@str , S, f) {var@S}

=⇒ (Γ, q@(n,0), S, f ◦〈0 0 Observe str〉) {i.h. on H2}
=⇒∗ (Δ, w, S, f ′)

√

Var@C
Hypothesis:

H1Γ : p@(r,s) �f ⇓ Δ∪[q′i �→ q
@(length f ′,i)
i ] : C q′i �f ′◦〈r sCons k C〉

H2 By rule Var@C :
Γ : p�f ◦〈r sEnter〉 ⇓ Δ : C qi �f ′

Proof:
(Γ, p@(r,s), S, f) {var1@}

=⇒ (Γ, p, @(r, s) : S, f ◦〈r sEnter〉) {i.h. on H2}
=⇒∗ (Δ, C qi, @(r, s) : S, f ′) {var3@}
=⇒∗ (Δ ∪ [q′i �→ q

@(length f ′,i)
i ], C q′i, S, f ′◦〈r sCons k C〉) √

Var@F
Hypothesis:

H1 Γ : q@(r,s) �f ⇓ Δ : λ@[(r,s)]x.e�f ′

H2 By rule Var@F :
Γ : q�f ◦〈r sEnter〉 ⇓ Δ : λx.e�f ′

Proof:
(Γ, q@(r,s), S, f) {var1@}

=⇒ (Γ, q, @(r, s) : S, f ◦〈r sEnter〉) {i.h. on H2}
=⇒∗ (Δ, λx.e,@(r, s) : S, f ′) {var2@}
=⇒∗ (Δ, λ@[(r,s)]x.e, S, f ′)

√

Var@FO
Hypothesis:

H1 Γ : q@(r,s) �f ⇓ Δ : λ@(r,s):obsx.e�f ′

H2 By rule Var@FO :
Γ : q�f ◦〈r sEnter〉 ⇓ Δ : λ@obsx.e�f ′

Proof:
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(Γ, q@(r,s), S, f) {var1@}
=⇒ (Γ, q, @(r, s) : S, f ◦〈r sEnter〉) {i.h. on H2}
=⇒∗ (Δ, λ@obsx.e, @(r, s) : S, f ′) {var2@@}
=⇒∗ (Δ, λ@(r,s):obsx.e, S, f ′)

√

App@
Hypothesis:

H1 Γ : e p�f ⇓ Δ : w�f ′′

H2 By rule App@:
a) Γ : e�f ⇓ Θ : λ@(r,s)x.e′�f ′

b) Θ ∪ [q′ �→ e′[q′′/x], q′′ �→ p@(length f ′,0)] : q′@(length f ′,1) �
f ′◦〈r sFun〉 ⇓ Δ : w�f ′′

Proof:
(Γ, e p, S, f) {app1}

=⇒ (Γ, e, p : S, f) {i.h. on H2(a)}
=⇒∗ (Θ, λ@(r,s)x.e′, p : S, f ′) {app2@}
=⇒ (Θ ∪

[
q �→ e′[q1/y],
q1 �→ p@(n′,0)])

]
, q@(n′,1), S, f ′◦〈r sFun〉)

{i.h. on H2(b)}
=⇒∗ (Δ, w, S, f ′′)

√

Proof of the second implication: ⇐
Since balanced computations correspond to balanced traces, we can make
the proof by cases over the balanced traces.

ε
Hypothesis:

H1 (Γ, e, S, f) =⇒0 (Δ, w, S, f ′)
Proof:

P1 By H1:
a) (Γ, e, S, f) = (Δ, w, S, f ′)
b) w = C pi or w = λ@x.e′

P2 By P1 and applying rule Cons , App or App@:
Γ : e�f ⇓ Γ : e�f

√

app1 bal app2 bal
Hypothesis:

(Γ, e p, S, f) {app1}
=⇒ (Γ, e, p : S, f) {bal1}
=⇒∗ (Θ, λx.e′, p : S, f ′) {app2}
=⇒ (Θ, e′[p/x], S, f ′) {bal2}
=⇒∗ (Δ, w, S, f ′′)

Proof:
P1 By i.h. on bal1:

Γ : e�f ⇓ Θ : λx.e′�f ′

P2 By i.h. on bal2: Θ : e′[p/x]�f ′ ⇓ Δ : w�f ′′

P3 By P1, P2 and rule App:
Γ : e�f ⇓ Δ : w�f ′′ √
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var1 bal var2 or var1 bal var3
Hypothesis:

(Γ ∪ [p �→ e], p, S, f) {var1}
=⇒ (Γ, e, #p : S, f) {bal}
=⇒∗ (Δ, w, #p : S, f ′) {var2 or var3}

=⇒∗ (Δ ∪ [p �→ w], w, S, f ′)
Proof:

P1 By i.h. on bal:
Γ : e�f ⇓ Δ : w�f ′

P2 By P1 and rule Var :
Γ ∪ [p �→ e] : p�f ⇓ Δ ∪ [p �→ w] : w�f ′ √

let bal
Hypothesis:

(Γ, letrec xi = ei in e, S, f) {let}
=⇒ (Γ ∪ [pi �→ êi], ê, S, f) {bal}
=⇒∗ (Δ, w, S, f ′)

Proof:
P1 By i.h. on bal:

a) Γ ∪ [pi �→ êi] : ê�f ⇓ Δ : w�f ′

b) pi fresh in Γ
P2 By P1 and rule Letrec:

Γ : letrec xi = ei in e�f ⇓ Δ : w�f ′ √

case1 bal1 case2 bal2
Hypothesis:

(Γ, case e of alt i, S, f) {case1}
=⇒ (Γ, e, alt i : S, f) {bal1}
=⇒∗ (Θ, Ck pj , alt i : S, f ′) {case2}
=⇒ (Θ, ek[pj/xkj ], S, f ′) {bal2}
=⇒∗ (Δ, w, S, f ′′)

Proof:
P1 By i.h. on bal1:

Γ : e�f ⇓ Θ : Ck pj �f ′
P2 By i.h. on bal2:

Θ : ek[pj/xkj ]�f ′ ⇓ Δ : w�f ′′

P3 By P1, P2 and rule Case :
Γ : case e of Ci xij → ei �f ⇓ Δ : w�f ′′ √

app1 bal app2@ bal
Hypothesis:
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(Γ, e p, S, f) {app1}
=⇒ (Γ, e, p : S, f) {bal1}
=⇒∗ (Θ, λ@(r,s)x.e′, p : S, f ′) {app2@}
=⇒ (Θ ∪

[
q �→ e′[q1/y],
q1 �→ p@(n′,0)])

]
, q@(n′,1), S, f ′◦〈r sFun〉) {bal2}

=⇒∗ (Δ, w, S, f ′′)
Proof:

P1 By i.h. on bal1:
Γ : e�f ⇓ Θ : λ@(r,s)x.e′�f ′

P2 By i.h. on bal2:
Θ ∪ [q′ �→ e′[q′′/x], q′′ �→ p@(n′,0)] : q′@(n′,1) �f ′◦〈r sFun〉 ⇓ Δ :
w�f ′′

H1 By P1, P2 and rule App@:
Γ : e p�f ⇓ Δ : w�f ′′ √

var@S bal
Hypothesis:

(Γ, q@str , S, f) {var@S}
=⇒ (Γ, q@(n,0), S, f ◦〈0 0 Observe str〉) {bal}
=⇒∗ (Δ, w, S, f ′)

Proof:
P1 By i.h. on bal

Γ : q@(r,s) �f ◦〈0 0 Observe str〉 ⇓ Δ : w�f ′

P2 By P1 and rule Var@S :
Γ : q@str �f ⇓ Δ : w�f ′ √

var1@ bal var2@
Hypothesis:

(Γ, q@(r,s), S, f) {var1@}
=⇒ (Γ, q, @(r, s) : S, f ◦〈r sEnter〉) {bal}
=⇒∗ (Δ, λx.e,@(r, s) : S, f ′) {var2@}
=⇒∗ (Δ, λ@[(r,s)]x.e, S, f ′)

Proof:
P1 By i.h. on bal:

Γ : q�f ◦〈r sEnter〉 ⇓ Δ : λx.e�f ′
P2 By P1 and rule Var@F :

Γ : q@(r,s) �f ⇓ Δ : λ@[(r,s)]x.e�f ′ √

var1@ bal var2@@
Hypothesis:

(Γ, q@(r,s), S, f) {var1@}
=⇒ (Γ, q, @(r, s) : S, f ◦〈r sEnter〉) {bal}
=⇒∗ (Δ, λ@obsx.e, @(r, s) : S, f ′) {var2@@}
=⇒∗ (Δ, λ@(r,s):obsx.e, S, f ′)

Proof:
P1 By i.h. on bal:

Γ : q�f ◦〈r sEnter〉 ⇓ Δ : λx.e�f ′
P2 By P1 and rule Var@F :
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Γ : q@(r,s) �f ⇓ Δ : λ@(r,s):obsx.e�f ′ √

var1@ bal var3@
Hypothesis:

(Γ, p@(r,s), S, f) {var1@}
=⇒ (Γ, p, @(r, s) : S, f ◦〈r sEnter〉) {bal}
=⇒∗ (Δ, C qi, @(r, s) : S, f ′) {var3@}
=⇒∗ (Δ ∪ [q′i �→ q

@(length f ′,i)
i ], C q′i, S, f ′◦〈r sCons k C〉)

Proof:
P1 By i.h. on bal:

Γ : p�f ◦〈r sEnter〉 ⇓ Δ : C qi �f ′

P2 By P1 and ruleVar@C :

Γ : p@(r,s) �f ⇓ Δ∪[q′i �→ q
@(length f ′,i)
i ] : C q′i �f ′◦〈r sCons k C〉√

�
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