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Abstract: This paper presents a model for power load forecasting using support vector machine
and chaotic time series. The new model can make more accurate prediction. In the past few
years, along with power system privatization and deregulation, accurate forecast of electricity
load has received increasing attention. According to the chaotic and non-linear characters of
power load data, the model of support vector machines (SVM) based on chaotic time series has
been established. The time series matrix has also been established according to the theory of
phase-space reconstruction. The Lyapunov exponents, one important component of chaotic
time series, are used to determine time delay and embedding dimension, the decisive
parameters for SVM. Then support vector machines algorithm is used to predict power load. In
order to prove the rationality of chosen dimension, another two random dimensions are selected
to compare with the calculated dimension. And to prove the effectiveness of the model, BP
algorithm is used to compare with the results of SVM. Findings show that the model is
effective and highly accurate in the forecasting of short-term power load. It means that the
model combined with SVM and chaotic time series learning system have more advantage than
other models.

Keywords: Support vector machine, Chaotic time series, Lyapunov exponents, Parameter
selection, Load forecasting
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1 Introduction

1.1  Electric Load Forecasting Approaches

As short-term power load prediction is of crucial importance to the reliability and
economic utilization of electric networks, it is drawing more and more attention from
both the practice and academia. Making the best use of electric energy and relieving
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the conflict between supply and demand is the aim of load forecasting. Load
forecasting has become a crucial issue for the operational planners and researchers of
electric power systems. For electricity load reliance, electricity providers face
increasing competition in the demand market and must pay more attention to
electricity quality, including unit commitment, hydrothermal coordination, short-term
maintenance, interchange and transaction evaluation, network power flow dispatched
optimization and security strategies [Niu et al., 98].

Basic operating functions such as unit commitment, economic dispatch, security
assessment, fuel scheduling and unit maintenance etc. can be performed efficiently
with an accurate load forecasting. Because of the importance of load forecasting, a
wide variety of models have been proposed in the last two decades, such as the
exponential smoothing model, state estimation model, multiple linear regression
model and stochastic time series model .

Generally speaking, these techniques are based on statistic methods and
extrapolated past load behaviour while allowing for the effect of other influence
factors such as the weather and day of week. However, the techniques employed for
those models use a large number of complex and non-linear relationships between the
load and these factors. A great amount of computational time is required and may
result in numerical instabilities. Some deficiencies in the presence of an abrupt change
in environment or weather variables are also believed to affect the load patterns.
Therefore, some new forecasting models have been recently introduced such as
artificial intelligence (Al), artificial neural network (ANN), and support vector
machines (SVM).

Proposed by Vapnik [Vapnik, 95], support vector machines (SVMs) are one of
the significant developments in overcoming shortcomings of ANNs mentioned above.
Rather Than by implementing the empirical risk minimization (ERM) principle to
minimize the training error, SVMs apply the structural risk minimization (SRM)
principle to minimize an upper bound on the generalization error. SVMs could
theoretically guarantee to achieve the global optimum, instead of local optimum like
ANNs models. Thus, the solution of a nonlinear problem in the original lower
dimensional input space could find its linear solution in the higher dimensional
feature space.

SVMs have been widely applied in the field of pattern recognition,
bio-informatics, and other artificial intelligence relevant areas. Particularly, along
with Vapnik’s & -insensitive loss function, SVMs also have been extended to solve
nonlinear regression estimation problems, which are so-called support vector
regression (SVR). SVR has been successfully employed to solve forecasting problems
in many fields, such as financial time series (stocks index and exchange rate)
forecasting [Cao, 03; Huang et al, 05; Pai and Lin, 05], engineering and software field
(production values and reliability) forecasting [Pai and Hong, 06], atmospheric
science forecasting [Mohandes et al., 04] and so on. Meanwhile, SVR model has also
been successfully applied to forecast electric load [Amari and Wu, 99; Pai and Lin,
05]. The empirical results indicate that the selection of the three parameters (C, e and
o) in a SVR model influences the forecasting accuracy significantly. Although
numerous publications have given recommendations on appropriate setting of SVR
parameters [Cherkassky and Ma, 04], those approaches do not simultaneously
consider the interaction effects among the three parameters. There is no general
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consensus, thus, intelligent algorithms are employed to determine appropriate
parameter values.

The last twenty years has witnessed the increasing maturity of chaotic theory and
statistic learning theory. The application of chaotic theory to the load prediction has
also come to mature. According to the characters of chaotic time series, based on the
phase space delay coordinate reconstruction theory, combined with statistical theory
the SVM prediction model based on Lyapunov exponents is established. Then the
model is put into use in short-term power load forecasting of some electric grids to
verify its effectiveness. The forecasting outcome from the model with the embedding
dimension obtained through Lyapunov method, shows that the model is more accurate
than BP neural network and SVM with random embedding dimension. This new
model can be utilized by power companies for electric power load forecast, or by
universities for scientific research.

Firstly, the paper explores the chaotic time methods. Secondly, it studies the
technology of reconstruction phase space in chaotic time series. In the process,
chaotic time series calculates Lyapunov exponents. Thirdly, it probes into the
calculation of Lyapunov exponents such as reconstructing m-dimensional phase
space, choosing minimal time delay, search a small neighborhood point, and finds out
the embedding dimension. Fourthly, in the first part the time series matrix is
established according to the theory of phase-space reconstruction, and then Lyapunov
exponents is computed to determine time delay and embedding dimension. The
support vector machines algorithm is used to predict power load, taking the above
computed embedding dimension as one parameter.. It also has put forward some
methods to determine other parameters. Lastly, it proves the accuracy of new method
and compares the new model with other methods. The result shows that the new
model is effective and highly accurate in the forecasting of short-term power load.

1.2 Chaotic Time Methods

Chaotic processes are characterized by irregular, unpredictable behaviours that
nonetheless is deterministic. One century ago, Henri Poincare put forward chaotic
properties while he investigated the dynamics of the three-body problem a century
ago. In the early 1960s, during the course of his investigation of simple convection
models, Edward Lorenz, the meteorologist [Lorenz, 63] noticed the sensitive
dependence on initial conditions and realized its significance to the long-range
weather forecasting.

Chaos refers to the phenomenon which comes forth in the certainty system with
a seemingly without rules, similar to a random. Chaotic time series exist in many
natural economic phenomena such as the price change in stock markets [Ma, 03; Su,
06] and some other economic Chaos [Katarzyna et al, 04]. The chaotic state with
stochastic quality in nonlinear systems is predictable in the short term but
unpredictable in the long term. At present, chaotic time series forecasting methods
include: global prediction [Nv, 02], Local Forecast [James, 02], Lyapunov exponent
forecast [Chen and Wang, 04] and neural network prediction method [Bunn, 00].
Based on the dynamic theory, the local forecast method is very suitable for chaotic
time series, which is better than the global prediction. The result of neural network
prediction is similar to that of the local forecast method [Douglas et al, 98]. The
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commonly used methods it is depend on the largest Lyapunov exponent to identify
whether the curve of history data is chaotic or not..

On the one hand, In the process by the method of computering the largest
Lyapunov exponent. there are two reasons would lead to a stable flat curve. One
reason is that by using the phase points of neighbourhood centre point and then using
the least-squares method, the relationship between these phase points and the centre
point can be determined. for the relationship is a linear. The more points there are in
the neighbourhood, the more smooth the relationship between the centre point and
other points will be. But the more separation space between the specific points, the
weaker the impact of specific points to central point will be. The dynamic behaviours
of centre points will be mostly impacted by nearest specific points Thus a stable flat
curve can be obtained in this situation . Another reason is, when embedding
dimension is determined, the number of elements which every point contains is
decided too. When the relationship between each phase point and other phase points
is examined, every element is of the same importance. It is to say that every element
of each phase point produces different effects on the prediction. In fact each point’s
effects on prediction can generate some exponential decay with the passage of time.
The result is most affected by the current time element . This equal treatment to
elements in all phase points makes the forecast results to be smoothing changes in the
trend. So if chaotic time series changes are relatively relaxed when the adding-weight
one-rank local-region method is used to forecast, and the predict result is good
enough, otherwise the prediction accuracy will be significantly affected. On the other
hand, there are two reasons which would lead to predict results showing drastic
change trend [Amari and Wu, 99]. In addition to these shortcomings, the above two
methods are sensitive to changes in the embedding dimension. The determination of
embedding dimension is current highly subjective, so there is a negative impact on
forecasting accuracy.

In the last twenty years, chaotic theory and statistic learning theory have become
been gradually mature and the usage of load prediction has become more and more
mature. According to the characters of chaotic time series, the SVM prediction model
based on Lyapunov exponents is established, which combines the phase space
delaying coordinate reconstruction theory with SVM theory. Then it is used in
short-term power load forecasting of some electric networks to verify its
effectiveness. As a result, the model with the embedding dimension, which is got
through Lyapunov method, shows this model is more accurate than BP neural
network and SVM with random embedding dimension.

2 Chaotic Time Series and Lyapunov Exponents

According to the Chaos theory, the drive factors have influenced each other in chaotic
system. Therefore the digital points occurring in time order are also related. At
present, the phase space delay coordinate reconstruction method is commonly
employed to analyze the factors of serial dynamics. Generally, the dimension is very
great even infinite in the phase space in system, but in most cases the number of
dimensions are unknown..In fact, the phase space delay coordinate reconstruction
method can expand the given time series X, X,,-++, X,_;, X to three-dimensional

e Xpa o
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and even higher dimensional space so that information potentially stored in time
series can be fully demonstrated, classified and extracted [Wang, 03; Sun et al, 04;
Wen et al, 01; Wolf et al, 85; Li et al,, 03].

2.1  Reconstruction of Phase Space
The technology of reconstruction phase space is the premise to calculate Lyapunov
exponents. In electric power system, actual loading series of single argument { x(t;)

=1, 2, 3... n} can be obtained with the gap At. The structural characters of system
attractors are contained in this time series. The specific method, which can estimate
the information of phase space reconstruction in single argument time series, is

x(t,) x(t,) o x() e Xt —(m=1)7)
Xt +7)  x(t,+7) .. X +7) L x(t,—(m-2)7)
X(t,+27)  x(t,+27) ... X(;+27) 0 x(t,-(m-3)7)

X(t, +(m=1) x(t, +(m-1) ... x(t; +(M=1)) __ x(t,)
y(t) y(t,) LooYE) Lyt -(m=D7)

In this method, the time series can be extended to m -dimensional phase space.
Here, 7 = k At (At =1, 2....) refers to the time delay is. In previous
permutation, every column makes up a phase point of m -dimensional phase space.
And each phase point has m components. These n, =n—(m-1)z phase points
{ x(t;), j =1,2...n, } make up a facades pattern in m -dimensional phase space,

and the continuation of these phase points describes the evolutionary trace of a system
in the phase space.

2.2 Calculation of Lyapunov Exponents

A. Wolf advanced a method by which a maximal Lyapunov exponents in single
argument time series can be extracted. The process is:

1) Reconstructing m-dimensional phase space with time series.

2) Choosing minimal z which marks the correlation among phase space.

3) In the continuation m-dimensional phase space, the initial phase point A(t,)
is chosen as a reference point. There are m components in the phase space, they are
x(t,), x(t, +7), x(t, +27),---X(t, +(m-1)).

According to the following formula:
L =min[v, =Y, i=], (1)

B(t,) ,the nearest neighborhood point to A(t;) can be obtained. Assume L,
referring to the distance between A(t) and its nearest neighborhood point in
Euclidean meaning, as L(t). Suppose t, =t +kAt with kAt as the step length,
and A(t) evolving into A(t,) ,meanwhile B(t;)) evolving into B(t,) , then the
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distance A(t,)B(t,) =I(t,) is obtained. Let A, represent the rate of exponential

growthand I(t,) = L(t1)2‘2 , then the following equation can be obtained.
1
=——log, (I(t,)/L(t At=1). 2
A G -1) g, (I(t,)/L(Y)) (At=1) )
A is the Lyapunov exponent that can be used to judge the stability of time

behavior of the system.
4) Find a small neighborhood point C(t,) which subjects to the angle & in

the nearest neighborhood point to A(t,) (If it can’t meet the two conditions: small
6, and neighborhood, it should still choose B(t)). Suppose t,=t, +kAt, and
suppose that  A(t,) evolves into A(t;) and C(t,) evolves into
C(t;), A(t,)C(t,) =L(t,) and A(t,)B(t,)=I(t,), then:

1
4, =E|092(|(t3)/ L(t,)) 3)
The above process goes on until it reaches the end of point-group
{X ) i=12,--, np} . Then adopt the average of the calculated rates of exponential

growth as the maximal estimated value of Lyapunov exponent. That is

181, It -1
LE,(m)==Y = A
,(m) N &k 09, Lt —1)

N =n,/k means total steps of step length.

(4)

5) Increase embedding dimension m in turn and repeat the steps(3)-(4)until the
estimated  value LE,(m) of the exponent keeps stable and

LE,(m,) =LE (m, +)+LE (my+2)=---=LE,. LE is just the maximal Lyapunov
exponent.

3 SVM Regression Theory

This section presents the fundamental knowledge of SVM regression. Suppose a set
of data (Xi'yi) , 1=12---n , X € R" are given as inputs , and y; € R is the

corresponding output. SVM regression theory is to find a nonlinear map from input

space to output space and map the data to a higher dimensional feature space through

the nonlinear map, and then the following estimated function is used to make linear
regression [Tan, 01; Vapnik, 95; Du and Wu, 03].

f(x)=[w-¢(X)]+b ¢:R">F , weF (5)

f (x) is the regression estimated function which is constructed through learning

of the sample set. wis weight vector, b is the threshold value, ¢(x) is the

nonlinear mapping from input space to high-dimensional feature space which is the
only hidden space. The problem of the function approximate is equivalent with the
minimizing the following problem.
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R=aff +CT>ly - ()] ©)

||w||2 is the weight vector norm, used to constrain the model structure

capacity in order to obtain better generalization performance. C is the regularized
constant determining the trade-off between the empirical error and the
regularization term. In addition, in (6), Vapnik’s linear loss function with ¢ -
intensive zone is adopted as a measure for empirical error as shown in (7).

|y_f(x)|£:{o if |y, — f(x)|<e

ly; — f(x)|—€ otherwise
After we introduce positive slack variables & and & , minimizing the risk
function R in (8) is equivalent to minimizing the objective function shown as
follows:

(7)

R=zloff +CY (& +4) ®
Subject to: -
(@-¢(x)+b-y, <e+& =121
yi—(@0-4(x))-b<e+ =121 9)
E,E 20 i=12,,1

where & is the upper training error (& is the lower) subject to the & -intensive

tube y, —(a)-¢(x))+b <¢. With the Lagrange multipliers introduced, the decision
function in (9) can be expressed as the following explicit form:

f(x):ZI:(ai—af)k(Xi,X)er (10)

where a and a are Lagrange multipliers with a, xa =0 and a,a >0 for
any i=12,---,1. Using Mercer’s theorem, the regression is obtained by solving a
finite dimensional QP problem in the dual space avoiding explicit knowledge of the
high dimensional mapping and using only the related kernel function. In (10), a kernel
function K(x;,X;) =@(x)x@(x;)Iis introduced, which is the inner product of two
vectors in feature space ¢(x) and ¢(x;). It can be shown that any symmetric kernel

function K satisfying Mercer’s condition corresponds to adopt product in some
feature space. A common kernel is RBF kernel adopted in the paper as follows.

<oy =enpt- A )

Thus, the Lagrange multipliers can be obtained by maximizing the following
form:
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M-

R(ai,af):_% 1(3.—3@)(31‘3})*(()(“)(1) (12)
)

—eY (a+a')+X v (a-a')]

i=1 i=1

Subject to:
n n
28 =23
i=1 i=1
0<a <C,i=12,---1 (13)
0<q <C,i=12,---1

Through adjusting the two parameters C and ¢, the generalized performance
can be controlled in high-dimension space. According to Karush-Kuhn-Tucker(KKT)

) are different from zero, and the

%

conditions, only some of coefficients (ai —g

corresponding training data are referred to as support vector, which can be regarded as
the number of neurons in hidden layer of the network structure.

4  SVM based on Lyapunov Exponents

4.1 SVM Based on Time Series

If time series{x,,X, ---Xy } is given and the previous actual values of t time which

are x(1), x(2) --- x(t) are known. Then the forecasting value of t+1 time point can
be got through the following map:

f:R" > R. (14)
The following equation can be obtained:
x(t+1) = f(x(t), x(t=1),---x(t — (m-1))) (15)

X(t+1)is the predicted value of the t+1time point and mis the embedding

dimension. Then use SVM to make prediction. When the SVM kernel function and
other parameters are determined, the model can be used to make prediction.
Compared with BP neutral network, SVM has the following priorities: BP algorithm
needs to select the number of interlayer while SVM just needs to search optimal
parameters. BP network is based on empirical risk minimization and easy to create a
local optimum. SVM is based on structural risk minimization, and it considers the
sample error and the model complexity. Local optimum is global optimum in SVM.
SVM exhibits better generalization ability than BP network.

4.2 Determination of Chaotic Time Series and Embedding Dimension

Lyapunov exponents is used to express average speed of neighborhoods in system. A
positive Lyapunov exponent is to judge the segregation degree of average index
number about two adjacent tracks while a negative Lyapunov exponent is to express
the degree of closeness.. If a discrete nonlinear system is dissipative, a relatively
stable and positive Lyapunov exponent can be computed to judge whether the time
series is chaotic or not. The operation procedure is as follows:
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Firstly, it finds Lyapunov exponents to judge whether the data is chaotic or not.
Lyapunov exponents is a genealogy L (i=123,---,m). L >L,>--->L,. L is
the degree of evolution separation of the adjacent track with the time changing in
m-dimensional space. If the max L >O0then it can be sure that the data series is

chaotic.

Secondly, Judge whether Lyapunov exponents is smooth or not. The Lyapunov
exponents will be varied with the different embedding dimensions. It finds the
embedding dimension  when the Lyapunov exponents has become smooth.

According to the characters of chaotic time series, the embedding dimension and

Lyapunov exponents can be computed by Visual.Basic.6.0.with.SP6. The dimensional
value is determined when Lyapunov exponents tend to be stationary. Then the model
can be established by combining embedding dimension with time series theory.

The main source code is:
'Find out Lyapunov exponents
Private Function LyapunovLE(ByRef currM As Integer) As Double
Dim m As Integer
Dim tempLE(10) As Double
Dim i As Integer
Dim k As Integer
k=1
m=4
Fori=1To20
tempLE(i) = pingJunLE(m +i - 1)
Next i
Do
If bInPingHua(tempLE(), k) = True Then
LyapunovLE = tempLE(5)
currM =m
Exit Function
Else
m=m+Kk
Fori=1To10-k
tempLE(i) = tempLE(i + k)
Next i
Fori=1Tok
tempLE(10 - k + i) = pingJunLE(m + i + 9 - k)
Next i
End If
Loop While (oldDateNum - m) > 11
LyapunovLE =0
End Function

‘Judge Lyapunov exponents whether smooth or not
Private Function bInPingHua(tempLE() As Double, ByRef k As Integer) As Boolean
Dim temp As Double
Dim i As Integer

temp = tempLE(1)
Fori=2To10
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If Abs(temp - tempLE(i)) > mJingDu Then
bInPingHua = False
k=i-1
Exit Function
End If
‘temp = tempLE(i)
Next i
bInPingHua = True
k=1
End Function

'‘Compute the average of LE
Private Function pingJunLE(ByVal m As Integer) As Double
Dim Ai As Integer
Dim MinC As Integer
Dim tempSumLE As Double
tempSumLE =0
For Ai =1 To oldDateNum - m
DoEvents
MinC = findMinC(m, Ai)
tempSumLE = tempSumLE + sumLE(m, Ai, MinC)
Next Ai

pingJunLE = tempSumLE / (oldDateNum - m)
End Function

4.3 Proposed approach for parameter selection

Selection of parameter C . According to Mattera and Haykin (1999), standard
parameterization of SVM solution given by Eq.(10) need to be considered, assuming
that the ¢ -insensitive zone parameter has been chosen. Also suppose, without loss of
generality, that the SVM kernel function is bounded in the input domain [Vladimir
and Ma, 04; Deng and Tian, 04; Zhang et al, 04].

[x-x[
K(%.%) = exp(~1— ) (16)
2p
where pis the width parameter.
Under these assumptions, one can relate the value of C to the range on response
values of the training data.
Specifically, referring to Eq.(10), it is noted that the regularization parameter
C defines the range of values 0<a , a <Cassumed by dual variables used as

linear coefficients in SVM solution (10). Hence, a “good” value for C can be chosen
equal to the range of output values of training data. However, such a selection of C
is quite sensitive to possible outliers (in the training data), so we propose instead the
following prescription for regularization parameter:

C =max(|y+30,|,|y-30,|) 17)
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where iland o, are the mean and the standard deviation of the y values of

training data. Proposed selection of C given by Eq.(17) coincides with prescription
suggested by Mattera and Haykin (1999) when the data has no outliers, but yields
better C -values (in our experience) if the data contains outliers.

Selection of & . It is well-known that the value of & should be proportional to the
input noise level, which is £ o o . Assume that the standard deviation of noise o is
known or can be estimated from data. However, the choice of & should also depend
on the number of training samples. larger sample sizes should yield smaller ¢ -values.
Precise nature of such a dependency can be derived using a combination of simple
statistical arguments followed by empirical tuning/verification, as discussed next.
First, try to relate the value of &£ to an empirical distribution of “errors”

o, =Yy-Yy, (i=1---,n) observed for a given training data set of size n. Consider the
sample mean of these errors:

3':%(51+62+---+6n) (18)

Random variable & can be interpreted as empirical estimate of noise observed
from available training data set of size n, Hence, the choice of & should depend on

the variance of &, In order to estimate the variance of ¢, recall that component
errors &, in (18) all have zero mean and variances o. According to the Central
Limit Theorem, the sample mean (18) is Gaussian with zero mean and variance
o’ In. Hence, it seems reasonable to set the value of & proportional to the “width”

of the distribution of ¢:

o
E~— (19)

Jn
Based on a number of empirical comparisons, we found that Eq. (19) works well
when the number of samples is small. However, large values of n prescription (19)

yield & -values that are too small (practically zero). Hence, we propose the following

(empirical) dependency:
e~o /In_n (20)
n

We do not have specific theoretical justification for factor Inn in (20). other that
this factor typically appears in analytical bounds used in VVC theory [Vapnik,
2001]. Based on the empirical tuning, the following practical prescription for
¢ is found:

€= 30\/E (21)
n

This equation provides good performance for various data set sizes, noise levels
and target functions for SVM regression.
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4.4  SVM Prediction Model

The given time series{x,,x, ---X, } is separated into two parts. The previous n, data

are used as training sample to compute parameter values and the rest data as testing
sample to prove the effectiveness of the model. The one-dimensional time series is
converted into poly-dimensional matrix by reconstructing phase-space. Time delay is
1. The m-dimensional matrix is established as follows.

Xl X2 Xm Xm +1
X = X2 X3 Xm +1 Y = Xm+2
Xn" -m Xn" -m+1 X X

Ty -1 e
’

X is input matrix andY is output matrix. X and Y satisfy (15). When the basic
structure of the time series is determined, SVM can be used to train and predict the
samples. The regression equation is

Y, = tri (& —a)k(X;, X)) +b t=m+Lm+2---n, . (22)
i=1
The prediction model of the next time point is
yntr+1= Z (ai_ai*)k(xi’xn"—mﬂ)_{—b ) (23)
i=1

and xn"_m_l = {Xn" —-m+1? xn"_m+2 ! o xntl' } '

4,5  Steps of SVM Model Based on Lyapunov Exponents

The whole process including four steps is shown as the follows. It can be seen in Fig
1:
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Input the data seties

Define time delay
and embedding
dimension

T
Error not meet Yes

Determine the
embedding Calculate other

dimension for SVM parameters for SVM

R i ;

4< SVM forecasting )
1

Error meet the object

Figure 1: The SVM forecasting process based on chaotic time series

1) According to the historical power load data, a single-variable time series is
established. Then wolf method is used to determine whether the series is chaotic or
not by computing Lyapunov exponents.

2) Define time delay and work out the embedding dimension, then make data
preprocessing. The embedding dimension and the number of phase points determined
by Lyapunov method are used to restrict phase space.

3) Parameters in SVM model should be initialized. ¢; ¢; and bare assigned
random values.

4) Proposed approach for parameter selection, the parameters C, &should be
calculated by the method proposed in the above, in which & should be obtained by
the equation (21).

5) The objective functions like (8)-(9) are established by using training sample.
Then previous functions are converted into their dual problems like (12)- (13), thus
o, o and b will be worked out. And then they are substituted into (23), by this way

the predicted value of the subsequent time points will be worked out.
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5 Application and Analysis

5.1  Choosing Samples

The data used in this study were provided by the Shaanxi electric power corporation,
a power transmission company in Shaanxi province. The data consist of
quarter-by-quarter observations of electricity demand in Shaanxi province for 156
weeks ranging from 13 June 2003 to 15 June 2006. Power load data in Shaanxi
province is used to prove the effectiveness of the model. The power load data from
0:00 at 6/13/2003 to 12:00 at 6/12/2006 are as training sample and used to establish
the single-variable time series{x(t,), X(t,), - X(ty,5)} . And the power load data from

13:00 to 24:00 at 6/15/2006 as testing sample.

Shaanxi Power Grid transmitted 1.836 billion KW to the north of China in 2006.
Shaanxi province has become a important energy terminal of the economic
development of north of China. As the Shaanxi Power Grid has to supply power for
regional and several outside markets, Shaanxi Power Grid has paid more and more
attention to the load forecasting to improve the security and stability of its electric
network.

Selection of the Shaanxi province for the load forecasting is thus very
representative in China due to the follwoing three reasons. Firstly, the Shaanxi
province has distinct seasons, which is quite common all over China; Secondly, this
area belongs to the land-locked region in the northwest and is seldom affected by
extreme climate conditions. This is important to study the changing pattern of the load
forecasting; Thirdly, the Shaanxi Power Grid has double tasks: satisfying regional
power load demand and the demand of North China power grid, the main power grid
in North China.

In order to investigate the performance of the forecasting system thoroughly, the
Shaanxi power system with different typical load characteristics and weather
conditions is considered in this research. Shaanxi province is a big power supply
system in China, meeting the electrical needs of the North of China. The electrical
demand of the Shaanxi province is mainly industrial and residential in a large area.

5.2 Chaos Analysis

For the training sample, = =1 is chosen and Wolf method is used to compute
Lyapunov exponents and embedding dimension. According to the theory, Lyapunov
exponents A begins to show stationary trend when the embedding dimension is 11.
The power load time series shows chaotic characters because A >0. The embedding
dimension is 11 and the number of phase points is 1136. The above parameters are
used to reconstruct the phase-space. The results are shown in Fig. 2.
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Figure 2: A (Lyapunov exponent) changes with m (embedding dimension). When
embedding dimension is 11, Lyapunov exponents begin to show stable tendency.

5.3  Prediction Process

SVM is used to make prediction after the samples are normalized. Libsvm toolbox is
used to compute the results and radial basis function is chosen as the kernel function
[9]. The parameters are chosen as follows: m=11,C=86.23, £ =0.016, 0> =5.16. The
other two comparing matrixes are established by choosing the parameters as follows:
m =9,C=78.86, ¢ =0.024, 0* =3.58 and m = 13,C=49.68, £ =0.013, 0* =2.11. The

results of each matrix are shown in Table I.

BP algorithm is used to make prediction with sigmoid function. The parameters
are chosen as follows: the node number of input layer is 11 and the node number of
output layer is 1. The node number of interlayer is 8 according to the experience. The
system error is 0.001 and the maximal interactive time is 5000. The results are shown
in table 1.

5.4  Predicted Values and Evaluating Indicator

Relative error and root-mean-square relative error are used as the final evaluating
indicators:

r

E =%x100% , (24)

2
13 X — Y
RMSRE =,[— > | ——| . 25
e @

The results show:
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1) To see whether the approach of the chosen embedding dimension is
reasonable or not, three cases are chosen as follows: 11-dimension, less than
9-dimension and larger than 13-dimension. Compaed with the performance of other
three models, it can be seen that the relative errors of the proposed SVM(11) model in
this paper are around 0, 9 out of 11 points. 75% of the forecasting points are in the
scope of [-0.025, 0.025], and the root-mean-square relative error is only 2.03%,.The
accuracy of load forecasting is satisfied. We used SVM model with different
dimensions to check the result, there being 9-dimension and 13-dimension. They also
can not calculate accurately which is wanted, and the RMSRE is 2.90% and 3.15%
bigger than the RMSRE calculated with SVM(11).

2) In general, the expected scope of relative error is [-0.03, 0.03], so if the results
are measured by the standard which is less than or equal to 3%, there is only one
forecasting point exceeding 3% with SVM(11), 4 points with SVM(9), 5 points with
SVM(9) and 8 points with BP model. The acceptable results in the condition of
11-dimension covers 91.67% while 9-dimension covers 66.67% and 13-dimension
covers 58.33%, but the BP model only cover $s33.33%. It can be seen from the above
analysis that the predicting effectiveness of 11-dimension is better than other
dimensions when SVM is used to make prediction.

. . E E E E

Time point Actual load SVMr(ll) SVI\/‘(Q) SVMr(13) BP(rll)
13:00 413.5241 -1.56% -3.31% -2.58% 3.89%
14:00 438.4254 -2.31% -2.98% -3.87% -5.63%
15:00 441.2467 1.28% 2.21% 2.65% -6.31%
16:00 427.1403 -0.47% -1.87% 2.11% 1.53%
17:00 480.7445 -2.73% -2.33% -2.24% -3.08%
18:00 667.5127 -1.38% 2.26% -3.61% 4.13%
19:00 834.5315 -1.57% -3.24% 1.89% 1.69%
20:00 868.3869 0.93% 2.84% 2.66% -2.57%
21:00 840.1742 2.85% 3.65% -4.99% 5.87%
22:00 639.2995 3.28% -2.55% 2.42% -2.58%
23:00 455.3530 -1.61% 4.24% 3.71% 3.03%
24:00 368.5361 2.35% 2.47% 3.58% -3.86%
RMSRE 2.03% 2.90% 3.15% 3.98%

Table 1: Comparison of The Predicted Values and Evaluating Indicators
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Figure 3: Error analysis of the proposed method

3) The comparison between SVM and BP is shown as follows. The relative error
of predicted results by SVM has small rangeability. The maximal relative error is
3.28% and the value from the maximal relative error to the minimal relative error is
6.01%. On the contrary, the relative error of predicted results by BP has large
rangeability. The maximal relative error is 6.31% and the maximal relative error to
the minimal relative error is 12.18%. If the results are measured by the standard
which is less than or equal to 3%, the acceptable results of SVM are 91.67% while BP
are 33.33%. If the results are measured by root-mean-square relative error, RMSRE of
SVM is less than BP. It can be seen from the above analysis that the predicting
effectiveness of SVM is better than BP when the embedding dimension is determined.

6 Conclusions

The results show that SVM based on Lyapunov exponents has great effectiveness for
short-term power load forecasting. And the conclusions are shown in the following:

1) The power load data show apparent chaotic characters. Chaotic time series is
established and chaotic parameters are computed, then SVM prediction model is
established to make prediction. The real load data prediction shows that the model is
effective in short-term power load forecasting.

2) The embedding dimension is chosen through Lyapunov method. The
predicted results with chosen dimension and other random dimension are compared.
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The comparison shows that the approach is scientific and rational. The results show
there is a suitable embedding dimension which is used to predict the power load
effectively. The predicted values by the model with chosen dimension are highly
accurate.

3) In the condition of the same dimension, SVM is much higher than BP in
accuracy. The reason is that the differences between BP and SVM. BP network are
based on empirical risk minimization and easy to lead to local optimum. SVM is
based on structure risk minimization. Local optimum is global optimum. SVM
exhibits better generalization ability than BP network.

Because the data of weather and temperature are hard to acquire while the data
of power load are easy to acquire. In fact, the model of SVM based on Lyapunov
exponents is more significant in the application than the models which need more
power load data or the models which need the data of weather or temperature.

In near future we should do some research somewhere else. Firstly, the
influential factors should be considered when making prediction, such as the weather,
temperature, wind and other factors; Secondly, the parameter should be calculated
with some intelligence methods so as to improve the accuracy of forecasting results.
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