
Updates, Schema Updates and Validation of XML

Documents – Using Abstract State Machines with

Automata-Defined States

Klaus-Dieter Schewe
(Information Science Research Centre, Palmerston North, New Zealand

kdschewe@acm.org, isrc@xtra.co.nz)

Bernhard Thalheim
(Institute of Computer Science, University of Kiel, Germany

thalheim@is.informatik.uni-kiel.de)

Qing Wang
(University of Otago, Dunedin, New Zealand

qing.wang@otago.ac.nz)

Abstract: The exact validation of streaming XML documents can be realised by using
visibly push-down automata (VPA) that are defined by Extended Document Type Def-
initions (EDTD). It is straightforward to represent such an automaton as an Abstract
State Machine (ASM). In doing so we enable computations on abstract states that are
defined by a certain class of automata, in this case VPAs. In this paper we elaborate on
this approach by taking also updates of XML documents into account. In this way the
ASM-approach combines vertical refinements, which first make states explicit and then
instantiate by a specific EDTD, with horizontal refinements, which replace streaming
XML documents by stored ones and then add updates. Furthermore, as the EDTD
appears as part of the abstract state, updating it is another natural extension by hor-
izontal refinement. In this way we obtain consistently integrated updates and schema
updates for XML documents, which can even be extended to become fault-tolerant
by taking at most k errors in the document into consideration. It further provides an
example of ASM-based computation with automata-defined states.
Key Words: XML, Validation, Abstract State Machines
Category: E.m, H.2

1 Introduction

The eXtensible Markup Language (XML) has become a standard for the data
exchange on the world-wide web. In order to prescribe a structure XML docu-
ments of interest must adhere to, an (optional) document type definition (DTD)
can be used, but the language of DTDs has been often criticised for its lim-
itations such as lack of typing and the use of global element definitions. The
typing limitation has been addressed by the more expressive and now commonly
used XSchema language, while global element type definitions are addressed by
extended document type definitions (EDTDs) [Papakonstantinou and Vianu,
2000].

Journal of Universal Computer Science, vol. 15, no. 10 (2009), 2028-2057
submitted: 1/2/09, accepted: 17/4/09, appeared: 28/5/09 © J.UCS



Whichever schema specification language is used, the problem of XML doc-
ument validation, i.e. deciding whether a given document adheres to a given
schema definition, has to be solved. For this EDTDs as the most general schema
definition language provides the advantage to be associated with a specific class
of push-down automata, the visibly pushdown automata (VPAs), as the tree
languages specified by EDTDs are exactly those that can be recognised by a
VPA [Kumar et al., 2007].

On these grounds it is straightforward to model the VPA for the validation of
streaming XML documents with a given EDTD by an Abstract State Machine
(ASM) [Börger and Stärk, 2003]. In our previous work in [Schewe et al., 2008] we
demonstrated that by making states of the VPA explicit, i.e. defining a structure
that captures the EDTD, we obtain an ASM specification that deals with all
EDTDs in a uniform way, and the validation specification for a specific EDTD
can be obtained by a simple instantiation.

This provides an example of ASM-based computations with automata-defined
abstract states, i.e. while ASMs in general take first-order structures as abstract
states, we are able to deal with restricted classes of such structures that are
recognisable by a certain class of automata, in this case VPAs. The idea of
automata-defined abstract states was put forward in [Wang et al., 2008]. In this
article we build on this insight, and extend our previous work in the direction
of updates, i.e. actual computations on these automata-defined states. This re-
quires to relax the request to deal only with streaming XML documents that
are read in sequentially. Instead of this we deal with stored XML document, so
the storage structure and the explicit definition of the read-operation have to be
added, which defines a “horizontal” refinement in the sense that a slightly more
general problem is addressed.

Once we deal with stored XML documents it is a natural next step to permit
updates to them, which then amount to a model of computation on automata-
defined abstract states. As the EDTD itself is part of the state, we can also
permit updating it, which leads to integrated schema updates. Still the general
approach to validation guarantees that these updates are consistent in the sense
that only XML documents will be produced that adhere to the current EDTD.

Finally, we may even pick up the idea from [Thomo et al., 2008] that was
handled in our previous work in [Schewe et al., 2008] to permit validation up
to k errors, where an error is defined by the need to insert, delete or modify
a pair of opening and closing tags. As in Tomo’s work we now handle both
semantics, i.e. either count each such individual modification as one error, or
treat all modifications with respect to the same tag pair as only one error.

In Section 2 we provide a brief overview of related work in order to place our
current work into the literature. In Sections 3 and 4 we introduce preliminar-
ies such as EDTDs and VPAs. Then Section 5 merely repeats our preliminary

2029Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



conference publication in [Schewe et al., 2008], i.e. we describe the ASM ap-
proach to streaming XML documents validation thereby outlining the necessary
vertical refinements. In Section 6 we outline the concept of automata-defined
abstract states and relate it to the validation ASMs. In particular, we relax the
request to deal only with streaming XML documents, but instead take stored
XML documents into account. In good database tradition it should be under-
stood that storage should include the use of secondary storage devices. Section
7 is then devoted to the extension towards updates, first with respect to stored
documents, then even to the stored EDTDs, which defines integrated document
and schema updates as requested in [Kirchberg et al., 2005]. In Section 8 we
pick up the problem of fault-tolerance by permitting up to k schema violations
in a validated document. We first describe the case handled in [Schewe et al.,
2008] counting each insertion, deletion or update of a pair of opening and closing
tags as one error. Finally, in Section 9 we generalise the approach to the sec-
ond semantics studied in [Thomo et al., 2008] dealing with the case of counting
insertions, deletions and updates of tag pairs with the same name as only one
error. This requires the construction of error tables. We conclude with a brief
evaluation of our achievements and conclusions.

2 Related Work

The work reported in this article is related to three areas of research. The first
one is the validation of XML documents, i.e. parsing the document and deciding,
whether it is compatible with a given schema definition, which can be given by
a DTD, an XSchema specification or an EDTD. Validation is a necessary step
prior to querying with a standard XML query language such as XQuery, and
updates.

Most current XQuery implementations require that all XML data reside in
memory in one form or another before they start processing the data. This is
unacceptable for large XML documents, and typical XQuery processors such as
Xalan, Qizz, and Saxon fail to handle very large XML documents. Some oth-
ers, such as Galax take advantage of the query structure by storing in memory
only those parts that are needed by the query. The most common approaches
to XML validation are given by the “Document Object Model” (DOM) [Gupta
et al., 2003; Harold, 2002; van Kesteren, 2008; McCormack, 2008], a platform-
and language-neutral API, which provides a standard set of interfaces for manip-
ulating an XML document, and the “Simple API for XML” (SAX) [Box et al.,
2000; Fegaras, 2004; Garshol, 2002; Harold, 2002; Simeoni et al., 2003; Wilde,
2004], a non-W3C standard API for streaming document processing.

In DOM scripts can dynamically access and update the content, structure,
and style of an XML document. DOM is tree-based and requires that the entire

2030 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



document is represented in memory while processing it. Unfortunately, there
are no standard ways to support namespaces in DOM, nor are there standard
ways to create empty DOM documents. The DOM specification does not define
how namespaces are supported. Thus, some DOM implementations have defined
methods for retrieving various information about the namespace used by a given
node.

The alternative SAX approach to DOM is event-based, i.e. parsing events
are reported directly to the application through callbacks. It typically does not
build an internal tree, but handlers deal with the different events. This approach
results in simpler parsing and processing of XML documents. It does not keep
XML documents and their structure in memory. Therefore SAX makes it possible
to process very large XML documents without exceeding the capacity of memory
available for processing. Event-based techniques such as SAX that do not require
the materialisation of all data in memory have influenced the development of
theoretical tree transducer models for parsers such as visibly pushdown automata
(VPAs) [Kumar et al., 2007].

Extended Document Type Definitions (EDTD), introduced by Papakon-
stantinou and Vianu [Papakonstantinou and Vianu, 2000] provide a general
schema formalism based on special context-free grammars that generalises other
schema languages such as DTDs and XML Schema, the major extension to DTDs
being the introduction of some form of typing. Kumar et al. [Kumar et al., 2007]
have shown that the tree languages specified by EDTDs are exactly the visibly
pushdown languages (VPLs), i.e. those that can be recognised by a specialised
class of push-down automata, the visibly pushdown automata (VPAs). That is,
in order to decide if a given XML document adheres to a specified EDTD, the
word representing the XML document must be accepted by the derived non-
deterministic or deterministic VPA. In particular, this turns out to be extremely
useful for validating streaming XML documents [Segoufin and Vianu, 2002; Ku-
mar et al., 2007], where the document is validated, while it is read. General
properties of VPLs such as equivalence of deterministic and non-deterministic
VPAs, closure under intersection and union, etc. have been investigated by Alur
and Madhusudan [Alur and Madhusudan, 2004].

This processing by finite state machines, transducers, or VPAs does an excel-
lent job as long as no predicates or complex queries are required. However, these
parsers are statically constructed in advance based on the XSchema, DTDs or
EDTDs. As XQuery is a functional language and XQuery expressions can ap-
pear at any place in a query, a recursive compositional translation of the query
is required, but the approaches based on finite state machines require a holistic
view of an XPath expression before the automaton is constructed.

The second area of research related to our work is the use of Abstract State
Machines as a general approach to produce reliable software [Börger and Stärk,

2031Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



2003; Schellhorn, 2008]. In our previous work in [Schewe et al., 2008] we showed
how the problem of validating streaming XML documents can be approached
by using Abstract State Machines (ASMs). This is justified by the claim that
dynamic construction of the parser based on a pattern specification of the rule
that may parse a subexpression is the simplest and most effective way of parsing,
analysing and processing sets of documents and queries. The rule pattern used
for the generation of concrete parsing rules are very flexible and therefore support
queries beyond monadic second-order formula.

In a first straightforward approach we modelled the VPA that is used for the
exact validation of streaming XML documents with a given EDTD by an ASM.
This corresponds to creating a “ground model” according to the ASM method-
ology introduced by Börger [Börger, 2003]. However, first creating a rather big
VPA out of a given EDTD and then using this VPA for the validation task is not
efficient. Therefore, we refined the ASM by an ASM that does not use the VPA
at all, but works directly on the structure defined by the EDTD and thus avoids
the VPA construction step. In doing so, we actually defined an ASM specifica-
tion, in which the EDTD is part of the abstract states, and thus an instantiation
with a specific EDTD could be used as a further refinement step to produce a
validation machine for a specific EDTD. As these refinements did not extend
the problem, i.e. the validation of streaming XML documents, we called them
vertical.

In a second step in [Schewe et al., 2008] we generalised this approach to
approximate validation of streaming XML documents, i.e. accepting documents
that differ from the given EDTD by at most k edit operations. Thomo et al.
[Thomo et al., 2008] showed that in case insertions, deletions and updates of
pairs of opening and closing tags are counted as individual edit operations the
approximate validation problem can be solved by using the product of the VPA
used for exact validation and a visibly pushdown transducer (VPT) with 2k + 1
states that captures the count of edit operations. They also provided a solution
for the case of counting insertions, deletions and updates of tag pairs with the
same name as only one edit operation, which only requires a different VPT. We
showed that the switch from the exact to the approximate validation problem
for streaming XML documents gives rise to further ASM refinements, which we
called horizontal, as the problem dealt with was enlarged.

This provided a rather simple example for the interplay of horizontal and
vertical ASM refinements following the most prominent example of Java/JVM
in [Börger et al., 2001], which has already guided recent research on software
product lines [Batory and Börger, 2008]. This method is carried further to XML
updates and schema updates in this article following previous work in [Kirchberg
et al., 2005].

The third related research area is that of ASM theory. The work in [Wang and

2032 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



Schewe, 2007; Schewe and Wang, 2008] lays the fundations for a general theory
of database transformations in the line of thought of Gurevich’s sequential and
parallel ASM theses [Gurevich, 2000; Blass and Gurevich, 2003]. One particular
idea that was brought up in [Wang et al., 2008] – with possibly significant impli-
cations regarding logical foundations [Wang and Schewe, 2008] and classification
of computations – is to study computations with abstract states that are recog-
nisable by a class of automata. The question would be how to combine these
automata with ASMs. While the research in this area in general is in an infant
stage, the present article can be regarded as exemplification of this research idea
with VPAs as the automata class of interest. The vertical refinement explored
in [Schewe et al., 2008] shows how to relate VPA-recognisable states, i.e. XML
documents, to particular ASMs, and the present work integrates the recognition
with general computation including updates on such documents. We even laid
the grounds for integrated schema updates and fault-tolerant computations.

3 Extended Document Type Definitions

Document Type Definitions (DTD) provide the first and simplest form of adding
schema information to XML documents. Abstracting from specific syntax of
opening and closing tags and blurring the dinstinction between subelements and
attributes we can define a DTD as follows, called labelled ordered tree object type
definition in [Papakonstantinou and Vianu, 2000].

Definition 1. A document type definition (DTD) consists of an alphabet Σ, a
root r ∈ Σ and a mapping � : Σ → P(Σ∗) assigning to each a ∈ Σ a regular
language over Σ.

Example 1. The following (adapted from [Papakonstantinou and Vianu, 2000])
denotes a DTD with Σ = {root, dealer, used cars, new cars, ad, model, year} and
root ‘root’:

root: dealer dealer: used cars new cars used cars: ad∗

new cars: ad∗ ad: model year?

The assigned languages are

�(root) = �(dealer) �(dealer) = dealer �(used cars) �(new cars)

�(used cars) = used cars �(ad)∗ �(ad) = ad �(model) (�(year) ∪ {ε})
�(new cars) = new cars �(ad)∗ �(model) = {model} and

�(year) = {year}

This corresponds to the (real) DTD

2033Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



〈!DOCTYPE dealer [
〈!ELEMENT dealer (used cars new cars)〉
〈!ELEMENT used cars (ad∗)〉
〈!ELEMENT new cars (ad∗)〉
〈!ELEMENT ad ((model year)|(model))〉
〈!ELEMENT model PCDATA〉
〈!ELEMENT year PCDATA〉

]〉

While such DTDs provide some schema information, they cannot express all
desirable properties of XML documents. For instance, the DTD in Example 1
would not allow us to request that the ‘year’ tag must be present for and only
for used cars. This could only be avoided by having two different tags such as
‘ad used’ and ‘ad new’. Extended DTDs as introduced in [Papakonstantinou and
Vianu, 2000] (as specialised labelled ordered tree object type definition) take care
of this problem.

Definition 2. An Extended Document Type Definition (EDTD) consists of a
DTD (Σ′, r, �) and a mapping μ : Σ′ → Σ with another alphabet Σ.

We can use the elements in Σ′ to fine-tune the desired structure of XML
document adhering to a given EDTD, while μ(a) defines the actual tag that
is to be used. For instance, in our example above we could use ‘ad used’ and
‘ad new’ as elements of Σ′ with both being mapped by μ to ‘ad’ in Σ – all other
elements of Σ′ would be mapped to themselves.

We adopt the notational convention to write ab for elements in Σ′ with
μ(ab) = a ∈ Σ. The superscript b of ab is then also called the type of the element.
If μ−1(a) contains only one element, we omit the superscript and assume that μ

maps a to itself.

Example 2. The following (adapted from [Papakonstantinou and Vianu, 2000])
denotes an EDTD with Σ = {root, dealer, used cars, new cars, ad, model, year}:

root: dealer dealer: used cars new cars
used cars: (adu)∗ new cars: (adn)∗

adu: model year adn: model

In an XML document adhering to this EDTD we would indeed have ‘model’
and ‘year’ for each used car, but only ‘model’ for new cars.

4 Visibly Pushdown Automata

Kumar et al. [Kumar et al., 2007] proved that the tree languages specified by
EDTDs are exactly the visibly pushdown languages (VPLs), i.e. those that can be

2034 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



recognised by a specialised class of push-down automata, the visibly pushdown
automata (VPAs). Following [Thomo et al., 2008] we ignore internal actions,
as these would just specify the kind of strings associated with leaf elements or
attributes. This leads to the following simplified definition of a VPA.

Definition 3. A visibly pushdown automaton (VPA) consists of a finite set Q

of states, an start state q0 ∈ Q, a set of final states F ⊆ Q, an (input) alphabet
Σ that is partitioned into call symbols in Σc and return symbols in Σr with a
bijection¯: Σc → Σr, a stack alphabet Γ containing a special (bottom of stack)
symbol ⊥ ∈ Γ , and a transition relation τ = τc∪τr∪τε with τc ⊆ Q×Σc×Q×Γ ,
τr ⊆ Q × Σr × Γ × Q, and τε ⊆ Q × Q.

Intuitively speaking, a transition (q1, a, q2, γ) ∈ τc means that if the automa-
ton is in state q1 and reads the call symbol a, then it changes the state to q2

and pushes γ onto the stack. A transition (q1, ā, γ, q2) ∈ τr means that if the
automaton in state q1 reads the return symbol ā ∈ Σr and the symbol γ is on
top of the stack, then γ will be popped off the stack and the automaton moves
to state q2. A transition (q1, q2) ∈ τε just means that in state q1 the automaton
may read nothing, leave the stack unchanged and switch to state q2.

More formally, a VPA induces a transition relation T on configurations
Q × Σ∗ × Γ ∗. A start configuration has the form (q0, w,⊥), and a final con-
figuration has the form (qf , ε,⊥) with qf ∈ F . Each transition in τ induces a set
of transitions in T .

dealer,d

ad,an

used_cars,u

dealer,d year,yad,au

model,m

new_cars,n

model,m

ad,an model,m

new_cars,n

year,y

model,m

ad,au

used_cars,uq0 q1 q2 q7 q6

q3 q4 q5

q8 q9 q10

q11q12q13q14

Figure 1: A VPA for validating streaming XML documents

2035Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



Each transition gives rise to configuration pairs: (q1, a, q2, γ) ∈ τc gives rise
to ((q1, aw, v), (q2, w, γv)), (q1, ā, γ, q2) ∈ τr gives rise to ((q1, āw, γv), (q2, w, v)),
and (q1, q2) ∈ τε gives rise to ((q1, w, v), (q2, w, v)) (with w ∈ Σ∗ and v ∈ Γ ∗).
Then a successful run is a sequence of configurations σ0, . . . , σf with a start
configuration σ0, a final configuration σf , and (σi−1, σi) ∈ T for all i = 1, . . . , f .

Using VPAs for validating streaming XML documents that are to adhere to a
given EDTD, a call transition corresponds to reading an opening tag, for which
a corresponding symbol is pushed onto the stack, while a return transition would
read the matching closing tag and remove the corresponding symbol from the
stack.

Example 3. The following VPA (illustrated in Figure 1) can be used to recognise
XML documents that adhere to the EDTD in Example 2:

Q = {q0, q1, . . . , q14} Σc = {dealer, used cars, new cars, ad, model, year}
Σr = {ā | a ∈ Σc} Γ = {⊥} ∪ {d, u, au, m, y, n, an}

with start state q0, final states F = {q14}, and the following transitions:

τc = {(q0, dealer, q1, d), (q1, used cars, q2, u), (q2, ad, q3, a
u),

(q3, model, q4, m), (q5, year, q6, y), (q8, new cars, q9, n),

(q9, ad, q10, a
n), (q10, model, q11, m)}

τr = {(q4, model, m, q5), (q6, year, y, q7), (q7, ad, au, q2),

(q2, used cars, u, q8), (q11, model, m, q12), (q12, ad, an, q9),

(q9, new cars, n, q13), (q13, dealer, d, q14)}

5 Validating Streaming XML Documents

Let us now address the exact validation of streaming XML documents using
Abstract State Machines. The straightforward idea is to specify an ASM that
models a validating (deterministic or non-deterministic) VPA. In this case we
only need four 0-ary functions, i.e. variables, in the signature of the ASM:

tag(0) monitored, parse(0), state(0), stack(0) controlled

We can assume that tag always contains the next input symbol or the end of
input symbol, say ⊥. Once the ASM reads this symbol, tag will be updated to
the next input symbol. The variable parse is used for the result of the validation.
It is set to 1, if the XML document adheres to the EDTD, and to 0 otherwise.
The variables state and stack contain the values of the current state and the
content of the stack, i.e. a list of symbols. Furthermore, assume that rules pop
and push(x) for popping values from and pushing them onto the stack, respec-
tively, are defined elsewhere. Then we obtain the following simple main rule for
a validating ASM:

2036 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



main = (state := q0 ‖ stack := ⊥ ‖ parse := 0) ; check

The check rule then has to read the next input symbol and depending on
the state and the stack either terminate with an error or continue checking until
there is no more input symbol. As we may have to deal with a non-deterministic
VPA we must also provide a choice of a case number – for deterministic VPAs
this is not needed. Thus, we obtain the following general form for the check rule:

check =
read next(tag) ;
if tag 
= ⊥
then choose k ∈ N do

case . . .
case k = i and state = qi and tag = ai

then (push(γi) ‖ state := q′i) ; check endcase
case . . .
case k = j and state = qj and tag = aj and top(stack) = γj

then (pop ‖ state := q′j) ; check endcase
case . . .
enddo

else parse := 1
endif

Here the two highlighted cases k = i and k = j correspond to transitions in
Σc and Σr, respectively. For instance, the i’th case for the VPA in Example 3
could be

case k = 3 and state = q2 and tag = ‘ad’
then (push(au) ‖ state := q3) ; check endcase

This approach to specifying the validating VPA by an ASM is straightfor-
ward, the only advantage being that there is no need to switch from a non-
deterministic to a deterministic VPA. In order to obtain a more suitable ASM
specification we refine the ASM that we obtained from the VPA by first making
the concepts of state and stack more explicit. Both together merely represent
where in the parsing of an XML tree we are actually located, which can be as
well represented explicitly by using relations for elements and siblings. More
precisely, let the ASM signature contain functions

sibling(3) static and element(3) controlled

Then element(n, t, i) = ⊥ means that there is no element with name n, type t

and identifier i in the EDTD, while element(n, t, i) = k with k ∈ {0, 1, 2} means
that there is an element with name n, type t and identifier i in the EDTD,
which is inactive, active, or one of its children is active, respectively. Once we

2037Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



receive an opening tag it will become active and remain so as long as its children
are processed, and become inactive after receiving the matching closing tag.
Furthermore, sibling(i1, i2, i) := 1 means that an element with identifier i1 may
be the left neighbour of an element with identifier i2, both under the parent
element with identifier i. The fact that there is no left or right neighbour will be
modelled by letting i1 = ⊥ or i2 = ⊥, respectively.

As auxiliary controlled functions we further need depth(0), previous(1) with
depth taking the actual depth in the XML tree as value, while previous(d) will
be set to the identifier of the last child on depth d that has been processed.

Example 4. For our EDTD in Example 2 we initialise previous(d) = ⊥ for all d,
depth = 0, and the values for element and sibling are defined by tables:

element
name type id state
root ⊥ 0 1

dealer ⊥ 1 0
used cars ⊥ 2 0
new cars ⊥ 3 0

ad u 4 0
ad n 5 0

model ⊥ 6 0
year ⊥ 7 0

sibling
younger older parent

⊥ 1 0
⊥ 2 1
2 3 1
⊥ 4 2
4 4 2
⊥ 5 3
5 5 3
⊥ 6 4

sibling (continued)
younger older parent

6 7 4
⊥ 6 5
1 ⊥ 0
3 ⊥ 1
4 ⊥ 2
5 ⊥ 3
7 ⊥ 4
6 ⊥ 5

Similar as before the main ASM rule then takes the form main = (initialise
‖ parse := 0) ; check, so we can concentrate on the check rule, which can be
defined as follows:

check =
read next(tag) ;
if tag 
= ⊥
then if ∃n, t1, i1, i2, t2 with element(n,t1,i1) = 1 ∧

element(tag,t2,i2) 
= ⊥ ∧ sibling(previous(depth),i2,i1) = 1
then (element(n,t1,i1) := 2 ‖ element(tag,t2,i2) := 1 ‖

previous(depth) := i2) ; depth := depth + 1 ; check
elsif ∃n, t1, i1, n2, i2, t2 with element(n1,t1,i1) = 1 ∧

element(n2,t2,i2) = 2 ∧ tag = n̄1

then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖
depth := depth - 1 ) ;

previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif)) ; check

2038 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



else if element(root,⊥,0)=1
then parse := 1
endif

endif

Note that this ASM specification captures any EDTD, the difference being
each time only the values for the functions sibling and element. However, while
this ASM makes the notion of state and stack explicit – both used for charac-
terisation of the position within the ordered XML tree – it does not appear to
look much simpler than the ASM specification that was based on the recognising
VPA. In order to simplify the ASM specification we apply a further refinement
step by instantiating the ASM specification. That is, we exploit the fact that
our EDTD is finite, so the tables for element and sibling will be finite. By sub-
stituting all possible cases for the value of ‘tag’ in the check rule we blow up the
size of the ASM specification, but at the same time manage to get rid of element
and sibling. Furthermore, we eliminate the use of identifiers, as tag name and
type will be sufficient. Thus, we only require a unary controlled function ‘state’,
initialised with state(root) = 1.

Example 5. For the EDTD in Example 2 and tag = dealer we obtain the sim-
plified case

case tag = dealer ∧ previous(0) = ⊥ ∧ state(root) = 1
then (state(root) := 2 ‖ state(dealer) := 1 ‖

previous(0) := dealer ‖ depth := 1) ; check

Similarly, for tag = model we obtain the case

case tag = model ∧ state(model) = 1 ∧ state(adu) = 2
then (state(model) := 0 ‖ state(adu) := 1 ‖

previous(3) := model ‖ depth := 3) ; check

The resulting ASM covers the various cases resulting from the EDTD, but
avoids the creation of the VPA. Furthermore, the EDTD is not explicitly stored
anymore.

6 Automata-Defined Abstract States

Abstract State Machines (formerly called Evolving Algebras) were introduced
by Yuri Gurevich as a means to capture the notion of algorithm in a precise
way. The sequential ASM thesis [Gurevich, 2000] shows that sequential algo-
rithms are captured by sequential ASMs, while the parallel ASM thesis [Blass
and Gurevich, 2003] shows that ASMs in general capture parallel algorithms.

2039Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



A decisive characteristic of ASMs is that the notion of state refers to first-
order structures (or universal algebras). In [Schewe and Wang, 2008] a tailored
ASM thesis for database transformations has been developed, and it has been
suggested to investigate states as structures that are recognised by particular
classes of automata. In particular, various classes of tree automata should turn
out to capture database transformations on classes of XML databases.

In view of this theory the previous section defines an ASM for the class of
VPAs. Structures recognised by a VPA and thus accepted by the ASM defined
are exactly the XML documents that adhere to the EDTD defined by the element
and sibling relations.

In order to turn to XML transformations we have to permit updates to the
XML document at hand. So far, however, we only dealt with streaming XML
documents, i.e. we tacitly assumed that tag is always bound to the next tag that
is read in. In order to enable more than just validation, i.e. checking that we
have a valid state, we have to define the read next rule explicitly.

For this we need to store the XML document, which we do by means of three
relations, which we add to the ASM signature as functions

doc element(3), next(2), parent(2) controlled.

In doing so doc element(n, t, i) 
= ⊥ means that we have an element node in
the XL document with tag n, type t and unique identifier i. There must always
exist exactly one such element node doc element(root,⊥,i0) 
= ⊥. The relation
parent is used to represent the successor-predecessor relation, i.e. parent(i, j) 
=
⊥ holds iff the node with identifier i is a direct successor (child) of the node
with identifier j. Similarly, the relation next is used for the representation of
directly adjacent siblings with the same parent node, i.e. next(i, j) 
= ⊥ holds iff
the nodes with identifiers i and j are children of the same parent node and i is
the left neighbour of j.

Example 6. The following three tables represent an XML document that adheres
to the EDTD in Example 2:

doc element
name type id model ⊥ 9
root ⊥ 0 year ⊥ 10
dealer ⊥ 1 model ⊥ 11
used cars ⊥ 2 year ⊥ 12
new cars ⊥ 3 model ⊥ 13
ad u 4 year ⊥ 14
ad u 5 model ⊥ 15
ad u 6 model ⊥ 16
ad n 7 ad n 8

next
2 3
4 5
5 6
7 8
9 10
11 12
13 14

parent
1 0 9 4
2 1 10 4
3 1 11 5
4 2 12 5
5 2 13 6
6 2 14 6
7 3 15 7
8 3 16 8

2040 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



It corresponds to the XML tree in Figure 2 modulo the exact values at leaf
nodes, which we neglected so far. If leave nodes were to be considered as well,
they would give rise to additional records in the doc element relation such as
(text,⊥, 17), additional records in the parent relation such as (17, 9), and an ad-
ditional binary relation value with entries such as (17, “Ford Prefect”) assigning
a value to a unique leaf node identifier.

“VW Beetle”:17

“1961”:18

“Ford Prefect”:19

“1956”:20

“Toyota Rav4”:21

“2002”:22

“Toyota Yaris”:23

“VW Golf”:24

model:9 year:10 model:11 year:12 model:13 year:14 model:15 model:16

ad:4 ad:5 ad:6 ad:7 ad:8

used cars:2 new cars:3

dealer:1

root:0

Figure 2: Tree representation of an XML document

In addition we will need five auxiliary variables, which will be added to the
signature by

mode(0), tag(0), next tag(0), active id(0), tag list(0) controlled

Note that tag(0) has now become a controlled function, while it was mon-
itored, i.e. only controlled by the environment, before. We have to extend the
initialisation by

mode := 0 ‖ next tag := root ‖ tag list := [] ‖
choose i with doc element(root,⊥,i) 
= ⊥

do active id := i enddo

The crucial bit is the refinement of the rule next tag(tag), which now becomes

2041Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



if mode = 0
then tag := next tag ‖ tag list = [next tag]�tag list ‖

if ∃j.parent(j, active id) 
= ⊥ ∧ ∀k.next(k, j) = ⊥
then active id := j

else search id(active id)
endif ;
choose n, t with doc element(n, t, active id) 
= ⊥

do next tag := n enddo
else tag := first(tag list) ‖ tag list := rest(tag list) ‖

mode := mode − 1
endif

using the auxiliary rule

search id(i) =
if ∃k.next(i, k) 
= ⊥
then active id := k

elsif ∃i′.parent(i, i′) 
= ⊥
then search id(i′)
else active id := ⊥
endif ‖
mode := mode + 1

With this refinement the check rule now validates an XML document that
is part of the structure by means of the controlled functions doc element, next
and parent, while the EDTD the document has to adhere to is represented by
using the functions element and sibling. As in the previous section it is now no
problem to eliminate the EDTD and to refine the check rule by instantiating it
with the given fixed EDTD. This does not affect the refinement of the next tag
rule described above, i.e. no matter whether the XML document is streaming
and read in tag by tag or stored as part of the state, the check rule remains the
same. Example 5 shows how this will look like for the fixed EDTD from Example
2.

7 Integrated Updates and Schema Updates for XML

In the previous section we presented a refined check rule that will parse stored
XML documents and only terminate successfully, if the document adheres to a
given EDTD. In the general ASM for this problem the EDTD itself is also stored
as part of the state, but this can be refined to obtain a check rule for a specific
fixed EDTD. This defines automata-recognisable abstract states.

It is now straightforward to combine this generalised check rule with updates
to the stored XML document. In general, the updates can be handled by a

2042 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



separate rule – call it update rule – which has to be composed sequentually with
the check rule. Thus, we obtain a rule of the form

update rule ; check

If the stored XML document is considered to consitute a tree-based database,
such a general update rule with follow-on validation will define a transaction,
and a set of such transaction specifications would constitute a formal model of
a database system in the sense of [Ma et al., 2008]. This could be completed
by query rules of the form “check ; query rule” which do not modify the stored
XML document.

For the transactions it is of no importance, if we use stored EDTDs by means
of the relations element and sibling or fix the EDTD by instantiation of the
ASM. However, if we use stored EDTDs, we may update these as well, i.e. we
combine the updates to the XML documents with schema updates as proposed
in [Kirchberg et al., 2005]. This leads to rules of the form

(update rule ‖ schema update rule) ; check

Several rules of this form – maybe complemented by some query rules as
above – again contitute a system of transactions.

Let us now illustrate updates and schema updates by some examples starting
with the XML document in Example 6 – illustrated by the XML tree in Figure
2 – and the EDTD from Example 2, which we represented in Example 4. For
simplicity, we combine update rule and schema update rule into a single ASM
rule.

Example 7. Assume we want to add addional ads for new and used cars that are
read in one by one. We need a new variable car introduced into the signature as

car(0) monitored

and a not further specified read rule that is supposed to read in the next
input (if it exists) and assign it to car. We further assume that all valid inputs
are pairs (model, year), but the second component is ⊥ for the case of new cars.
This leads to the following instantiation of update rule:

update rule =
read(car) ;
if car 
= ⊥
then if ∃m, y. car = (m, y) ∧ m 
= ⊥ ∧ y 
= ⊥

then choose i, j, k with ∀n, t. doc element(n, t, i) 
= ⊥∧
doc element(n, t, j) 
= ⊥ ∧ doc element(n, t, k) 
= ⊥∧

i 
= j ∧ i 
= k ∧ j 
= k

2043Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



do doc element(ad,u,i) := 1 ‖ parent(j, i) := 1 ‖
doc element(model,⊥,j) := 1 ‖ parent(k, i) := 1 ‖
doc element(model,⊥,k) := 1 ‖ next(j, k) := 1 ‖
choose i′ with doc element(used cars,⊥,i′) 
= ⊥

do parent(i, i′) := 1 enddo ‖
if ∃�. doc element(ad, u, �) 
= ⊥ ∧ ∀�′. next(�, �′) = ⊥
then next(�, i) := 1
endif

enddo
elsif ∃m. car = (m,⊥) ∧ m 
= ⊥

then if ∃m, y. car = (m, y) ∧ m 
= ⊥ ∧ y 
= ⊥
then choose i, j with ∀n, t. doc element(n, t, i) 
= ⊥∧

doc element(n, t, j) 
= ⊥ ∧ i 
= j

do doc element(ad,n,i) := 1 ‖ parent(j, i) := 1 ‖
doc element(model,⊥,j) := 1 ‖
choose i′ with doc element(new cars,⊥,i′) 
= ⊥

do parent(i, i′) := 1 enddo ‖
if ∃�. doc element(ad, n, �) 
= ⊥ ∧ ∀�′. next(�, �′) = ⊥
then next(�, i) := 1
endif

enddo
endif ; update rule

endif

So far, we always ignored the concrete text values, thus also in this example
the actual value m of the model and y of the year is not stored. It is a straight-
forward exercise to modify the rule in Example 7 in a way that takes concrete
values into consideration.

Example 8. Let us now address a modification of the schema, i.e. the EDTD
in Example 2. Assume that for new cars we always want to have a price,
while for used cars a price can be optional. This leads to an EDTD with Σ =
{root, dealer, used cars, new cars, ad, model, year, year}:

root: dealer dealer: used cars new cars
used cars: (adu)∗ new cars: (adn)∗

adu: model year price? adn: model price

With respect to our EDTD representation in Example 4 we obtain the fol-
lowing schema update rule:

schema update rule =
choose i, j with ∀n, t. element(n, t, i) = ⊥ ∧ element(n, t, j) = ⊥ ∧ i 
= j

do element(price,u,i) := 0 ‖ element(price,n,j) := 0 ‖

2044 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



choose k, � with element(ad,u,k) = 0 ∧ element(year,⊥,�) = 0
do sibling(�, i, k) := 1 ‖ sibling(i,⊥, k) := 1 enddo ‖
choose k, � with element(ad,n,k) = 0 ∧ element(model,⊥,�) = 0
do sibling(�,⊥, k) := ⊥ ‖ sibling(�, j, k) := 1 ‖

sibling(j,⊥, k) := 1 enddo
enddo

Example 9. Let us now integrate the schema update from Example 8 with the
document update from Example 7 using the rule

schema update rule ; update rule ; check

For updating the stored EDTD we can use the rule from Example 8 without
change, but update rule for adding new car ads to the XML document in Ex-
ample 7 has to be refined to capture the added price tags. This is done by the
following refined rule, in which the only change is that the variable car is now
bound to triples for model, year and price:

update rule =
read(car) ;
if car 
= ⊥
then if ∃m, y, p. car = (m, y, p) ∧ m 
= ⊥ ∧ y 
= ⊥

then choose i, j, k, � with ∀n, t. doc element(n, t, i) 
= ⊥∧
doc element(n, t, j) 
= ⊥ ∧ doc element(n, t, k) 
= ⊥∧
doc element(n, t, �) 
= ⊥ ∧ i 
= j ∧ i 
= k ∧ i 
= �

j 
= k ∧ j 
= � ∧ k 
= �

do doc element(ad,u,i) := 1 ‖ parent(j, i) := 1 ‖
doc element(model,⊥,j) := 1 ‖ parent(k, i) := 1 ‖
doc element(model,⊥,k) := 1 ‖ next(j, k) := 1 ‖
if p 
= ⊥
then doc element(price,⊥,�) := 1 ‖

parent(�, i) := 1 ‖ next(k, �) := 1
endif ‖
choose i′ with doc element(used cars,⊥,i′) 
= ⊥

do parent(i, i′) := 1 enddo ‖
if ∃k′. doc element(ad, u, k′) 
= ⊥ ∧ ∀�′. next(k′, �′) = ⊥
then next(k′, i) := 1
endif

enddo
elsif ∃m, p. car = (m,⊥, p) ∧ m 
= ⊥ ∧ p 
= ⊥

then if ∃m, y. car = (m, y) ∧ m 
= ⊥ ∧ y 
= ⊥
then choose i, j, k with ∀n, t. doc element(n, t, i) 
= ⊥∧

doc element(n, t, j) 
= ⊥ ∧ doc element(n, t, k) 
= ⊥∧

2045Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



i 
= j ∧ i 
= k ∧ j 
= k

do doc element(ad,n,i) := 1 ‖ parent(j, i) := 1 ‖
doc element(model,⊥,j) := 1 ‖ next(j, k) := 1 ‖
doc element(price,⊥,k) := 1 ‖
choose i′ with doc element(new cars,⊥,i′) 
= ⊥

do parent(i, i′) := 1 enddo ‖
if ∃�. doc element(ad, n, �) 
= ⊥ ∧ ∀�′. next(�, �′) = ⊥
then next(�, i) := 1
endif

enddo
endif ; update rule

endif

Note that the updated XML document resulting from the update in Exam-
ple 9 will not be successfully validated by the check rule, unless prior to the
update there were no ads for new cars. The check rule does validation against
the updated EDTD and thus, price tags must be present for all new cars, but
they only exist for newly inserted new cars.

There are three ways to address this problem:

1. Change the update rule requesting that in addition all existing new cars must
be either deleted or receive a price tag. This means to write a complete new
update rule for adding prices. We omit the simple details for this solution.

2. Relax the request that the resulting XML document after the update must
adhere exactly to the updated EDTD, i.e. permit a bit of fault tolerance.
We address this solution in the next two sections under two different seman-
tics that differ in the way errors are counted. It seems most appropriate to
consider the omission of price tags for new cars as a single error, no matter
how often these omissions occur. This is the semantics handled in Section 9
with the number of errors being k = 1.

3. Relax the request that price is mandatory for new cars, which requires a
minor change to the update rule in the last example and the check rule. We
omit the details.

Note that for the second solution with approximate validation the update
rule in Example 9 will nonetheless not permit the insertion of new ads for new
cars without price, so after several updates that delete or update certain ads the
XML document will adhere to the updated EDTD. In other words, it is likely
that the XML document will converge to a correct one. This constitutes some
form of weak constraint enforcement. This convergence is not possible for the
third solution.

2046 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



8 Fault Tolerance and Error Correction

The approximate validation of streaming XML documents works in principle in
the same way as the exact validation. The difference is that we permit up to k

edit operations, which can be the change of a tag name, the omission of a tag,
or the insertion of an additional tag. As shown by Thomo et al. [Thomo et al.,
2008] the approximate solution (in case all changes to pairs of opening/closing
tags are counted as one edit operation each) can be achieved by a VPA that
is the product of the VPA used for the exact validation problem and a visibly
pushdown transducer (VPT) with 2k + 1 states. The VPT just increments the
state count by one for every change of tag. So we need also up to k additional call
symbols that can be used as new or replacement symbols and additional stack
symbols indicating insertion, deletion and update of tags. We omit the details of
the VPT and the product construction (see [Thomo et al., 2008]), but instead
illustrate the resulting VPA for the EDTD in Example 2.

Example 10. The following VPA can be used to recognise XML documents that
adhere to the EDTD in Example 2 up to k edit operations (for simplicity let us
assume that insertions and replacements of tags always used new tags):

Q = {qi,j | 0 ≤ i ≤ 14, 0 ≤ j ≤ 2k}
Σc = {dealer, used cars, new cars, ad, model, year} ∪ {newi | 1 ≤ i ≤ k}
Σr = {ā | a ∈ Σc}
Γ = {⊥} ∪ {d, u, au, m, y, n, an} ∪ {ιi | 1 ≤ i ≤ k}

∪ {δx | x ∈ {d, u, au, m, y, n, an}}
∪ {σx,j | x ∈ {d, u, au, m, y, n, an}, 1 ≤ j ≤ k}

with start state q0,0, final states F = {q14,2j | 0 ≤ j ≤ k}. The following
transitions (with 0 ≤ j ≤ 2k) are those from Example 3 capturing the processing
of tags without edit – note that the only change is the replacement of state qi

by qi,j :

τc ⊇ {(q0,j, dealer, q1,j , d), (q1,j , used cars, q2,j , u), (q2,j, ad, q3,j , a
u),

(q3,j , model, q4,j , m), (q5,j , year, q6,j , y), (q8,j , new cars, q9,j, n),

(q9,j , ad, q10,j , a
n), (q10,j , model, q11,j , m)}

τr ⊇ {(q4,j, model, m, q5,j), (q6,j , year, y, q7,j), (q7,j , ad, au, q2,j),

(q2,j , used cars, u, q8,j), (q11,j , model, m, q12,j), (q12,j , ad, an, q9,j),

(q9,j , new cars, n, q13,j), (q13,j , dealer, m, q14,j)}

Similarly, we obtain transitions for the deletion of tags, i.e. instead of the tag
x expected as specified by the EDTD we read ε, but nevertheless treat this as if

2047Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



x were read, and use δx as the corresponding stack symbol:

τc ⊇ {(q0,j , ε, q1,j+1, δd), (q1,j , ε, q2,j+1, δu), (q2,j , ε, q3,j+1, δau),

(q3,j , ε, q4,j+1, δm), (q5,j , ε, q6,j+1, δy), (q8,j , ε, q9,j+1, δn),

(q9,j , ε, q10,j+1, δan), (q10,j , ε, q11,j+1, δm)}
τr ⊇ {(q4,j , ε, δm, q5,j+1), (q6,j , ε, δy, q7,j+1), (q7,j , ε, δau , q2,j+1),

(q2,j , ε, δu, q8,j+1), (q11,j , ε, δm, q12,j+1), (q12,j , ε, δan , q9,j+1),

(q9,j , ε, δn, q13,j+1), (q13,j , ε, δd, q14,j+1)}
For insertions of tags we simply allow to read an additional new symbol, i.e.

we obtain transitions

τc ⊇ {(qi,j , newh, qi,j+1, ιh) | 0 ≤ i ≤ 14, 1 ≤ h ≤ k, 0 ≤ j ≤ 2k}
τr ⊇ {(qi,j , newh, ιh, qi,j+1) | 0 ≤ i ≤ 14, 1 ≤ h ≤ k, 0 ≤ j ≤ 2k}

Finally, for replacements we obtain transitions similar to the case of deletions,
but reading a new symbol newh instead of the one expected according to the
definition of the EDTD. In this case we use σx,h as the stack symbol:

τc ⊇ {(q0,j , newh, q1,j+1, σd,h), (q1,j , newh, q2,j+1, σu,h),

(q2,j , newh, q3,j+1, σdau,h), (q3,j , newh, q4,j+1, σm,h),

(q5,j , newh, q6,j+1, σy,h), (q8,j , newh, q9,j+1, σn,h),

(q9,j , newh, q10,j+1, σan,h), (q10,j , newh, q11,j+1, σm,h)}
τr ⊇ {(q4,j , newh, σm,h, q5,j+1), (q6,j , newh, σy,h, q7,j+1),

(q7,j , newh, σau,h, q2,j+1), (q2,j , newh, σu,h, q8,j+1),

(q11,j , newh, σm,h, q12,j+1), (q12,j , newh, σan,h, q9,j+1),

(q9,j , newh, σn,h, q13,j+1), (q13,j , newh, σd,h, q14,j+1)}
As for the exact validation of streaming XML documents it is straightforward

to specify the VPA by means of an ASM. Each transition gives rise to a case
as before. We omit the details. Let us instead refine the ASM dealing with the
exact validation of streaming XML documents in general to one that permits at
most k edit operations. This also arises as refinement of the ASM specification
based on the VPA for approximate XML document validation by making again
the state and stack explicit. In doing so, we change the definition of the check
rule to

check = choose x ∈ {0, i, d, u} do check’(x) enddo

letting the values 0, i, d, u capture the normal case and the cases of insertion,
delete and update, respectively. We then need two more functions in the ASM
signature

2048 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



change(3) controlled count(0) controlled

Initially, count will be set to 0, while change is completely undefined. Later,
change(n, t, n′) = � will indicate that the tag name n with type t has been
changed to n′ – the value ⊥ for n and n′ covering insertions and deletions,
respectively – and � gives a count for this change.

Let us now look at the four cases in the new check rule. Obviously, check’(0)
is specified in the same way, as check was specified before the refinement (keeping
the call of the check rule). Now, look at the other cases.

for insertion:
check’(i) =

read next(tag) ;
if count < k ∧ ∃h.tag = newh

then choose n, t1, i1 with element(n,t1,i1) = 1 do
(element(n,t1,i1) := 2 ‖ count := count + 1 ‖
change(⊥,⊥,newh) := count + 1 ‖
choose x with ∀n′, t′, x.element(n′, t′, x) = ⊥ do

element(newh,⊥, x) := 1 enddo) ;
depth := depth + 1 ; check

elsif ∃h with tag = newh

then choose n, t, i, i1 with element(n, t, i) = 2 ∧
element(newh,⊥, i1) = 1 do
(element(newh, ,⊥, i1) := ⊥ ‖ element(n, t, i) := 1 ‖

depth := depth - 1 ) enddo ; check
endif

for deletion:
check’(d) =

if count < k

then if ∃n, t, i, n2, t2, i2 with element(n, t, i) = 1 ∧
element(n2,t2,i2) 
= ⊥ ∧
sibling(previous(depth),i2,i1) = 1
then (element(n, t, i) := 2 ‖ element(n2,t2,i2) := 1 ‖

previous(depth) := i2 ‖ depth := depth + 1 ‖
count := count + 1 ‖
change(n2, t2,⊥) := count + 1) ; check

elsif ∃n, t, i, n2, i2, t2 with element(n, t, i) = 1 ∧
element(n2,t2,i2) = 2 ∧
∃x 
= ⊥.change(n, t,⊥) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖

depth := depth - 1 ‖ change(n, t,⊥) := ⊥) ;

2049Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif)) ; check

endif

for update:
check’(u) =

read next(tag) ;
if count < k

then if ∃h.tag = newh∧
∃n, t1, i1, n2, t2, i2 with element(n, t1, i1) = 1 ∧

element(n2, t2, i2) 
= ⊥∧
sibling(previous(depth)),i2, i1) = 1

then (element(n, t1, i1) := 2 ‖
element(newh, t2, i2) := 1 ‖
previous(depth) := i2 ‖
change(n2, t2, newh) := count + 1 ‖
count := count + 1) ; depth := depth + 1 ; check

elsif ∃h.tag = newh∧
∃n1, t1, i1, n2, t2, i2 with element(newh, t1, i1) = 1

∧ element(n2, t2, i2) = 2 ∧
∃x 
= ⊥.change(n1, t1, newh) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖

depth := depth - 1 ‖
change(n1, t1, newh) := ⊥) ;

previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif)) ; check

endif
endif

The cases for insertion and update use the rule read next(tag) just as in
the case of exact validation. Thus, refining the ASM to capture stored XML
documents is done in exactly the same way as for the exact validation case,
which we handled in Section 6. Then updates and schema updates as in Section
7 can be added as well.

While this ASM handles again any EDTD specified by means of the ‘element’
and ‘sibling’ functions, we can further refine it to obtain an ASM for approximate
validation of streaming XML documents under a specific EDTD. As before, we

2050 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



substitute for all cases in the check/check’ rules the possible values for tag, i.e.
dealer, new cars, etc., and eliminate identifiers. For this we would again require
the unary controlled function ‘state’ in the signature. Furthermore, we would
still use the functions count and change.

Example 11. For the EDTD in Example 2 and tag = dealer we obtain the
simplified case dealing with an update to the new tag name newh:

case tag = newh ∧ previous(0) = ⊥ ∧ state(root) = 1
then (state(root) := 2 ‖ state(dealer) := 1 ‖ depth := 1 ‖

previous(0) := dealer ‖ count := count + 1 ‖
change(dealer,⊥,newh) := count + 1) ; check

Similarly, for the deletion of tag = model we obtain the case

case state(model) = 1 ∧ state(adu) = 2 ∧
∃x. change(model,⊥,⊥) = x ∧ ∀n′, t′, i′, y.

(change(n′, t′, i′) = y ⇒ y ≤ x)
then (state(model) := 0 ‖ state(adu) := 1 ‖

change(model,⊥,⊥) := ⊥ ‖
previous(3) := model ‖ depth := 3 ‖ ) ; check

9 Fault Tolerance with Error Tables

The approach to fault tolerance in the previous section counts each violation
to the EDTD as an individual error. The outlined validation procedure then
accepts up to k such errors. However, it may also be the case that EDTD vi-
olations are applied more consistently in the sense that throughout the whole
document a particular tag is always substituted by another one or omitted or
added. This might create a far larger number of individual errors as accept-
able by the validation procedure described so far, in particular for large XML
documents.

Therefore, Thomo et al. proposed a different semantics for dealing with errors,
i.e. EDTD violations in XML documents [Thomo et al., 2008]. According to this
semantics we accept the deletion of a pair of tags, the insertion of a new pair of
tags, and the update, i.e. name change, of a pair of tags as only one single error,
no matter how often this error occurs.

Approximate validation of streaming XML documents with this semantics is
tricky. As for the approxomate validation under the first semantics the VPA-
based solution in [Thomo et al., 2008] is again the product of the VPA for exact
validation as described in Section 4 with a VPT. In this case, however, a simple
count for the errors that can be built into the states of the VPT, is insufficient,
as we have to memorize insertions, updates and deletes that already occurred.

2051Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



This is achieved by building VPTs for each pre-defined set of up to k such
modifications and to superimpose them. In other words, the resulting product
VPA accepts a set of XML documents that is the union of several sets, each of
which reflects one particular error set.

We omit the details of this automata-theoretic solution and its representation
by an ASM. Instead of this let us refine the general ASM for exact validation of
streaming XML documents to one that permits up to k errors under the second
semantics. In order to do this we can exploit the idea used for the automata-
theoretic solution, which amounts to using error tables. As in the previous section
we need an extension of the signature for this:

change(3) controlled count(0) derived

Intially, change will be completely undefined, while the derived variable count
is defined as the number of entries in the change relation, i.e. initially count will
be 0:

count = #{(n, t, n′) | change(n, t, n′) 
= ⊥}.
During the processing of the check rule we add entries to the change relation,

i.e. the error table, and as before change(n, t, n′) 
= ⊥ means that the tag with
label n and type t has been changed to n′ – we never modify the type t. The
cases of insertions and deletions are captured by letting n or n′ be ⊥, respectively.
Different to the previous section it is now irrelevant how often a certain change
occurs.

With these error tables the refinement of the check rule becomes

check = choose x ∈ {0, i, d, u} do check′′(x) enddo ;
if count ≤ k then parse := 1 else parse := 0 endif

The values 0, id and u correspond to the cases of correct processing, inser-
tion, delete and update, respectively. The rule check′′(0) is specified as for the
exact validation keeping the call to the check rule, and the three error cases are
specified as follows:

for insertion:
check′′(i) =

read next(tag) ;
if ∃h.tag = newh

then choose n, t1, i1 with element(n,t1,i1) = 1 do
(element(n,t1,i1) := 2 ‖ change(⊥,⊥,newh) := 1 ‖
choose x with ∀n′, t′, x.element(n′, t′, x) = ⊥ do

element(newh,⊥, x) := 1 enddo) ;
depth := depth + 1 ; check

elsif ∃h with tag = newh

2052 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



then choose n, t, i, i1 with element(n, t, i) = 2 ∧
element(newh,⊥, i1) = 1 do
(element(newh, ,⊥, i1) := ⊥ ‖ element(n, t, i) := 1 ‖

depth := depth - 1 ) enddo ; check
endif

for deletion:
check′′(d) =

if ∃n, t, i, n2, t2, i2 with element(n, t, i) = 1 ∧ element(n2,t2,i2) 
= ⊥ ∧
sibling(previous(depth),i2,i1) = 1

then (element(n, t, i) := 2 ‖ element(n2,t2,i2) := 1 ‖ previous(depth) := i2 ‖
depth := depth + 1 ‖ change(n2, t2,⊥) := 1) ; check

elsif ∃n, t, i, n2, i2, t2 with element(n, t, i) = 1 ∧
element(n2,t2,i2) = 2 ∧ change(n, t,⊥) 
= ⊥

then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖ depth := depth - 1) ;
previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif

endif ; check

for update:
check′′(u) =

read next(tag) ;
if ∃h.tag = newh∧

∃n, t1, i1, n2, t2, i2 with element(n, t1, i1) = 1 ∧
element(n2, t2, i2) 
= ⊥∧ sibling(previous(depth)),i2, i1) = 1

then (element(n, t1, i1) := 2 ‖ element(newh, t2, i2) := 1 ‖
previous(depth) := i2 ‖ change(n2, t2, newh) := 1) ;
depth := depth + 1 ; check

elsif ∃h.tag = newh∧ ∃n1, t1, i1, n2, t2, i2 with element(newh, t1, i1) = 1 ∧
element(n2, t2, i2) = 2 ∧ change(n1, t1, newh) 
= ⊥

then (element(n1,t1,i1) := 0 ‖ element(n2,t2,i2) := 1 ‖
depth := depth - 1) ;

previous(depth) := i1 ;
if sibling(i1,⊥,i2) = 1
then previous(depth+1) := ⊥
endif ; check

endif

As in the previous section the cases for insertion and update use the rule
read next(tag). Consequently, refining the ASM to capture stored XML docu-

2053Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



ments and update them is done in exactly the same way as for exact validation
as described in Section 6 and 7.

Furthermore, this ASM handles again any EDTD specified by means of the
‘element’ and ‘sibling’ functions, thus we can further refine it to obtain an ASM
for approximate validation of streaming XML documents under a specific EDTD.
All we have to do is to substitute for all cases in the check/check′′ rules the
possible values for tag, e.g. dealer, new cars, etc., and eliminate identifiers.

Example 12. For the EDTD in Example 2 and tag = dealer we obtain the
simplified case dealing with an update to the new tag name newh:

case tag = newh ∧ previous(0) = ⊥ ∧ state(root) = 1
then (state(root) := 2 ‖ state(dealer) := 1 ‖ depth := 1 ‖

previous(0) := dealer ‖ change(dealer,⊥,newh) := 1) ; check

Similarly, for the deletion of tag = model we obtain the case

case state(model) = 1 ∧ state(adu) = 2 ∧ change(model,⊥,⊥) 
= ⊥
then (state(model) := 0 ‖ state(adu) := 1 ‖

previous(3) := model ‖ depth := 3 ‖ ) ; check

10 Evaluation and Conclusions

In this article we showed how ASMs can be used for the specification of computa-
tions with abstract states defined by first-order structures that can be recognised
by visibly pushdown automata (VPAs). Such states represent XML documents
that adhere to a given extended document type definition (EDTD). Central to
the approach is the validation of such documents, which we already addressed
in our previous conference publication [Schewe et al., 2008]. We showed that the
problems can be addressed by ASM refinements. It is straightforward to see that
a VPA for XML document validation can be represented by an ASM, as ASMs
provide a much more expressive computational model. However, the advantage
of the ASM approach is that it provides a single specification dealing with any
kind of EDTD – only an encoding of the EDTD in two input relations ‘element’
and ‘sibling’ is required. This specification can then be refined to result in a
specification of a parser that is specific for a given EDTD.

Practically speaking this showed that there is no need to store the complete
XML document as in tree-based parsing approaches such as DOM. In this sense
our solution follows the line of event-based approaches to XML such as SAX.
More than that the elimination of automata in the approach ressembles verti-
cal refinements in the Java/JVM study, as the refinements do not extend the
problem. In [Schewe et al., 2008] we already demonstrated how this can be com-
bined with horizontal refinements addressing the slightly more general problem
of approximate XML document validation with up to k violations to the EDTD.

2054 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



Theoretically, besides the successful interplay of horizontal and vertical re-
finements we laid the foundations for computations on automata-defined states,
at least for the case of VPAs. Such computations were claimed in [Wang et al.,
2008] to capture database transformations in general with classes of automata
corresponding to data models. In particular, the handled case of VPAs would
allow us to capture transformations on XML databases.

This article continues this line of thought and extends the ASM-based val-
idation approach to effective computations by permitting updates both to the
documents and their underlying schemata. We first had to permit stored docu-
ments and thus make the read-rule in the validating ASM explicit, then permit
update rules. These additions constitute again horizontal refinements, thereby
giving further evidence for the promising idea of combining vertical and hori-
zontal refinements as a general development principle. It further exemplifies the
idea of computations with automata-defined abstract states. We conclude that it
is worthwhile to continue this line of research towards theoretical foundations of
database transformations combining queries and updates. We further conclude
that the combination of horizontal and vertical refinements on the basis of ASMs
is a vital approach to practical systems development. The latter conclusion is
further underlined by an extension to fault-tolerant computations extending the
error-handling approach from [Schewe et al., 2008].

References

[Alur and Madhusudan, 2004] Alur, R. and Madhusudan, P. (2004). Visibly
pushdown languages. In Babai, L., editor, Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC 2004), pages 202–211. ACM.

[Batory and Börger, 2008] Batory, D. and Börger, E. (2008). Modularizing the-
orems for software product lines: The JBook case study. Journal of Universal
Computer Science, 14(12):2059–2082.

[Blass and Gurevich, 2003] Blass, A. and Gurevich, J. (2003). Abstract state
machines capture parallel algorithms. ACM Transactions on Computational
Logic, 4(4):578–651.

[Börger, 2003] Börger, E. (2003). The ASM refinement method. Formal Aspects
of Computing, 15:237–257.

[Börger and Stärk, 2003] Börger, E. and Stärk, R. (2003). Abstract State Ma-
chines. Springer-Verlag, Berlin Heidelberg New York.

[Börger et al., 2001] Börger, E., Stärk, R., and Schmid, J. (2001). Java and the
Java Virtual Machine: Definition, Verification and Validation. Springer-Verlag,
Berlin Heidelberg New York.

2055Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



[Box et al., 2000] Box, D., Skonnard, A., and Lam, J. (2000). Essential XML:
Beyond Markup. Addison Wesley.

[Fegaras, 2004] Fegaras, L. (2004). The joy of SAX. In XIME, Paris. ACM.

[Garshol, 2002] Garshol, L. M. (2002). Definitive XML Application Develop-
ment. Prentice-Hall.

[Gupta et al., 2003] Gupta, S., Kaiser, G., Neistadt, D., and Grimm, P. (2003).
DOM-based content extraction of HTML documents. In Proc. 12th WWW conf.,
pages 207–214. ACM Press.

[Gurevich, 2000] Gurevich, J. (2000). Sequential abstract state machines cap-
ture sequential algorithms. ACM Transactions on Computational Logic, 1(1):77–
111.

[Harold, 2002] Harold, E. R. (2002). Processing XML with Java: A Guide to
SAX, DOM, JDOM, JAXP, and TrAX. Addison Wesley.

[Kirchberg et al., 2005] Kirchberg, M., Schewe, K.-D., and Tretiakov, A. (2005).
Using XML to support media types. In Kaschek, R., Mayr, H. C., and Liddle,
S. W., editors, Information Systems Technology and its Applications – 4th In-
ternational Conference, ISTA’2005, volume 63 of Lecture Notes in Informatics,
pages 101–113. GI.

[Kumar et al., 2007] Kumar, V., Madhusudan, P., and Viswanathan, M. (2007).
Visibly pushdown automata for streaming XML. In Williamson, C. L., Zurko,
M. E., Patel-Schneider, P. F., and Shenoy, P. J., editors, Proceedings of the 16th
International Conference on World Wide Web (WWW 2007), pages 1053–1062.
ACM.

[Ma et al., 2008] Ma, H., Schewe, K.-D., Thalheim, B., and Wang, Q. (2008).
Abstract state services. In Song, I.-Y. et al., editors, Advances in Conceptual
Modeling – Challenges and Opportunities, ER 2008 Workshops, volume 5232 of
LNCS, pages 406–415. Springer-Verlag.

[McCormack, 2008] McCormack, C. (2008). Language bindings for DOM spec-
ifications. http://www.w3.org/TR/2008/WD-DOM-Bindings-20080410. Work-
ing Draft WD-DOM-Bindings-20080410.

[Papakonstantinou and Vianu, 2000] Papakonstantinou, Y. and Vianu, V.
(2000). DTD inference for views of XML data. In Proceedings of the Nine-
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS 2000), pages 35–46. ACM.

2056 Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...



[Schellhorn, 2008] Schellhorn, G. (2008). ASM refinement preserving invariants.
Journal of Universal Computer Science, 14(12):1929–1948.

[Schewe et al., 2008] Schewe, K.-D., Thalheim, B., and Wang, Q. (2008). Vali-
dation of streaming XML documents with abstract state machines. In Kotsis,
G., Taniar, D., Pardede, E., and Khalil, I., editors, Proceedings iiWAS 2008 –
The 10th International Conference on Information Integration and Web-based
Applications and Services, pages 147–153, University of Linz, Austria. ACM.

[Schewe and Wang, 2008] Schewe, K.-D. and Wang, Q. (2008). A customised
ASM thesis for database transformations. (submitted for publication).

[Segoufin and Vianu, 2002] Segoufin, L. and Vianu, V. (2002). Validating
streaming XML documents. In Popa, L., editor, Proceedings of the Twenty-
first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS 2002), pages 53–64. ACM.

[Simeoni et al., 2003] Simeoni, F., Lievens, D., Connor, R., and Manghi, P.
(2003). Language bindings to XML. IEEE Internet Computing, 7(1):19–27.

[Thomo et al., 2008] Thomo, A., Venkatesh, S., and Ye, Y. Y. (2008). Visibly
pushdown transducers for approximate validation of streaming XML. In Hart-
mann, S. and Kern-Isberner, G., editors, Foundations of Information and Knowl-
edge Systems – Proc. 5th International Symposium, FoIKS 2008, volume 4932
of LNCS, pages 219–238. Springer-Verlag.

[van Kesteren, 2008] van Kesteren, A. (2008). The XMLHttpRequest object.
http://www.w3.org/TR/2008/WD-XMLHttpRequest-20080415. Working Draft
WD-XMLHttpRequest-20080415.

[Wang and Schewe, 2007] Wang, Q. and Schewe, K.-D. (2007). Axiomatization
of database transformations. In Börger, E. and Prinz, A., editors, Proceedings
ASM 2007, University of Grimstad, Norway.

[Wang and Schewe, 2008] Wang, Q. and Schewe, K.-D. (2008). Towards a logic
for abstract metafinite state machines. In Hartmann, S. and Kern-Isberner, G.,
editors, Foundations of Information and Knowledge Systems – 5th International
Symposium, FoIKS 2008, volume 4932 of Lecture Notes in Computer Science,
pages 365–380. Springer-Verlag.

[Wang et al., 2008] Wang, Q., Schewe, K.-D., and Thalheim, B. (2008). XML
database transformations with tree updates. In Börger, E. et al., editors, Ab-
stract State Machines, B and Z – First International Conference, ABZ 2008,
volume 5238 of Lecture Notes in Computer Science, page 342. Springer-Verlag.

[Wilde, 2004] Wilde, E. (2004). Advanced XML Technologies. CRC Press.

2057Schewe K.-D., Thalheim B., Wang Q.: Updates, Schema Updates ...


