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Abstract: In recent years, market forecasting by machine learning methods has been flourishing.
Most existing works use a past market data set, because they assume that each trader’s individual
decisions do not affect market prices at all. Meanwhile, there have been attempts to analyze
economic phenomena by constructing virtual market simulators, in which human and artificial
traders really make trades. Since prices in a market are, in fact, determined by every trader’s
decisions, a virtual market is more realistic, and the above assumption does not apply. In this
work, we design several reinforcement learners on the futures market simulator U-Mart (Unreal
Market as an Artificial Research Testbed) and compare our learners with the previous champions
of U-Mart competitions empirically.
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1 Introduction

In recent years, market forecasting by machine learning methods has been flourishing.
In reinforcement learning domain, there are several works using real market data, e.g.,
[O et al. 2002,Nevmyvaka et al. 2006]. Most of them divide a past market data set into
training and test sets, learn a strategy from the training set, and then verify the result by
the test set. This is because each trader’s individual decisions are assumed not to affect
the market at all, since there are too many traders in the market. This assumption allows
a learner to learn passively; that is, a learner can learn from only a data set. In such a
passive learning domain, we can use offline, batch learning methods.

Some researchers in economics are interested in virtual markets. A virtual market,
in which human and/or artificial traders trade virtual stocks, provides researchers with a
tool for analyzing interesting market phenomena that current economic theories cannot
explain, and for dissecting the market structure itself. Since the prices in a virtual mar-
ket are determined by every trader’s decisions, it is more realistic, and the assumption
described above does not apply. Therefore, a learner has to learn actively because the
learner’s strategy changes the market and vice versa. Reinforcement learning is inher-
ently suitable for such active learning.

In this work, we design several reinforcement learners on the futures market simula-
tor U-Mart (Unreal Market as an Artificial Research Testbed) [U-Mart, Kita 2000, Sato
et al. 2001] and compare our learners with the previous champions of U-Mart competi-
tions empirically.
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This paper consists of four sections after this Introduction. [Section 2] explains what
futures are and what U-Mart is. In [Section 3], we design several reinforcement learners
each of which has a different state space. In [Section 4], we compare our learners with
the past champions empirically. Finally, we conclude this paper in [Section 5].

2 U-Mart: a Futures Market Simulator

Futures are agreements to trade something at some time in the future (the due date) at
the price specified now. As an example, suppose that two people agree that the buyer
will buy gold at $15 per gram from the seller one year later. Such futures make it easy to
plan to do something using gold one year later because neither the buyer nor the seller
must be concerned with changes in the price of gold. Therefore, futures are required
to manage risks in market prices, called spot prices. If the spot price of gold reaches
$20 per gram on the due date, however, the buyer gets a gain because he/she has to pay
only $15 to get $20 worth of gold. On the other hand, the buyer suffers a loss if the spot
price falls to $10. Hence, futures themselves have values depending on spot prices, and
therefore, they are traded at futures prices in a futures market.

U-Mart (Unreal Market as an Artificial Research Testbed) [U-Mart,Kita 2000,Sato
et al. 2001] is a futures market simulator dealing with the stock index J30. J30 repre-
sents the average of stock prices of thirty large companies traded on the Tokyo Stock
Exchange and was reported by the Mainichi Newspapers until 2003. Although J30 had
no real futures market, traders on U-Mart trade J30 futures (J30F) based on J30 spot
(J30S) prices. In a real market, futures prices generally influence spot prices. In U-Mart,
however, futures prices do not affect spot prices at all because U-Mart deals only with
futures trades based on existing spot prices, which are unknown to traders in advance.

In U-Mart, each trader initially has a certain amount of money and tries to maxi-
mize it by trading J30F. The entire simulation time, which corresponds to the time until
the due date, is divided into several days and each day is divided into several intervals.
During each interval, traders send “buy” and/or “sell” orders with the price and volume
to the exchange. The exchange records them in an order book. At the end of the inter-
val, the exchange plots a price-volume graph with demand and supply curves from the
order book. The crossing point of the curves indicates the price and volume of being
executed; that is, sell orders to the left of this point and buy orders to the right of it are
executed at the corresponding price, as shown in [Fig. 1]. On the other hand, unexe-
cuted orders remain in the order book throughout the day. See [Kita 2000] for details.
Every trader whose orders have been executed changes his/her position, which is the
difference between the amounts of futures that he/she has bought and has sold. Traders
whose positions are not zero have to deposit some margin, depending on their positions,
to the exchange.

At the end of the day, the exchange calculates the unrealized profit (loss) of each
trader from the J30F closing price and clears it by paying (receiving) money to (from)
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Figure 1: Demand-supply curves. Orders in the shaded area are executed at the contract
price

the trader. Traders who cannot pay their unrealized losses become bankrupt and drop
out of the simulation. At the end of the simulation, all positions are cleared according
to the next day’s first J30S price and all traders are ranked by several metrics.

3 Reinforcement Learning on U-Mart

In this section, we consider how a reinforcement learner, called an agent, gets gains
in a U-Mart simulation. Generally, to get a gain, a trader either has to sell at a price
higher than the price at which he/she bought, or has to buy at a price lower than the
price at which he/she sold. Suppose that an agent sent a buy order in the t-th interval,
i.e., between times t − 1 and t, and that the order has been executed at t. The agent
gets a gain if the price at t + 1 becomes higher than that at t. Therefore, to get a gain,
an agent has to predict the transitions of J30F price in the near future. In this work,
the agent learns to predict transitions through Q-learning [Watkins and Dayan 1992], a
representative reinforcement learning algorithm.

3.1 Q-learning

Suppose that an agent senses a state st ∈ S and selects an action at ∈ A(st) at a discrete
time t. S is a set of possible states in the environment, and A(st) is a set of possible
actions in the state st. After selecting an action, the agent receives a reward r t+1 ∈ R and
senses a new state st+1. Q-learning updates an action value function Q by the following
rules to make Q approach the true value under the optimal policy π ∗, which is the
expected sum of rewards discounted by 0 < γ < 1 under π ∗, i.e., Eπ∗

(∑∞
k=0 γ

krt+1+k

)
.

Qt(s, a) =

⎧⎪⎪⎨⎪⎪⎩
Qt−1(st, at) + α δt if (s, a) = (st, at),

Qt−1(s, a) otherwise.
(1)
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α is a parameter called the learning rate, with 0 < α ≤ 1, and δ t is called the TD error
that approaches 0 when Qt(s, a) approaches the true value of (s, a) under π ∗:

δt
�
= rt+1 + γ max

a∈A(st+1)
Qt−1(st+1, a) − Qt−1(st, at). (2)

For all s and a, Qt(s, a) is proved to converge to the true value under the optimal policy
when (i) the environment has the Markov property, (ii) the agent visits all states and
takes all actions infinitely, and (iii) α decreases properly [Watkins and Dayan 1992].

If the true value function under the optimal policy, Q ∗, is known, the agent can
choose an optimal action a∗ in a state s from Q∗ by

a∗ = arg max
a′∈A(s)

Q∗(s, a′). (3)

If the agent always chooses such actions during learning, however, Q t can converge to
a local optimum because the agent may not visit all states. To avoid this, the agent typ-
ically uses a stochastic method like softmax [Sutton and Barto 1998] to choose actions.
Softmax calculates action choice probabilities p st (a), where a ∈ A(st), as

pst (a) �=
exp(Qt−1(st, a)/T )∑

a′∈A(st) exp(Qt−1(st, a′)/T ) .
(4)

T is called the temperature, with T > 0, and controls the effect of randomness.

3.2 Learning to Predict Price Transitions on U-Mart

As we saw in [Section 2], an agent’s order, either to “sell” or “buy”, consists of a price
and volume. In this work, however, we only discuss how the learning agent determines
whether to “sell”, “buy”, or “do nothing”. For this purpose, the agent applies Q-learning
to predict price transitions. The agent simply determines the order price from the price
at t − 1 and the order volume from the softmax probability. Whenever an order would
cause an agent’s position to move across an upper or lower limit, the agent either does
nothing or reduces the volume.

Here we design the following three types of state space of Q-learning:

– Transitions of J30F price as states,

– Transitions of J30S price as states, and

– Spread between J30F and J30S prices as states.

We see each type of state space in this order. Hereafter, F(t) and S (t) stand for “J30F
price at t” and “J30S price at t”, respectively. Price transition functions ΔF : N →
{up, same, down} and ΔS : N→ {up, same, down} are defined as follows.

ΔF(t) �=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

up if F(t) > F(t − 1),
same if F(t) = F(t − 1),
down otherwise.

(5)
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ΔS (t) �=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

up if S (t) > S (t − 1),
same if S (t) = S (t − 1),
down otherwise.

(6)

Transitions of J30F price as states (Approaches 1–1 and 1–2)

The approaches described here use J30F price transitions up to the present (t-th inter-
val). The agent predicts ΔF(t + 1), i.e., the J30F price transition from t to t + 1. The
approaches are divided into two types by ways of prediction.

Approach 1–1:

The agent learns to predict ΔF(t) from the past two J30F price transitions: ΔF(t−2) and
ΔF(t − 1) ([Fig. 2(a)], left). Q-function has nine states, each of which is a combination
of two transitions — (up, up), (up, same), (up, down), etc. — and two actions, up and
down, as a prediction of ΔF(t). To predict ΔF(t + 1) through the Q-function, the agent
regards the predicted ΔF(t) as a real transition and applies it with ΔF(t − 1) to the Q-
function ([Fig. 2(a)], right). If the predicted ΔF(t+1) is up, the order is “buy”; otherwise
it is “sell”. In the (t + 1)-th interval, the agent knows F(t) and calculates the true ΔF(t).
If the true ΔF(t) is same, the reward is 0. If it is equal to the action, the reward is a
positive value; otherwise, it is a negative value.

Approach 1–2:

The agent learns to predict ΔF(t + 1) directly from the past two J30F price transitions
[Fig. 2(b)]. For this approach, Q-learning states and actions are identical with those of
Approach 1–1, but an action gives a prediction of ΔF(t + 1) instead of ΔF(t). If the
action is up, the order is “buy”; otherwise, it is “sell”. If the true ΔF(t + 1) is same, the
reward is 0. If it is equal to the action, the reward is a positive value; otherwise, it is
a negative value. This approach differs from Approach 1–1 in that it does not consider
ΔF(t) at all. Since the agent does not know the true ΔF(t+1) until the (t+2)-th interval,
the reward is delayed.

Transitions of J30S price as states (Approach 2)

Generally, we can infer that a futures price will go up when the present spot price is
high and the present futures price is lower than the present spot price. The approach
described here uses J30S price transitions up to the present (t-th interval), together with
this inference. The agent learns to predict ΔS (t) from the past two J30S price transitions:
ΔS (t − 2) and ΔS (t − 1) [Fig. 2(c)]. Q-function has nine states, each of which is a
combination of two transitions, and two actions, up and down, as a prediction of ΔS (t).
The order is determined by rules in [Tab. 1], using the action, S (t − 1), and F(t − 1),
according to the above inference. In the (t + 1)-th interval, the agent knows S (t) and
calculates the true ΔS (t). If the true ΔS (t) is same, the reward is 0. If it is equal to the
action, the reward is a positive value; otherwise, it is a negative value.
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Figure 2: Proposed approaches. (a) Approach 1–1: Left: Learn ΔF(t) from ΔF(t − 2)
and ΔF(t − 1); Right: Predict ΔF(t + 1) from ΔF(t − 1) and the learned ΔF(t). (b)
Approach 1–2: Learn ΔF(t + 1) directly from ΔF(t − 2) and ΔF(t − 1). (c) Approach 2:
Learn ΔS (t) from ΔS (t − 2) and ΔS (t − 1). (d) Approach 3–1: Learn ΔF(t + 1) from the
spread between F(t − 1) and S (t − 1). (e) Approach 3–2: Learn whether F(t) or S (t) is
high from the spread between F(t − 1) and S (t − 1)
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Action F(t − 1) Order
up < S (t − 1) Buy
up ≥ S (t − 1) Do nothing

down ≤ S (t − 1) Do nothing
down > S (t − 1) Sell

Table 1: Rules for determining an order in Approach 2. The first, second, and third
columns list the action, the relation between F(t − 1) and S (t − 1), and the order, re-
spectively

Spread between J30F and J30S prices as states (Approaches 3–1 and 3–2)

The approaches described here use the spread between J30F and J30S prices. The
spread, which is continuous, is discretized and used as the states of Q-learning. These
approaches are divided into two types according to what the agent learns.

Approach 3–1:

The agent learns to predict ΔF(t + 1) by using the spread between F(t − 1) and S (t − 1)
[Fig. 2(d)]. Q-function has two actions, up and down, as a prediction of ΔF(t+1). If the
action is up, the order is “buy”; otherwise the it is “sell”. The only difference between
Approaches 1–2 and 3–1 is the state space.

Approach 3–2:

The agent learns to predict whether F(t) or S (t) will be high from the spread between
F(t−1) and S (t−1) [Fig. 2(e)]. The action is a prediction of the higher price at t, either
F(t) or S (t). If the action is S (t), the order is “buy”; otherwise it is “sell”. In the (t+1)-th
interval, the agent knows the true F(t) and S (t). If they are identical, the reward is 0. If
the true relation is equal to the action, the reward is a positive value; otherwise, it is a
negative value.

4 Experiments

U-Mart researchers conduct an annual competition of trading agents [U-Mart]. In this
competition, called the U-Mart International Experiment, or UMIE, four J30S price
patterns (ascending, descending, oscillating, and reversing series) are used to rank the
contestants, each of which starts with one billion yen. The rank is determined by four
metrics: (i) average profit, (ii) maximum profit, (iii) profit count, and (iv) bankruptcy
count. The metrics are obtained from three experiments:

– One of the contestants with the standard agent set (4 patterns × 50 simulations),
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Figure 3: Example showing how futures prices differ in each simulation. The bold line is
a spot price sequence, while the thin lines are the corresponding futures price sequences
in different simulations

– All of the contestants with the standard agent set (4 patterns × 50 simulations), and

– Half of the agents randomly selected from all the agents (4 patterns × 250 simula-
tions).

The duration of each simulation is sixty days, and each day has four intervals. The
profit count and the bankruptcy count are the numbers of simulations that finished in the
black and were terminated by bankruptcy, respectively. Note that, even if spot prices are
identical in different simulations, futures prices that we consider here become different
in each simulation because of the randomness in the agents. See [Fig. 3] as an example.

The standard agent set includes nineteen sample agents of ten types in the U-Mart
developer’s kit [U-Mart]. None of the sample agents learn anything; instead, they make
decisions by applying fixed strategies. The distribution of sample agents and the strate-
gies of each are described in [Appendix A].

We conducted three experiments corresponding to the above three experiments. This
section describes the setup and result of each experiment.

4.1 Experiment 1: One Contestant with Standard Set

4.1.1 Setup

In this experiment, each contestant competed with the standard set of nineteen sample
agents of ten types. We used the price patterns used in UMIE2005 [Fig. 4], which were
not known to the contestants in advance. In each interval, every agent decided orders
by means of the histories of J30F and J30S prices up to the previous interval. The
contestants were the following:
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Figure 4: Four J30S price patterns used in UMIE2005

– The proposed agents (Approaches 1–1, 1–2, 2, 3–1, and 3–2), and

– Past UMIE champions, called Op, Ns, Ts, OFB, and TDP.

The champions are described briefly in [Appendix B].
For Q-learning of the proposed agents, we set the reward as +1 when the action

was right and as −1 when it was wrong. For Approaches 3–1 and 3–2, the spread was
discretized into 20 sections, that is, there were 18 sections in increments of 5 from −45
to 45, a section for more than 45, and a section for less than −45. The learning rate α
and the discount factor γ were 0.1 and 0.9, respectively. The temperature T in (4) was
set to 1. When the proposed agent bought futures in the t-th interval, it ordered p st (the
softmax probability (4)) × 100 trading units, each of which consisted of 1000 shares, at
F(t−1)+20 yen. When the agent sold, it ordered p st × 100 trading units at F(t−1)−20
yen. The lower and upper position limits were −300 and 300, respectively.
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F(t) − S (t) pst(Futures) pst (Spot)
∼ −45 13.0 87.0
−45 ∼ −40 29.3 70.7
−40 ∼ −35 15.3 84.7
−35 ∼ −30 25.3 74.7
−30 ∼ −25 20.4 79.6
−25 ∼ −20 26.6 73.4
−20 ∼ −15 40.1 59.8
−15 ∼ −10 39.0 61.0
−10 ∼ −5 49.0 51.0
−5 ∼ 0 43.8 56.2

F(t) − S (t) pst (Futures) pst(Spot)
0 ∼ 5 44.7 55.3
5 ∼ 10 57.4 42.6

10 ∼ 15 63.5 36.5
15 ∼ 20 63.2 36.8
20 ∼ 25 69.7 30.3
25 ∼ 30 68.2 31.8
30 ∼ 35 73.5 26.5
35 ∼ 40 73.4 26.6
40 ∼ 45 75.0 25.0

45 ∼ 85.1 14.9

Table 2: Learned Q-table of Approach 3–2. For simplicity, this shows p st (a) in (4) with
T = 1 (%)

Before starting the experiment, each proposed agent learned a policy through 100
simulations with the standard agent set. For example, [Tab. 2] shows the learned Q-table
of Approach 3–2. The price patterns used for this learning phase were parts of the J30S
price pattern in the U-Mart developer’s kit [Fig. 5], with each part starting at a randomly
chosen interval. The price pattern in the kit contained 2444 records between 1532 and
4778 yen and it did not match the UMIE2005 patterns at all. These agents continued
to learn during the experiment, but at the beginning of each simulation, every agent’s
policy was initialized to that learned before the experiment. Two champions, OFB and
TDP, also had to learn in advance. Hence, they learned through 100 simulations before
the experiment, in the same way described above, but TDP did not continue learning
during the experiment.

4.1.2 Result

[Tab. 3] shows the result of four metrics in UMIE and the precision of actions of the
proposals. Among the proposed agents, while Approaches 1–1, 1–2, and 3–1 got losses
in some (or all) series, Approaches 2 and 3–2 got gains in all of the series. Hence,
Approaches 2 and 3–2 were better than the rest of the proposed agents. We also see
that while Approach 2 was better than 3–2 when the price changed uniformly, i.e., in
the ascending or the descending series, it was worse when the price undulated, i.e.,
in the oscillating or the reversing series. This is probably because, as indicated by the
precision in [Tab. 3(e)], Q-learning of Approach 2 failed to learn actions. This means
that the good result of Approach 2 strongly depended on the rules in [Tab. 1]. The rules
are based only on the current spread to determine orders when the action is random, so
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Figure 5: J30S price patterns in the U-Mart developer’s kit used for learning

the resulting order was profitable when the price changed uniformly and useless when
the price undulated. On the other hand, Approach 3–2 succeeded in learning the spread
and got gains in all patterns. Therefore, we conclude that Approach 3–2 performed the
best of all the proposed agents.

[Tab. 3(e)] also shows that Approach 1–1 succeeded in predicting ΔF(t) in all pat-
terns to some degree. However, it failed to get gains in three patterns. This was be-
cause Approach 1–1 had to succeed in prediction two consecutive times (i.e., ΔF(t) and
ΔF(t + 1)) in order to get gains. In fact, although the precision was around 60% in all
series, this approach more often failed to predict ΔF(t + 1) because 0.6 2 < 1/2.

Approaches 1–2 and 3–1 failed to learn and to get gains. This was probably because
the reward was delayed in these approaches. Since the environment had only stochastic
agents, except for Approaches 1–2 and 3–1, it had the Markov property, and Q-learning
could be applied to learn an optimal policy, in principle. The environment composed
of nineteen stochastic opponents, however, was too complicated for these approaches
to learn in only 100 simulations. Hence, the delayed reward failed to be transmitted
to the corresponding state-action pair that brought the reward. As a consequence, the
corresponding state-action pair was not reinforced appropriately and these approaches
failed.

Surprisingly, some of the past UMIE champions (Op, OFB, and TDP) got bank-
rupted in some patterns. The huge gains that they got in some price patterns (i.e., Op
and OFB in the descending series and TDP in the ascending series) probably compen-
sated for the bankruptcies during the competitions. Meanwhile, Ns and Ts got gains in
most of simulations in all of the patterns.
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Asc. Desc. Oscil. Rev.
1–1 51.2 −44.7 −102.0 −68.7
1–2 −53.6 −53.1 −84.9 −31.3
2 224.6 227.1 24.6 133.6

3–1 −126.1 −169.3 −121.0 −110.3
3–2 209.0 197.2 158.7 177.8
Op −682.4 575.3 −44.0 −648.9
Ns 337.7 347.8 144.4 268.8
Ts 232.3 211.8 228.3 190.5

OFB −89.4 1803.3 −428.5 −150.6
TDP 1463.9 −674.2 −84.5 58.0

(a) Average profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 264.2 220.7 120.0 134.3
1–2 197.6 210.4 63.3 248.6
2 341.8 342.5 103.6 250.0

3–1 139.5 127.0 146.7 98.2
3–2 324.2 287.1 259.6 310.1
Op 36.1 1510.3 154.4 −67.5
Ns 550.1 461.3 240.0 339.7
Ts 291.4 300.8 305.4 287.3

OFB 979.4 2373.8 −63.4 212.2
TDP 1736.1 −326.8 239.6 462.0

(b) Maximum profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 30 17 6 9
1–2 19 21 9 20
2 49 50 36 50

3–1 6 3 6 6
3–2 50 50 50 50
Op 7 31 18 0
Ns 50 50 49 50
Ts 50 50 50 50

OFB 21 50 0 10
TDP 50 0 8 38

(c) Profit count

Asc. Desc. Oscil. Rev.
1–1 0 0 0 0
1–2 0 0 0 0
2 0 0 0 0

3–1 0 0 0 0
3–2 0 0 0 0
Op 5 0 0 8
Ns 0 0 0 0
Ts 0 0 0 0

OFB 22 0 0 2
TDP 0 19 0 3

(d) Bankruptcy count

Asc. Desc. Oscil. Rev.
1–1 60.1 60.7 59.0 60.2
1–2 46.9 47.1 47.9 47.7

2 50.1 50.3 49.2 50.4
3–1 41.6 41.0 42.0 41.4
3–2 65.9 68.5 64.5 64.6

(e) Precision (%)

Table 3: Result of Experiment 1, with bold face indicating the best: (a) Average profit
of each approach. (b) Maximum profit of each approach. (c) Profit count, indicating
the number of simulations that finished in the black. (d) Bankruptcy count, indicating
the number of simulations terminated by bankruptcy. (e) Precision of the actions of the
proposed approaches
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4.2 Experiment 2: All Contestants with Standard Set

4.2.1 Setup

Most of the experimental settings were identical with those of Experiment 1, but all of
the proposed agents, all of the champions, and the standard agent set participated in
every simulation.

4.2.2 Result

[Tab. 4] shows the result of four metrics in UMIE and the precision of actions of the pro-
posed agents. The average profit and the precision of actions of Approaches 2 and 3–2
were less than those obtained in Experiment 1. This is not surprising because these ap-
proaches learned their policies in the environment of Experiment 1, which had only the
standard agent set as opponents. This is also because the environment contained mul-
tiple Q-learning agents, i.e., it did not have the Markov property. Although Q-learning
can converge to an optimal policy in an environment with the Markov property (see
[Section 3.1]), it does not guarantee anything when the environment does not have the
Markov property.

4.3 Experiment 3: Randomly Selected Agents

4.3.1 Setup

Most of the experimental settings were identical with those of Experiment 1, but the
participants were randomly selected from among all of the proposed agents, all of the
champions, and the standard agent set. Hence, the number of simulations was different
for each approach (strategy).

4.3.2 Result

[Tab. 5] shows the result of four metrics in UMIE and the precision of actions of the
proposals. Since the number of simulations was different for each approach (strategy),
the profit count and bankruptcy count are shown as ratios. The result was not so different
from that of Experiment 2.

5 Conclusion

In this work, we have proposed several learners using Q-learning on the futures market
simulator U-Mart. First, in [Section 2], we saw what futures are and what U-Mart is.
In [Section 3], we proposed three types of learners, each of which had a different state
space of Q-learning: the transitions of the futures price, those of the spot price, and the
spread between the futures and spot prices. [Section 4] gave the results of experiments
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Asc. Desc. Oscil. Rev.
1–1 54.7 −63.2 −126.9 −102.5
1–2 −84.0 −103.5 −99.3 −38.4

2 206.2 173.2 −24.3 48.3
3–1 −120.0 −55.6 −108.3 −51.6
3–2 117.0 −57.4 23.1 75.5
Op −38.5 170.9 −52.3 −139.7
Ns 47.2 −335.1 131.7 159.9
Ts 213.3 114.6 303.8 158.7

OFB −639.2 3084.2 −344.8 −109.2
TDP 1757.9 −552.5 73.7 −559.5

(a) Average profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 251.0 209.4 54.1 78.2
1–2 169.3 251.0 93.7 186.1
2 309.9 326.8 103.6 211.6

3–1 77.2 300.6 81.4 128.4
3–2 349.0 135.7 182.0 322.5
Op 125.3 1466.2 230.8 46.7
Ns 717.1 −85.2 252.8 288.6
Ts 314.6 212.1 373.0 233.8

OFB −57.8 4273.4 67.2 494.2
TDP 2159.4 −424.1 350.3 385.0

(b) Maximum profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 35 11 3 8
1–2 11 12 10 22
2 50 48 21 37

3–1 8 14 9 17
3–2 42 15 30 39
Op 39 15 5 11
Ns 29 0 48 50
Ts 50 50 50 50

OFB 0 50 1 17
TDP 50 0 40 1

(c) Profit count

Asc. Desc. Oscil. Rev.
1–1 0 0 0 0
1–2 0 0 0 0
2 0 0 0 0

3–1 0 0 0 0
3–2 0 0 0 0
Op 6 0 0 11
Ns 0 0 0 0
Ts 0 0 0 0

OFB 40 1 19 20
TDP 0 50 3 49

(d) Bankruptcy count

Asc. Desc. Oscil. Rev.
1–1 53.0 54.6 53.6 51.9
1–2 47.0 48.1 46.9 47.3

2 50.5 50.4 49.8 47.3
3–1 46.1 47.3 46.8 47.1
3–2 58.1 56.6 58.0 53.5

(e) Precision (%)

Table 4: Result of Experiment 2, with bold face indicating the best: (a) Average profit
of each approach. (b) Maximum profit of each approach. (c) Profit count, indicating
the number of simulations that finished in the black. (d) Bankruptcy count, indicating
the number of simulations terminated by bankruptcy. (e) Precision of the actions of the
proposed approaches
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Asc. Desc. Oscil. Rev.
1–1 −44.8 −106.6 −177.9 −132.9
1–2 −115.7 −78.7 −112.2 −67.3
2 167.3 138.7 −12.8 55.9

3–1 −100.4 −100.6 −104.2 −63.1
3–2 82.9 −20.7 31.6 54.6
Op −476.6 727.1 −73.6 −342.3
Ns 55.3 −71.3 123.5 184.7
Ts 182.8 99.6 230.7 144.9

OFB −187.6 1471.3 −295.3 −12.6
TDP 1650.5 −592.0 10.5 −305.6

(a) Average profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 285.7 216.0 63.9 200.8
1–2 290.1 268.7 205.1 201.9
2 354.0 367.1 163.6 382.7

3–1 488.7 200.4 138.4 187.1
3–2 376.1 376.8 289.0 295.9
Op 117.3 1734.8 403.6 51.4
Ns 1489.8 1489.0 510.4 682.4
Ts 343.6 323.8 370.5 364.2

OFB 1663.6 3400.8 308.2 1032.0
TDP 2608.0 −249.9 392.8 625.0

(b) Maximum profit (million yen)

Asc. Desc. Oscil. Rev.
1–1 41.1 17.8 4.7 16.3
1–2 22.6 32.3 8.9 25.0

2 90.4 87.4 43.0 74.1
3–1 23.4 24.2 14.5 34.7
3–2 72.0 42.4 64.0 69.6
Op 22.9 82.4 16.0 7.6
Ns 45.7 40.6 92.0 96.4
Ts 98.5 78.0 100.0 97.7

OFB 31.2 93.5 13.8 47.1
TDP 100.0 0.0 61.2 31.9

(c) Profit count ratio (%)

Asc. Desc. Oscil. Rev.
1–1 0.0 0.0 0.0 0.0
1–2 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0
3–1 0.0 0.0 0.0 0.0
3–2 0.0 0.0 0.0 0.0
Op 48.9 0.0 5.3 37.4
Ns 0.0 0.0 0.0 0.0
Ts 0.0 0.0 0.0 0.0

OFB 48.6 1.5 27.5 18.1
TDP 0.0 87.9 5.2 64.7

(d) Bankruptcy count ratio (%)

Asc. Desc. Oscil. Rev.
1–1 53.4 54.0 54.7 52.4
1–2 46.5 46.8 46.2 45.4

2 50.2 49.7 50.1 47.8
3–1 44.4 45.2 45.2 44.8
3–2 59.4 58.8 59.1 56.2

(e) Precision (%)

Table 5: Result of Experiment 3, with bold face indicating the best: (a) Average profit of
each approach. (b) Maximum profit of each approach. (c) Profit count ratio, indicating
the percentage of simulations that finished in the black. (d) Bankruptcy count ratio,
indicating the percentage of simulations terminated by bankruptcy. (e) Precision of the
actions of the proposed approaches
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with the proposed agents, the standard agent set from the U-Mart developer’s kit, and
the champions of past U-Mart competitions.

The proposed approach predicting whether spot or futures price is high from the
spread at the previous interval (Approach 3–2) obtained gains in all price patterns with
good precision in Experiment 1. Although it suffered losses in the descending series in
Experiments 2 and 3, it obtained good results overall in simulations with the champions
of past U-Mart competitions. The results showed unexpected success of the proposed
approaches since they were very simple state-action-reward definitions in a general re-
inforcement learning algorithm and were not designed so deliberately as compared with
the champions. For example, the rules implemented in advance were only [Tab. 1] for
Approach 2. Note that we intentionally ignore the multiagent perspective in this work,
because nobody can perceive opponents’ actions in a market that are usually required
in multiagent reinforcement learning.

There are several future directions. First, we plan to participate in the U-Mart com-
petition. The champions used here were past champions. We do not know if our pro-
posed approaches will behave properly and get profits when competing with new en-
trants in the competition. Second, we have to tune the proposed agents. This is a chal-
lenge in terms of combining reinforcement learning and various types of knowledge
in economics, investment, etc. Third, we have to check whether our approaches are
applicable in a massive simulation containing an immense number of traders.

References

[Kita 2000] Kita, H.: “An Introduction to U-Mart” (2000) (In the U-Mart developer’s kit down-
loadable from [U-Mart]).

[Kitano et al. 2005] Kitano, H., Nakashima, T., and Ishibuchi, H.: “Behavior Analysis of Fu-
tures Trading Agents Using Fuzzy Rule Extraction”; Proc. 2005 IEEE International Confer-
ence on Systems, Man and Cybernetics, IEEE Press, Piscataway, NJ (2005), 1477–1481.

[Nevmyvaka et al. 2006] Nevmyvaka, Y., Feng, Y., and Kearns, M.: “Reinforcement Learning
for Optimized Trade Execution”; Proc. 23rd International Conference on Machine Learning,
Omnipress, Madison, WI (2006), 673–680.

[O et al. 2002] O, J., Lee, J. W., and Zhang, B.-T.: “Stock Trading System Using Reinforce-
ment Learning with Cooperative Agents”; Proc. 19th International Conference on Machine
Learning, Morgan Kaufmann, San Francisco, CA (2002), 451–458.

[Sato et al. 2001] Sato, H., Koyama, Y., Kurumatani, K., Shiozawa, Y., and Deguchi, H.: “U-
Mart: A Test Bed for Interdisciplinary Research in Agent Based Artificial Market”; Aruka, Y.,
ed., “Evolutionary Controversies in Economics: A New Transdisciplinary Approach”, Springer,
Tokyo (2001), 179–190.

[Sutton and Barto 1998] Sutton, R. S. and Barto, A. G.: “Reinforcement Learning: An Intro-
duction”; MIT Press, Cambridge, MA (1998).

[U-Mart] “U-Mart Project”; http://www.u-mart.org/.
[Watkins and Dayan 1992] Watkins, C. J. C. H. and Dayan, P.: “Technical Note: Q-learning”;

Machine Learning, 8 (1992), 279–292.

1151Moriyama K., Matsumoto M., Fukui K.-i., Kurihara S., Numao M.: Reinforcement ...



A U-Mart Standard Sample Agent Set

This appendix describes the U-Mart sample agents in the standard agent set [U-Mart].
The number after the agent name indicates how many of these agents were included in
the set. If not otherwise specified, the order price is F(t−1)+20x yen, where x ∼ N(0, 1),
and the order volume is randomly determined between two parameters. See [U-Mart]
for details.

Trend (1):

Buy if F(t − 1) > F(t − 2), sell if F(t − 1) < F(t − 2), otherwise do nothing.

AntiTrend (2):

Swap the conditions of Trend.

Random (1) and SRandom (3):

An order is randomly determined. SRandom uses S (t−1) instead of F(t−1) to calculate
the order price.

Rsi (1) and SRsi (3):

Rsi uses the relative strength index (RSI) of J30F in t-th interval:
∑
τ<t,F(τ)>F(τ−1) F(τ) − F(τ − 1)
∑
τ<t | F(τ) − F(τ − 1) | .

Buy if RSI is less than 0.3, sell if it is more than 0.7, otherwise do nothing. SRsi uses
RSI with J30S instead of with J30F.

MovingAverage (1) and SMovingAverage (3):

Calculate the moving average of J30F in ten intervals. Buy if it is more than F(t − 1),
sell if it is less than F(t − 1), otherwise do nothing. SMovingAverage uses J30S instead
of J30F.

SFSpread (2):

Calculate a spread ratio as {F(t − 1) − S (t − 1)}/S (t − 1). Buy if the ratio is less than or
equal to −0.01, sell if it is more than or equal to 0.01, otherwise do nothing. The order
price is

{
F(t − 1) + S (t − 1) + x

∣∣∣F(t − 1) − S (t − 1)
∣∣∣
}
/2, where x ∼ N(0, 1).

DayTrade (2):

Always buy and sell simultaneously. The buying and selling prices are 0.99F(t− 1) and
1.01F(t − 1), respectively.
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B Past UMIE Champions

This appendix describes the past UMIE champions. Op, Ns, and Ts were the champions
of UMIE 2005, while OFB and TDP were those of UMIE 2004.

Osako pivot (Op):

It calculates the average of the maximum price of the previous day, the minimum price
of that day, and the final price of that day as a pivot. Then, it sets two support lines
and resistance lines from the pivot. It determines an order from the relation among the
futures price, the support lines, and the resistance lines. The volume is always 100 units,
and the prices are F(t − 1) + 50 yen for buying and F(t − 1) − 50 yen for selling.

Nakamura spread (Ns):

It simultaneously sends three orders, which are an arbitrage order, an order preparing
for a bulge, and one preparing for collapse. The arbitrage order is determined by the
spread between F(t− 1) and S (t− 1). The volume is also determined by the spread, and
the price is the average of F(t − 1) and S (t − 1). For the bulge/collapse orders, it sends
a sell/buy order at a price 200 yen higher/lower than S (t − 1). The volume is 400 units
in both cases.

Trend swift (Ts):

If S (t − 1) > S (t − 2) and S (t − 1) − F(t − 1) > 10 yen, it buys at F(t − 1) + 40 yen. If
S (t − 1) < S (t − 2) and F(t − 1) − S (t − 1) > 10 yen, it sells at F(t − 1) − 40 yen. The
volume depends on the spread.

OPUFuzzyB (OFB) [Kitano et al. 2005]:

It is a fuzzy-rule-based online learning agent with a table containing weights for rules.
First, it calculates the spreads S (t−1)−S (t−2), S (t−1)−S (t−4), and S (t−1)−S (t−6).
Then, it calculates fuzzy reliabilities from three membership functions, each of which
is a function of one of the spreads. Next, it determines an order from the spreads and
the fuzzy reliabilities. The volume is always 200 units, and the price is S (t − 1)− 5 yen
for buying and S (t − 1) + 5 yen for selling. In the next interval, it updates the weights
according to the fuzzy reliabilities.

TriDiceP (TDP):

It has a state-action table, like that used in Q-learning, for determining orders. The states
in the table are determined by quadratically approximated past spot price sequences.
Orders are chosen by probabilities calculated from weights in the table. For a chosen
order, the weight in the table is decreased to change behaviors. The volume is calculated
from the order probabilities, and the prices are S (t − 1) + 10 yen for buying and S (t −
1) − 10 yen for selling.
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