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Abstract: Supply chain management (SCM) deals with planning and coordinating activities 
such as material procurement, product assembly, and the distribution of manufactured products. 
This paper offers an agent-based solution as a potentially adequate approach for the automation 
of supply chain management. The greatest obstacle in SCM research is obtaining benchmark 
designed solutions since it is difficult to simulate real business environments, while live testing 
in real-world systems is not an option. The Trading Agent Competition Supply Chain 
Management (TAC SCM) scenario provides a unique testbed for studying and prototyping 
SCM agents by providing a challenging game environment where competing agents engage in 
complex decision-making activities with the purpose of maximizing their profit. In this paper, 
we describe the TAC SCM environment and present the main features of the CrocodileAgent, 
our TAC SCM 2007 entry. Additionally, the CrocodileAgent’s performance in the competition, 
as well as in a series of controlled experiments, is discussed. 
 
Keywords: supply chain management, electronic markets, software agents, trading agents, 
multi-agent simulation 
Categories: I.2.1, I.6.0, J.7, K.4.4 

1 Introduction  

Supply chain management (SCM) involves several activities, including raw material 
procurement, and producing, selling, and shipping manufactured goods. In today’s 
economy, supply chains are still based on static long-term relationships between 
trading partners. These relationships are the main obstacle in realising dynamic 
supply chains, with the market as a driving force. Dynamic SCM improves the 
competitiveness of companies since it has a direct impact on their capability of 
adjusting to changing market demands quickly and efficiently [Benish, 06]. Annual 
worldwide supply chain transactions are counted in trillions of dollars, making this 
area of research very interesting, not only to academia, but also to industry since even 
the slightest improvement can bring a very high profit. 
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The greatest obstacle in SCM research is obtaining benchmark designed solutions 
since it is difficult to simulate a real business environment (due to the proprietary 
nature of such systems), while live testing in real-world systems is not an option (due 
to the high cost of possible errors). The Trading Agent Competition Supply Chain 
Management (TAC SCM) scenario provides a unique testbed for studying and 
prototyping SCM agents by providing a competitive environment in which 
independently created agents can be tested against each other over the course of many 
simulations in an open academic setting. In a TAC SCM game, each agent acts as an 
independent computer manufacturer in a simulated economy [Pardoe, 07]. Since the 
main purpose of the TAC SCM competition is to explore how to maximize the profit 
in a stochastic environment of volatile market conditions, it is important to develop an 
agent capable of reacting quickly to changing market conditions. Furthermore, it is 
critical to implement predictive mechanisms which enable proactive agent behaviour 
and provide it with a chance to plan in the face of uncertainty. The idea is to build 
robust, highly-adaptable and easily-configurable mechanisms that will efficiently deal 
with all SCM facets [Kontogounis, 06]. Additionally, TAC SCM tournaments provide 
an opportunity to analyze effects which commonly arise in real-world business 
transacting, such as the bullwhip effect, and their relationship with companies’ profits 
[Jordan, 06]. Furthermore, the tournament can be helpful in developing methods to 
identify the current economic regime and forecasting market changes [Ketter, 05]. 

In this paper, we describe the CrocodileAgent, an intelligent agent developed to 
participate in the TAC SCM 2007 competition. The paper is organized as follows. 
Section 2 describes why intelligent software agents are enablers of the digital 
economy. In Section 3, the TAC SCM game is presented. Section 4 describes the 
CrocodileAgent’s architecture and functionalities. Section 5 comments on the 
CrocodileAgent’s ranking in the TAC SCM 2007 competition, and elaborates upon 
the results of controlled experiments. In Section 6, related work regarding other TAC 
SCM agents is presented. Section 7 proposes directions for future work and concludes 
the paper. 

2 Intelligent software agents as enablers of the digital economy  

The connection between AI (Artificial Intelligence) and economics has received a lot 
of attention recently [Wurman, 02]. The ideas proposed in this paper are also based on 
that connection, while the practical implementation of the presented ideas is enabled 
by the use of the agent-oriented programming (AOP) paradigm and supported by the 
Internet infrastructure. Although the initial architecture of the Internet was geared 
towards delivering information visually to humans, currently the Internet is 
transforming into an environment filled with goal-directed applications which 
intelligibly and adaptively coordinate information exchanges and actions (Web 3.0) 
[Podobnik, 06a][Podobnik, 07]. At the same time, computers are evolving from single 
isolated devices to entry points into a worldwide network of information exchange 
and business transactions [Fensel, 04]. Consequently, the Internet is transforming into 
an enabler of the digital economy. The digital economy, by proliferation of the use of 
the Internet, provides a new level and form of connectivity among multiple 
heterogeneous ideas and actors, giving a rise to a vast new range of business 
combinations [Carlson, 04]. Additionally, by utilizing AOP, the digital economy 
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automates business transactions. AOP can also be used in the realization of emerging 
virtual organizations or enterprises. Here, agents represent different entities, such as 
manufacturers, suppliers, service providers, brokers or other partners which 
interconnect in order to take advantage of rising opportunities and/or changing needs 
of the global market [Fasli, 07]. 

An intelligent software agent is an autonomous program which acts on behalf of 
its owner (human or organizational) while conducting complex information and 
communication actions over the Internet. Intelligent software agents enable automated 
process execution and coordination, thus creating added value for its owner. Figure 1 
presents a generic model of an intelligent software agent [Bradshaw, 97][Chorafas, 
98][Jurasovic, 07][Podobnik, 07], which we used to design our TAC SCM agent. 

 

Figure 1: A model of an intelligent software agent 

An agent must possess some intelligence grounded on its knowledge base, 
reasoning mechanisms and learning capabilities. The intelligence of an agent is a 
prerequisite for all its other characteristics. Depending on the assignment of a 
particular agent, there are differences in types of information contained in its 
knowledge base. However, generally this information can be divided into two parts – 
the owner’s profile and the agent’s knowledge about its environment. It is very 
important to notice that the agent's knowledge base does not contain static 
information. Adversely, the agent continuously updates its owner’s profile according 
to its owner’s latest needs. This allows the agent to efficiently represent its owner, 
thus realizing the calm technology concept. Calm technology is that which serves us, 
but does not demand our focus or attention [Weiser, 97]. Furthermore, the agent also 
updates knowledge regarding its environment with the latest events from its ambience 
and the current state of observed parameters intrinsic to its surroundings, thus 
realizing context-awareness. Context-awareness describes the ability of an agent to 
provide results that depend on changing context information [Bellavista, 06]. An 
agent executes tasks autonomously without any interventions from its owner, making 
it an invisible servant, just as Weiser envisioned [Weiser, 97]. An agent must be 
reactive, so it can properly and timely respond to impacts from its environment. An 
agent not only reacts to excitations from its environment, but also takes initiatives 
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coherent to its tasks. A well-defined objective is an inevitable prerequisite for 
proactivity. An efficient software agent collaborates with other agents from its 
surrounding: it is cooperative. If an agent is capable of migrating between 
heterogeneous network nodes, this agent is called a mobile software agent [Trzec, 07]. 
An agent has a lifetime throughout which the persistency of its identity and its states 
should be retained. Thus, it is characterized by temporal continuity. 

The features of intelligent software agents described above make them perfectly 
applicable in modern enterprise systems and electronic markets (e-markets). In the 
past, both markets and the choices available were much smaller than they are today. 
Consequently, the volatility of supply and demand functions was much more inert. 
Under such market conditions, companies did not need to make important decisions 
daily. Instead, they based their business transactions on long-term partnerships. The 
accelerated economic globalization trend in the past decade is leading us closer to the 
existence of just one market - the global one. Consequently, the functions of supply 
and demand are becoming more and more dynamic and the possibilities of choice are 
rising to amazing levels. This is a reason why companies today have great difficulties 
in enhancing the efficiency of their current business processes, while continuously 
trying to maximize their profits. Companies are instantly forced to make lots of 
important decisions, while global competition and perpetually shorter product life 
cycles are forcing them to explore more agile practices. Keeping in mind the great 
volatility which characterizes the complex set of market conditions and the vast 
quantity of available information, a possible solution for improving business 
efficiency is automating business processes and minimizing human decision-making 
(where this is possible). Humans simply do not possess the cognitive ability to 
process such enormous quantities of information (and make adequate decisions) in the 
few moments during which the relevant information does not change. A very logical 
solution to this problem lies in the application of the AOP paradigm – i.e., the 
creation of computer programs with the ability to completely autonomously manage a 
set of tasks. 

3 The TAC Supply Chain Management Game 

The Trading Agent Competition (TAC) (http://www.sics.se/tac) is an international 
forum that promotes high-quality research on the trading agent problem. One of its 
game scenarios is the TAC SCM. In the TAC SCM game [Eriksson, 06][Collins, 07] 
scenario, each of the six agents included in the game has its own PC (Personal 
Computer) manufacturing company. During the 220 TAC SCM days, agents compete 
in a simulated economy composed of two different markets, as shown in Figure 2. 
The length of one TAC SCM day is 15 seconds of real time. 

In the B2B (Business-to-Business) market, agents compete in buying the raw 
materials necessary to produce PCs [Sardinha, 07]. Participants in this market are all 
the agents and eight suppliers which produce four types of components (CPUs, 
motherboards, memory, hard drives) with different features. In its factory, an agent 
can manufacture 16 different types of PCs. In the B2C (Business-to-Consumer) 
market, agents compete in selling all the PCs they produced to customers and, at the 
same time, trying to earn as much money as possible. 
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Figure 2: Relationships in the TAC SCM system 

3.1 The architecture of TAC SCM system 

The architecture of the TAC SCM system is shown in Figure 3. The TAC SCM game 
server simulates suppliers (PC component manufacturers), customers (PC buyers) and 
the bank. The game server also controls agents’ factories and warehouses. In order to 
participate in the game, an agent has to connect to the game server. Each TAC SCM 
agent has a bank account and receives a daily report regarding its current bank 
balance. At the beginning of the game, the agent has no money and must therefore 
loan money from the bank. The bank charges the agent interest for every day that the 
agent is in debt. The winner of the game is the agent with the highest balance on its 
bank account at the end of the game. 

Each day, agents receive messages from the game server with all relevant 
information concerning the state of the game, customers, suppliers, the bank and their 
own factory and warehouse. Messages that an agent exchanges with customers and 
suppliers are not available to other agents and there is no interaction between the 
agents themselves. Hence, each agent faces strategic uncertainty since the strategies 
of other agents remain unknown. Agents’ responsibilities can be divided into three 
main tasks, which are described in the following subsections. They are:  

• component procurement,  
• product sales, and 
• production and delivery. 
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Figure 3: The architecture of the TAC SCM system 

3.2 Component Procurement 

In order to sell PCs, it is necessary to purchase components and produce PCs from 
them. There are four different types of components: CPUs, motherboards, memory, 
hard drives. PCs are assembled from one component of each type and there are two 
suppliers for each type of component. A supplier has to handle three main daily tasks: 

• manage limited production capacity which varies during the game, 
• reply to agents’ Requests for Quotes (RFQs) by sending offers, 
• ship ordered components to agents. 

 
The purchasing protocol is rather simple. The agent sends RFQs to the supplier 

that produces the needed component. The RFQ contains the requested quantity, 
delivery date and the price the agent is willing to pay for the certain component type. 
The supplier responds with an offer. Due to production capacity restrictions, it is 
possible that the supplier may not be able to deliver the requested quantity by the 
desired delivery date. If such is the case, it sends the agent two types of offers: a 
partial offer proposing a smaller quantity of components than requested; and an 
earliest complete offer proposing a later delivery date by which the requested quantity 
could be delivered. If one of these offers fits the agent’s needs, the agent replies with 
an order. Suppliers use reputation rating to discourage agents from sending RFQs 
with no intention of buying in order to raise component prices by creating seemingly 
high component demand. 

3.3 Product Sales 

Agents earn money by producing PCs and selling them to customers. The PC 
purchasing protocol is very similar to the component purchasing protocol. Each day, 
customers send RFQs to agents. Each RFQ specifies the requested PC type, quantity, 
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due date, the reserve price they are willing to pay for the PCs, and the penalty the 
agent will have to pay if the PCs are not delivered by the requested due date. Unlike 
suppliers, agents cannot send different types of offers. The only parameter the agent 
can negotiate on is the PC price. After receiving offers from all interested agents, the 
customer sends an order to the agent who offered the cheapest PCs. 

Agents whose offer was not the winning one are not informed about the winning 
price or prices offered by other agents. The only information they receive is the 
highest and the lowest price at which a certain PC type was sold on the previous day. 
The number of RFQs and the RFQ parameters themselves vary throughout the game 
according to a random walk, increasing the risk and uncertainty agents face each day. 

3.4 Production and Delivery 

Each agent has its own PC assembling factory and a warehouse for storing 
components and assembled PCs. Each of four component types comes in two 
different versions based on its characteristics. From these components, a total of 16 
types of PCs can be assembled. Depending on the combination of components, PCs 
require a different number of assembly cycles and can be classified into three market 
segments: High range, Mid range, and Low range. The factory has a limited number 
of assembly cycles so an agent has to carefully organize production in order to fulfil 
all received customer orders. A storage fee is charged for keeping components and 
PCs in the warehouse. This is meant to discourage agents from piling up a large 
inventory over a long period of time. 

4 Overview of the CrocodileAgent 2007 

The CrocodileAgent is an intelligent trading agent developed at the Department of 
Telecommunications, Faculty of Electrical Engineering and Computing in Zagreb, 
Croatia. The CrocodileAgent [Petric, 05][Podobnik, 06b][Petric, 07a][Petric, 07b] is a 
long-standing participant in TAC SCM competitions [Arunachalam, 05][Wellman, 
05][Eriksson, 06].  

4.1 The CrocodileAgent’s Architecture 

The CrocodileAgent's architecture, shown in Figure 4, is based on incorporating the 
generic intelligent software agent model (see Figure 1) into the Information-
Knowledge-Behaviour (IKB) framework [Vytelingum, 05]. The IKB framework is a 
three layered agent-based framework for designing strategies in e-markets. 

The first layer is the Information Layer (IL) which gathers data from the ongoing 
game and assigns that data a meaning. This data can be divided into two parts: data 
gathered from the market which is available to all agents (i.e., public data) and private 
data regarding the agent's own states and actions throughout the game. Due to a 
limited capacity, the IL cannot contain all the data available about the game. The data 
that gets stored into the IL is determined by the Data Filter (DF). 
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Figure 4: The CrocodileAgent's architecture 

The second layer is the Knowledge Layer (KL) which represents knowledge 
acquired from the information stored in the IL. The KL also contains data obtained 
from previous games, enabling the agent to learn from past experiences. The KL 
determines and modifies settings of the DF. Knowledge contained in the KL’s 
knowledge base can be divided into the owner’s profile (i.e., the model of agent’s 
owner) and the knowledge about its environment (i.e., the model of the market). 

The third layer is the Behavioural Layer (BL) which is a decision-making 
component that determines the agent's strategic behaviour. The BL uses knowledge 
from the KL and utilises the agent’s reasoning capabilities to make important 
decisions regarding component purchases, the production schedule, PC sales and 
shipment. 
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4.2 The CrocodileAgent’s Procurement Strategy 

Component procurement mechanisms are responsible for assuring that there is always 
enough components in stock (in order to maintain maximal utilization of production 
capacity), while aiming to purchase components at the lowest possible price. Since a 
storage fee is charged for keeping components in the warehouse, there is also 
motivation to maintain minimal component stocks to reduce storage costs. The 
uncertainty of future consumer demand, as well as supplier production, makes this 
problem even more complex. Consequently, TAC SCM agents must balance between 
short-term and long-term procurement, while constantly making trade-offs between 
the quantity and price of their orders. 

There are two different aspects of component procurement in the TAC SCM 
game: day0 component procurement and ordering components during the game. A 
close examination of the TAC SCM game rules [Collins, 07] suggests that 
procurement of components at the very beginning of the game (day0 procurement) 
may provide an agent with cheap components for the beginning of the game (since 
there is no prior component demand), while long-term procurement in first few days 
may ensure an agent have components with decent prices throughout the game. 

4.2.1 Day0 procurement 

The most important parameters used in day0 component procurement are: 
• ddel[5] – the requested delivery dates, 
• pmin[5] – the minimum prices (i.e., the reserve prices), 
• qCPU[5] – the requested CPU quantities, 
• qoth[5] – the requested quantities of other components than CPUs, 
• pnom – the nominal component prices. 

 

ddel pmin qCPU qoth 

3 1.05×pnom
 150 300 

5 1.02×pnom
 300 600 

7 1.01×pnom
 300 600 

10 0.97×pnom
 300 600 

13 0.95×pnom
 450 900 

Table 1: The actual parameter values in day0 RFQs 

The goal of using the day0 procurement strategy is to obtain components for the 
beginning of the game, when there is a lot of pressure on suppliers due to agents’ 
empty warehouses. The CrocodileAgent sends the day-maximum of five RFQs with 
the parameters set to those shown in Table 1. The referred parameters were 
determined after conducting a series of experiments. An unfavourable situation occurs 
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when the chosen supplier cannot deliver the requested quantity on time. In this case, 
the agent accepts partial offers. 

4.2.2 Component purchase during the game 

The most important parameters used in component purchase during the game are: 
• Nmin – the minimal quantity of components required to be in storage (i.e., 

375 for CPUs and 750 for other components), 
• Nmax – the maximal quantity of components allowed in storage (i.e., 550 for 

CPUs and 1100 for other components), 
• Nord – the maximal amount of components that can be ordered each day (i.e., 

150 for CPUs and 300 for other components), 
• Ntdy – the quantity of a certain component used in PC production on the 

current day, 
• Ninv – the number of components currently stored in the warehouse, 
• pmin – the minimum prices (i.e., the reserve prices), 
• pnom – the nominal component prices. 

 
It is important to point out that the values of parameters Nmin, Nmax and Nord are 

not fixed throughout the game. In fact, they are multiplied by a dayFactor, which is 
equal to 1 for the first 30 days, then increases linearly from 1 to 1.5 between days 31 
and 140, and finally decreases linearly from 1.5 to 0.7 between days 141 and 200. The 
dayFactor then stays at this level until the end of the game. 

A special aspect of component purchase during the game is long-term 
procurement. Although utilization of the long-term procurement strategy involves 
certain risks, such as the possibility of creating a huge component stock and potential 
component overpay (in games with longer periods of low consumer demand), 
utilization of this strategy plays an important role in games with longer periods of 
high consumer demand. This stems from the fact that component prices are usually 
high (when consumer demand is high), while at the same time component availability 
for short-term orders is usually very poor. In order to ensure an agent have decently-
priced components throughout the game, the CrocodileAgent uses the maximum of 
five RFQs per day for the first 20 days of the game (components needed during those 
days are purchased through day0 procurement, if possible). This gives a total of one 
hundred RFQs in which the CrocodileAgent sends offers for long-term purchases of 
all types of components. Delivery dates are uniformly distributed between days 15 
and 210, making components arrive regularly every other day. The exact quantities 
(i.e., [ ]155 105,N ∈  for the CPUs and [ ]315 180,N ∈  for other components) and 
reserve prices (i.e., [ ] nommin p0.69 0.62,p ×∈  for the RFQs with later delivery due 
dates and [ ] nommin p0.85 0.82,p ×∈  for the RFQs with earlier delivery due dates) in 
these long-term RFQs depend only on the requested delivery due date. The referred 
values were determined after conducting a series of experiments. 

After day 20, the CrocodileAgent begins to apply short-term (lead time less than 
7) and medium-term (lead time between 7 and 30) purchasing. At the start of each 
day, the agent calculates the component quantity ordered, but not delivered, up to that 
moment for each component separately. Since the orders with an earlier delivery date 
will provide components earlier, the agent’s ordered quantities of components are 
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multiplied with a distance factor. The distance factor is a value between 0 and 1; the 
factor shrinks from 1 to 0 as the delivery date grows. When the delivery date reaches 
30 days (from the current day) the distance factor becomes 0. The parameter obtained 
by performing this calculation is referred to as the evaluatedQuantity. Similarly, the 
evaluatedLongTermQuantity is calculated, which represents the quantity of all the 
ordered components that have a delivery date higher than 30 days. 

For each component, the agent checks to see if the following condition is met:  

Ninv + evaluatedQuantity ≥ Nmax  (1) 

If so, the components are not ordered. However, in spite of condition (1), there 
are two situations in which the CrocodileAgent may send some RFQs to component 
suppliers. The first situation is a consequence of the fact that, due to the volatility of 
supplier capacities throughout the game, the prices offered in response to RFQs 
requesting near-immediate delivery are very unpredictable. To allow for the 
possibility of achieving low-priced procurement (i.e., [ ] nommin p0.65 0.6,p ×∈ ),  the 
CrocodileAgent sends two RFQs requesting small quantities due within 2 days (the 
minimum delivery timeframe possible). The exact quantities and reserve prices in 2-
day RFQs depend on the current date and Ninv. 2-day RFQs enable the agent to be 
opportunistic in taking advantage of short-term bargains on components without 
being dependent on the availability of such bargains [Pardoe, 06]. The second 
situation in which the CrocadileAgent can ignore fulfilment of condition (1) is when it 
has not sent any RFQs for a certain component over a longer period of time (at least 
10 days). If the current date is before day 130 and the evaluatedLongTermQuantity is 
lower than its upper limit (i.e, 1.77×Nmax), the agent sends one short-term RFQ to 
ensure cheap components (i.e., [ ] nommin p0.67 0.62,p ×∈  and quantities are set to the 
0.8×Nord) for the later stage of the game. 

If condition (1) is not met, the following condition is considered: 

Ninv + Ntdy > Nmin  (2) 

If condition (2) is not fulfilled, the agent purchases components more 
aggressively with the aim of getting the number of components in the warehouse 
above Nmin as soon as possible (i.e., the agent sends five RFQs requesting near-
immediate delivery and relaxes the pmin towards higher values). Otherwise, the 
CrocodileAgent also sends five RFQs, but with the aim of maintaining the present 
quantity of components in the warehouse. 

It is important to point out that these are only the main characteristics of the 
algorithm. Additionally, there are special mechanisms which calculate pmin and the 
exact quantities which need to be ordered. A simplified description of some of these 
mechanisms follows: 

• The lowComponentAlarm contains several levels and marks a very low 
quantity of a certain component in the warehouse. In case the alarm is set, 
the agent is allowed to pay a higher price than usual for the corresponding 
component. 

• The demandPurchaseQuantityFactor is modified according to customer 
demand. Sometimes during the game, customer demand may rise rapidly. 
When this happens, the agent uses more components to produce more PCs. 
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In this case, the parameter is increased to ensure that the agent does not run 
out of components and consequently loose potentially profitable PC orders. 
 

Special attention was paid to the end of the game. The intention was to maintain 
at least a minimal level of all components in the warehouse up until the game’s end to 
enable the CrocodileAgent to fulfil orders from customers for as long as possible. It is 
very important to allow the agent to send RFQs requesting near-immediate delivery of 
any type of component to prevent the situation where a large quantity of one 
component is left over because the agent had to use all the other components to 
produce a certain type of PC. 

4.3 The CrocodileAgent’s Sales Strategy 

Component procurement mechanisms are responsible for deciding which computers 
to offer at what prices so that the available resources are used as efficiently as 
possible. This usually leads to computing the highest offer price that can maintain 
maximal factory utilization, while still obtaining marginal profit [Stan, 06]. 

4.3.1 An algorithm for sending offers 

The CrocodileAgent sorts RFQs in decreasing order of their reserve prices, for every 
PC type separately. After sorting RFQs, the agent starts to send offers if the agent’s 
PC production cost (increased for the current days’ minimal profit percentage) is 
lower than the customer’s reserve PC price and if the requested PCs can be delivered 
from the already produced PC stock stored in the warehouse. In case the latter 
condition is not fulfilled, the agent checks whether there are enough components 
available to produce the requested PCs.  

This algorithm comes in four versions. The version that is active on a certain day 
depends on the stage of the game (beginning, middle, end), the number of production 
cycles needed to produce all active orders, and the version of the algorithm that was 
used the day before. These four versions mainly differ with respect to the method of 
determining offer prices for PCs. The version most frequently used during the game is 
the Normal version which determines the offer price using the method described in 
subsection 4.3.2. The High Demand Version uses a “greedy” algorithm since offer 
prices for PCs are always slightly lower than the customer’s reserve price. This 
version is used when there is a very high customer demand for PCs since, in such 
cases, agents do not usually send offers for all the RFQs received. The Game Start 
Version is used in the beginning stage of the game, where only a few offers with very 
high offer prices are sent to consumers since the CrocodileAgent’s component stocks 
are not yet created. The End Game Version is used in the finishing stage of the game. 
This version differs from the other three in the fact that it sorts RFQs in increasing 
order of their corresponding penalties. The main aim of this version is to sell out the 
whole inventory in the warehouse so that the profit the agent adds to the basic PC 
price is minimal. All versions of the selling algorithm implement a mechanism for 
preventing late deliveries. Each day, the agent monitors its obligations to customers 
by calculating the number of factory cycles needed to fulfil its existing orders. Based 
on this information, it determines the earliest possible delivery date for sending new 
PC offers. This way the agent is prevented from sending offers which cannot be 
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delivered by the requested delivery date. Additionally, to avoid great variations in the 
number of orders won daily, special attention is paid to limiting the maximal number 
of offers sent per day. This number depends on the number of RFQs issued by 
consumers on that day, factory cycles won that day as a consequence of consumers 
accepting offers sent yesterday, and the total number of factory cycles needed to 
produce all active consumer orders. 

4.3.2 Calculating the prices of components in the warehouse and the profit 
margin 

The basic PC price is calculated by summing up the average prices of all the 
components incorporated in the PC. The agent always knows the price paid for each 
component in its warehouse. If the current supply of components is higher than the 
calculated optimal supply for that day, a discount for them is approved. The agent 
also gives a discount on components at the end of the game in order to sell out 
components still in the warehouse. 

The offer price (used in the Normal version of the CrocodileAgent’s algorithm for 
sending offers to consumers) is based on the previous day’s price report, which is 
delivered to the CrocodileAgent on a daily basis and contains the lowest and highest 
winning prices for each computer type. The CrocodileAgent first calculates the 
average of the highest winning prices over the last three days of the game (for each 
computer type separately). This number is then multiplied by the ordersWonFactor 
(i.e., [ ]1.07 0.92,∈actorordersWonF ). This factor which depends on factory cycles 
won that day as a consequence of consumers accepting offers sent yesterday, and the 
total number of factory cycles needed to produce all active consumer orders. 
Basically, this factor increases when the factory is too crowded since this is a sign of 
too many won bids, and decreases when the factory is not utilized well enough [Stan, 
06]. After the ordersWonFactor is applied, the final offer price is calculated in 
accordance with two additional parameters:  

• The due date listed in the customer RFQ 
• An earlier due date causes a higher offer price and vice-versa; 

• The demand level in the market segment the requested PC belongs to 
• If demand is low, the offer price decreases and vice-versa. 

4.4 The CrocodileAgent’s Production and Delivery Strategies 

Initially, the CrocodileAgent produced PCs only after receiving customer orders, i.e., 
the PCs were not manufactured in advance. Later, we added the possibility of 
producing PCs even if nobody ordered them. Due to the stochastic nature of the TAC 
SCM game, customer demand varies during the game. If the agent does not produce 
PCs and there is a low demand on the PC market, a large part of the agent’s factory 
capacities stay unutilized. If the agent produces PC stock during a period of low PC 
demand, its factory will be utilized and the agent will be prepared for a period of high 
PC demand. However, in some cases, the agent may produce more PCs than it can 
sell by the end of the game since future demands always have some degree of 
uncertainty. We tried to lower this risk by introducing quantity limits which represent 
the maximum number of PCs which can be available in stock. These limits are 
modified during of the game. As the end of the game approaches, they are lowered 
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accordingly. The limits also differ for each PC market segment. For example, if the 
CrocodileAgent predicts that the demand for Mid Range PCs will be high, it increases 
the limit for PCs in that range. 

Each day, the CrocodileAgent sorts its list of active orders in chronological order 
of their delivery dates after which the PC production and delivery algorithm is 
executed. The algorithm runs as follows: 

• If there are enough PCs in the warehouse to fulfil the order, they are reserved 
and added to the delivery schedule, 

• If there are not enough PCs, but there are enough components to 
produce the requested PCs, the components are reserved and the 
agent tries to add PCs to the production schedule, 

• The production demand will be successfully fulfilled only 
if there is enough free factory capacity for the next day, 

• After analyzing all active orders, the agent makes plans for creating PC 
stock, 

• In order to create PC stock, the agent checks the amount of free 
capacity available for the following day, whether there are enough 
components to produce the PCs, and which PC types can be 
produced without creating a larger stock than allowed. 

5 The CrocodileAgent’s performance  

The CrocodileAgent has participated in TAC SCM competitions since 2004. In this 
section, we analyze the results of controlled experiments designed to evaluate the 
impact of the changes we have made on the CrocodileAgent over the years. Since 
there were significant rule changes after the TAC SCM 2004 competition, 
CrocodileAgent 2004 is excluded from these experiments. Before the experiment 
overview, we present a brief summary of the last TAC SCM competition. 

5.1 The TAC Supply Chain Management Competition 2007 

The TAC SCM 2007 competition was divided into three parts: qualifying rounds held 
from June 14th-22nd, seeding rounds held from July 9th -17th and final rounds held 
from July 23rd-25th. There were 18 teams competing in the 2007 TAC SCM. The 
CrocodileAgent took 3rd place in the quarterfinals with an average score of 6.775 M 
and 5th place with an average score 5.116 M in the semi-finals. The CrocodileAgent 
ended its participation in TAC SCM 2007 as the Second Finals winner with an 
average score of 24.43 M. 

5.2 Experiments 

We held three competitions with some of the best agents from the TAC SCM 2006 
competition. There were six agents in each competition: five fixed opponents 
(DeepMaize, Maxon, PhantAgent, Southampton and TacTex) and one version of the 
CrocodileAgent (from TAC SCM 2005, 2006 or 2007 Final rounds). All opponent 
agents were downloaded from the Agent Repository accessible from the official TAC 
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Web page (http://www.sics.se/tac/showagents.php). Competitions were held in our 
laboratory, each consisting of 25 games. 

5.2.1 CrocodileAgent 2005 Performance 

 

Place Agent Score Games played 

1. DeepMaize 11 476 435 25 

2. PhantAgent 11 164 750 25 

3. Southampton 5 189 560 25 

4. Maxon 4 517 666 25 

5. TacTex 549 976 25 

6. CrocodileAgent 2005 -143 117 25 

Table 2: Competition 1 results at server pocahontas.zavod.tel.fer.hr 

The final ranking of the first competition is shown in Table 2. After the competition 
finished, we conducted a detailed analysis of the games played. The majority of the 
analysis was done using the CMieux Analysis and Instrumentation Toolkit for TAC 
SCM [Benisch, 05]. If we take a closer look at the overall results of the first 
competition, we can see that the agents can be divided into three groups with respect 
to their final scores and the differences between them. Since the final score is a result 
of trading in both the B2B and B2C markets, we will discuss both component 
procurement and PC sales for each agent. 
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Figure 5: The average prices of components purchased during Competition 1 
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The first task was to analyze component purchases. After gathering information 
regarding the prices agents paid for each component type and the quantities they 
purchased, we calculated the average prices. Since components with different 
performance characteristics have different prices, we used the ratio between the actual 
prices agents paid for given components and the component base prices in order to 
display the results. The average prices are shown in Figure 5.  

Since the price of a CPU accounts for more than 50% of the total PC price, it is 
very important to purchase cheap CPUs. We can see from Figure 5 that Maxon 
bought some of the cheapest CPUs, while CrocodileAgent 2005 and TacTex paid the 
highest prices for their CPUs. The situation is quite similar with non-CPU 
components: CrocodileAgent 2005 and TacTex again paid the highest prices, while 
DeepMaize and PhantAgent had the best purchasing algorithms and bought relatively 
cheap components. Maxon’s purchasing algorithm functioned much better for CPUs, 
while it bought non-CPU components at rather high prices in comparison with the 
prices paid by other agents. 

If we look at the average PC selling prices shown in Figure 6, we can see the 
obvious reason for DeepMaize winning the competition. Namely, DeepMaize sold the 
most expensive PCs (in addition to buying cheap components). TacTex also had a 
very good PC selling algorithm, but its procurement strategies considerably lowered 
its ranking. PhantAgent had a significantly better selling strategy than Southampton, 
Maxon or the CrocodileAgent, whose results were all similar. The CrocodileAgent's 
cheap PC sales, in combination with purchasing some of the most expensive 
components, are the main reasons the agent finished last in the competition. 
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Figure 6: The average prices of PCs sold during Competition 1 

5.2.2 CrocodileAgent 2006 Performance 

The performance of the CrocodileAgent which participated in TAC SCM 2006 was 
analyzed from the results obtained in the second competition. In Table 3, we can see a 
significant difference between the average results of the two leading agents which 
changed places with respect to ranking from the first competition. The ranking of the 
remaining agents did not change. 

1095Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...



 

Place Agent Score Games played 

1. PhantAgent 14 215 509 25 

2. DeepMaize 11 989 889 25 

3. Southampton 7 202 768 25 

4. Maxon 6 625 170 25 

5. TacTex 897 503 25 

6. CrocodileAgent 2006 -35 244 25 

Table 3: Competition 2 results at server pocahontas.zavod.tel.fer.hr 

The situation with respect to component procurement (see Figure 7) also 
remained the same. Maxon bought the cheapest CPUs, PhantAgent and DeepMaize 
bough the cheapest non-CPU components, while the CrocodileAgent and TacTex 
bought the most expensive components. 

When we compare the average selling prices (see Figure 8), we can see that the 
CrocodileAgent significantly improved its selling algorithm, while the performance of 
other agents was similar to their performance in the first competition. The 
improvement of the CrocodileAgent’s selling policy was most likely caused by the 
introduction of the “greedy” algorithm which is used in case there is a high consumer 
demand. Another improvement is the increase of the CrocodileAgent’s 
competitiveness in case there is a low consumer demand. It was obtained through the 
modification of the mechanism for calculating PC prices by introducing a discount for 
components which were present in the warehouse for a longer period of time.  
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Figure 7: The average prices of components purchased during Competition 2 
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Figure 8: The average prices of PCs sold during Competition 2 

5.2.3 CrocodileAgent 2007 Performance 

The third competition was carried out in order to analyze the performance of the 
CrocodileAgent which participated in TAC SCM 2007. The two leading agents again 
changed places, while the difference between their final scores was similar to their 
difference in the first competition. The ranking and the difference between 
Southampton and Maxon was also similar to that of prior competitions. We can see a 
significant improvement in the latest version of the CrocodileAgent by looking at 
Table 4. 

According to the average component purchase prices (see Figure 9), Maxon still 
bought the cheapest CPUs, although the CrocodileAgent's were just slightly more 
expensive. Furthermore, the CrocodileAgent bought the second cheapest memory and 
the cheapest motherboards and hard drives. The ratios of the other agents were the 
same as those in prior competitions. 

 

Place Agent Score Games played 

1. DeepMaize 8 916 689 25 

2. PhantAgent 8 661 415 25 

3. CrocodileAgent 2007 4 357 205 25 

4. Maxon 2 224 996 25 

5. Southampton 2 091 718 25 

6. TacTex -3 137 101 25 

Table 4: Competition 3 results at server pocahontas.zavod.tel.fer.hr 
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Figure 9: The average prices of components purchased during Competition 3 

When observing the average PC selling prices (see Figure 10), we can see that the 
CrocodileAgent sold the cheapest PCs and that its new selling algorithm obtained 
worse results than its previous one. Comparing with prior competitions, we can see 
that DeepMaize maintained the best PC selling strategy, while Southampton improved 
its results in comparison with Maxon and came closer to PhantAgent's selling PC 
prices. 
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Figure 10: The average prices of PCs sold during Competition 3 

5.2.4 Old CrocodileAgent vs New CrocodileAgent 

The purpose of the conducted experiments was to analyze the CrocodileAgent’s 
performance and compare the results of the old versions with the new one. We can 
see a significant improvement in the component purchasing mechanism (see Figure 
11). The average price paid by the agent for CPUs was more than 6% lower in the 
newest 2007 version than in the 2005 version.  
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Figure 11: The average prices the CrocodileAgent paid for components 

The best improvement among the components was achieved for CPUs which is 
very desirable since CPUs account for more than 50% of the total PC price. The 
improvement was achieved by introducing different purchasing policies for CPU and 
non-CPU components in order to prevent the agent from buying CPUs on 
significantly higher prices than usual while the lowComponentAlarm is set. The 
average prices paid for motherboards and hard drives were also several percent lower 
than in the previous versions. The price paid for memory stayed the same. This does 
not represent a significant drawback since memory is the cheapest of all the 
components involved. 

Unlike the purchasing mechanism, the modifications of the PC selling algorithm 
did not bring the expected improvements. From Figure 12, we can see that the latest 
version of the CrocodileAgent gave the lowest average PC selling price. This fact 
does not necessary mean that CrocodileAgent 2005 implemented a better selling 
mechanism than CrocodileAgent 2007 since a comparison of Figures 6, 8 and 10 
reveals that the overall average selling PC prices were lowest in Competition 3. This 
controversy, where CrocodileAgent 2007 has a significantly better total score when 
compared to CrocodileAgent 2005, but has a statistically less efficient selling 
mechanism, is a great example of SCM complexity. It is direct proof that advances in 
SCM research cannot be made by isolating one SCM task (e.g., final product selling) 
and optimizing its solution, but rather the SCM problem must be approached as 
integral and indivisible.  

Although five of six agents in Competitions 1 and 3 remained unchanged, 
different strategies utilized by CrocodileAgents 2005 and 2007 caused perceptibly 
different competition environments resulting in diverse efficiency levels and varying 
final results of the other agents. 
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Figure 12: The average PC selling prices of the CrocodileAgent and its average 
market share 

6 Related Work 

The TAC SCM game was created in 2003 in collaboration with Carnegie Mellon 
University (CMU) and the Swedish Institute of Computer Science (SICS). Since then, 
most of the agent development teams which have been competing in TAC SCM 
competitions have published several papers describing their entries in the game. Most 
of these papers can be found at http://tac.eecs.umich.edu/researchreport.html.  

There are several approaches aimed at solving supply chain management 
problems. In this section, we will address only those approaches which are used by 
the agents we chose for our experiments. 

SouthamptonSCM employs fuzzy reasoning for determining which customer 
RFQs to bid on and for adapting PC offer prices to prevailing market conditions, 
agent’s inventory level and the elapsed time of the game [He, 06]. On the B2B 
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market, the agent uses a mixed component procurement strategy to balance long and 
short-term component orders. 

PhantAgent’s architecture consists of three correlated modules that are in charge 
of the agent’s main daily tasks [Stan, 06]. Since the modules are strategically 
interdependent, finding the optimal solutions for sub-problems does not necessarily 
lead to the agent’s best overall performance. Thus, the PhantAgent uses heuristic 
approximations instead of optimization algorithms.  

The TacTex agent bases its actions on its predictions regarding the future of the 
economy in the game, with an emphasis on component supplier offer prices and 
customer demand [Pardoe, 04][Pardoe, 07]. The agent can adapt these predictions 
based on the observed behaviour of other agents in the current game. TacTex also 
adapts its strategies according to observations from past games, particularly focusing 
on other agents’ strategies with respect to buying components at the beginning of the 
game and selling computers at the end of the game. 

Deep Maize is designed to estimate the marginal values for each component and 
PC as accurately as possible, given predictions regarding market conditions and 
production constraints [Wellman, 05][Kiekintveld, 06]. The agent first performs 
centralized, high-level optimization to create a long-term projected production 
schedule. In second-stage optimization, it forms a modified objective function from 
the obtained resource values in order to make low-level decisions which affect 
individual sub problems. 

7 Conclusions and Future Work 

In this paper, we presented the CrocodileAgent, a trading agent which represents 
proof-of-concept of the proposed agent-based dynamic supply chain management 
paradigm. After a brief game description, we listed the basic TAC SCM Agent tasks 
and explained how they were implemented in CrocodileAgent 2007. Furthermore, we 
presented the performance of the CrocodileAgent in TAC SCM 2007, and analyzed a 
competition we held with CrocodileAgents 2005, 2006, and 2007, and five of the best 
agents from TAC SCM 2006. We think that this is a good way to evaluate the impact 
of the changes we have made in the CrocodileAgent over the years, and to determine 
the CrocodileAgent’s soft spots.  

A thorough analysis of the competitions was conducted. Special attention was 
given to the performance of the last version of our agent, CrocodileAgent 2007. We 
found evidence that component purchase mechanisms and algorithms for managing 
factory activities function quite well. However, the CrocodileAgent’s reactive 
algorithm for selling PCs did not perform as well as the selling algorithms employed 
by the top TAC SCM agents. This algorithm does not predict the fluctuation of prices 
on the PC market, but only reacts to its current state. Thus, further development of our 
agent will focus on improving the PC selling algorithm, with an emphasis on 
customer demand prediction and the prediction of winning PC prices. This does not 
mean that the component procurement algorithms are going to be neglected. We plan 
to improve our procurement algorithm by introducing multi-attribute decision making 
techniques for evaluating suppliers’ offers and deciding which offer to accept [Sadeh, 
03]. 
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This paper describes the shift from traditional SCM management to agile supply 
chain practices. This includes adopting more flexible contractual relationships and 
taking advantage of new levels of business interoperability across the supply chain. 
We are all witnessing the emergence of similar trends and strategic interactions in the 
service sector as well. Therefore, another important direction of our future work will 
be broadening our supply chain research from the product to the service domain (in 
the service domain, relationships across the supply chain are far more complex, so 
here we speak of supply networks). Preparation for adapting our TAC SCM agent to 
the service domain has already been done by changing our agent’s architecture from 
functional [Petric, 07a] to IKB-based. An advantage of an IKB-based architecture is 
the separation of the Information Layer (IL), the Knowledge Layer (KL) and the 
Behaviour Layer (BL), which enables the physical distribution of layers on multiple 
computers. Although the current version of the CrocodileAgent is run on only one 
computer, for future work we plan to transform the CrocodileAgent into a JADE 
[Bellifemine, 07] multi-agent system. In this system, the IL, KL and BL layers will be 
distributed across multiple computers and various JADE agents will be allocated to 
individual layers. An additional advantage of the IKB-based design model is system 
scalability. Although such architecture is not imperative for the TAC SCM 
environment, it is crucial for environments with a huge number of entities on both the 
consumer and business sides of the supply chain/network (i.e., the telecom 
environment). 
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