
An Agent-Based Solution for Dynamic Supply Chain
Management

Vedran Podobnik
(University of Zagreb, Croatia

vedran.podobnik@fer.hr)

Ana Petric
(University of Zagreb, Croatia

ana.petric@fer.hr)

Gordan Jezic
(University of Zagreb, Croatia

gordan.jezic@fer.hr)

Abstract: Supply chain management (SCM) deals with planning and coordinating activities
such as material procurement, product assembly, and the distribution of manufactured products.
This paper offers an agent-based solution as a potentially adequate approach for the automation
of supply chain management. The greatest obstacle in SCM research is obtaining benchmark
designed solutions since it is difficult to simulate real business environments, while live testing
in real-world systems is not an option. The Trading Agent Competition Supply Chain
Management (TAC SCM) scenario provides a unique testbed for studying and prototyping
SCM agents by providing a challenging game environment where competing agents engage in
complex decision-making activities with the purpose of maximizing their profit. In this paper,
we describe the TAC SCM environment and present the main features of the CrocodileAgent,
our TAC SCM 2007 entry. Additionally, the CrocodileAgent’s performance in the competition,
as well as in a series of controlled experiments, is discussed.

Keywords: supply chain management, electronic markets, software agents, trading agents,
multi-agent simulation
Categories: I.2.1, I.6.0, J.7, K.4.4

1 Introduction

Supply chain management (SCM) involves several activities, including raw material
procurement, and producing, selling, and shipping manufactured goods. In today’s
economy, supply chains are still based on static long-term relationships between
trading partners. These relationships are the main obstacle in realising dynamic
supply chains, with the market as a driving force. Dynamic SCM improves the
competitiveness of companies since it has a direct impact on their capability of
adjusting to changing market demands quickly and efficiently [Benish, 06]. Annual
worldwide supply chain transactions are counted in trillions of dollars, making this
area of research very interesting, not only to academia, but also to industry since even
the slightest improvement can bring a very high profit.

Journal of Universal Computer Science, vol. 14, no. 7 (2008), 1080-1104
submitted: 1/10/07, accepted: 21/1/08, appeared: 1/4/08 © J.UCS

The greatest obstacle in SCM research is obtaining benchmark designed solutions
since it is difficult to simulate a real business environment (due to the proprietary
nature of such systems), while live testing in real-world systems is not an option (due
to the high cost of possible errors). The Trading Agent Competition Supply Chain
Management (TAC SCM) scenario provides a unique testbed for studying and
prototyping SCM agents by providing a competitive environment in which
independently created agents can be tested against each other over the course of many
simulations in an open academic setting. In a TAC SCM game, each agent acts as an
independent computer manufacturer in a simulated economy [Pardoe, 07]. Since the
main purpose of the TAC SCM competition is to explore how to maximize the profit
in a stochastic environment of volatile market conditions, it is important to develop an
agent capable of reacting quickly to changing market conditions. Furthermore, it is
critical to implement predictive mechanisms which enable proactive agent behaviour
and provide it with a chance to plan in the face of uncertainty. The idea is to build
robust, highly-adaptable and easily-configurable mechanisms that will efficiently deal
with all SCM facets [Kontogounis, 06]. Additionally, TAC SCM tournaments provide
an opportunity to analyze effects which commonly arise in real-world business
transacting, such as the bullwhip effect, and their relationship with companies’ profits
[Jordan, 06]. Furthermore, the tournament can be helpful in developing methods to
identify the current economic regime and forecasting market changes [Ketter, 05].

In this paper, we describe the CrocodileAgent, an intelligent agent developed to
participate in the TAC SCM 2007 competition. The paper is organized as follows.
Section 2 describes why intelligent software agents are enablers of the digital
economy. In Section 3, the TAC SCM game is presented. Section 4 describes the
CrocodileAgent’s architecture and functionalities. Section 5 comments on the
CrocodileAgent’s ranking in the TAC SCM 2007 competition, and elaborates upon
the results of controlled experiments. In Section 6, related work regarding other TAC
SCM agents is presented. Section 7 proposes directions for future work and concludes
the paper.

2 Intelligent software agents as enablers of the digital economy

The connection between AI (Artificial Intelligence) and economics has received a lot
of attention recently [Wurman, 02]. The ideas proposed in this paper are also based on
that connection, while the practical implementation of the presented ideas is enabled
by the use of the agent-oriented programming (AOP) paradigm and supported by the
Internet infrastructure. Although the initial architecture of the Internet was geared
towards delivering information visually to humans, currently the Internet is
transforming into an environment filled with goal-directed applications which
intelligibly and adaptively coordinate information exchanges and actions (Web 3.0)
[Podobnik, 06a][Podobnik, 07]. At the same time, computers are evolving from single
isolated devices to entry points into a worldwide network of information exchange
and business transactions [Fensel, 04]. Consequently, the Internet is transforming into
an enabler of the digital economy. The digital economy, by proliferation of the use of
the Internet, provides a new level and form of connectivity among multiple
heterogeneous ideas and actors, giving a rise to a vast new range of business
combinations [Carlson, 04]. Additionally, by utilizing AOP, the digital economy

1081Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

automates business transactions. AOP can also be used in the realization of emerging
virtual organizations or enterprises. Here, agents represent different entities, such as
manufacturers, suppliers, service providers, brokers or other partners which
interconnect in order to take advantage of rising opportunities and/or changing needs
of the global market [Fasli, 07].

An intelligent software agent is an autonomous program which acts on behalf of
its owner (human or organizational) while conducting complex information and
communication actions over the Internet. Intelligent software agents enable automated
process execution and coordination, thus creating added value for its owner. Figure 1
presents a generic model of an intelligent software agent [Bradshaw, 97][Chorafas,
98][Jurasovic, 07][Podobnik, 07], which we used to design our TAC SCM agent.

Figure 1: A model of an intelligent software agent

An agent must possess some intelligence grounded on its knowledge base,
reasoning mechanisms and learning capabilities. The intelligence of an agent is a
prerequisite for all its other characteristics. Depending on the assignment of a
particular agent, there are differences in types of information contained in its
knowledge base. However, generally this information can be divided into two parts –
the owner’s profile and the agent’s knowledge about its environment. It is very
important to notice that the agent's knowledge base does not contain static
information. Adversely, the agent continuously updates its owner’s profile according
to its owner’s latest needs. This allows the agent to efficiently represent its owner,
thus realizing the calm technology concept. Calm technology is that which serves us,
but does not demand our focus or attention [Weiser, 97]. Furthermore, the agent also
updates knowledge regarding its environment with the latest events from its ambience
and the current state of observed parameters intrinsic to its surroundings, thus
realizing context-awareness. Context-awareness describes the ability of an agent to
provide results that depend on changing context information [Bellavista, 06]. An
agent executes tasks autonomously without any interventions from its owner, making
it an invisible servant, just as Weiser envisioned [Weiser, 97]. An agent must be
reactive, so it can properly and timely respond to impacts from its environment. An
agent not only reacts to excitations from its environment, but also takes initiatives

1082 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

coherent to its tasks. A well-defined objective is an inevitable prerequisite for
proactivity. An efficient software agent collaborates with other agents from its
surrounding: it is cooperative. If an agent is capable of migrating between
heterogeneous network nodes, this agent is called a mobile software agent [Trzec, 07].
An agent has a lifetime throughout which the persistency of its identity and its states
should be retained. Thus, it is characterized by temporal continuity.

The features of intelligent software agents described above make them perfectly
applicable in modern enterprise systems and electronic markets (e-markets). In the
past, both markets and the choices available were much smaller than they are today.
Consequently, the volatility of supply and demand functions was much more inert.
Under such market conditions, companies did not need to make important decisions
daily. Instead, they based their business transactions on long-term partnerships. The
accelerated economic globalization trend in the past decade is leading us closer to the
existence of just one market - the global one. Consequently, the functions of supply
and demand are becoming more and more dynamic and the possibilities of choice are
rising to amazing levels. This is a reason why companies today have great difficulties
in enhancing the efficiency of their current business processes, while continuously
trying to maximize their profits. Companies are instantly forced to make lots of
important decisions, while global competition and perpetually shorter product life
cycles are forcing them to explore more agile practices. Keeping in mind the great
volatility which characterizes the complex set of market conditions and the vast
quantity of available information, a possible solution for improving business
efficiency is automating business processes and minimizing human decision-making
(where this is possible). Humans simply do not possess the cognitive ability to
process such enormous quantities of information (and make adequate decisions) in the
few moments during which the relevant information does not change. A very logical
solution to this problem lies in the application of the AOP paradigm – i.e., the
creation of computer programs with the ability to completely autonomously manage a
set of tasks.

3 The TAC Supply Chain Management Game

The Trading Agent Competition (TAC) (http://www.sics.se/tac) is an international
forum that promotes high-quality research on the trading agent problem. One of its
game scenarios is the TAC SCM. In the TAC SCM game [Eriksson, 06][Collins, 07]
scenario, each of the six agents included in the game has its own PC (Personal
Computer) manufacturing company. During the 220 TAC SCM days, agents compete
in a simulated economy composed of two different markets, as shown in Figure 2.
The length of one TAC SCM day is 15 seconds of real time.

In the B2B (Business-to-Business) market, agents compete in buying the raw
materials necessary to produce PCs [Sardinha, 07]. Participants in this market are all
the agents and eight suppliers which produce four types of components (CPUs,
motherboards, memory, hard drives) with different features. In its factory, an agent
can manufacture 16 different types of PCs. In the B2C (Business-to-Consumer)
market, agents compete in selling all the PCs they produced to customers and, at the
same time, trying to earn as much money as possible.

1083Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

B2C e-market

TAC S CM
S YS TEM

RFQs &
orders

Offers

Shipment
planning

Production
coordination

RFQs &
orders

Offers

Warehouse

PC factoryTAC SCM
Agent

SCM

Six TAC SCM Agents & eight suppliers
producing four types of components
with different performance measures

Each TAC SCM Agent
has its own PC

assembling factory
with limited capacity,
in which 16 different
types of PCs divided

into three market
segments can be

manufactured

Six TAC SCM Agents & hundreds of
customers with varying demand and

reserve prices

1 16

B2B e-market

Figure 2: Relationships in the TAC SCM system

3.1 The architecture of TAC SCM system

The architecture of the TAC SCM system is shown in Figure 3. The TAC SCM game
server simulates suppliers (PC component manufacturers), customers (PC buyers) and
the bank. The game server also controls agents’ factories and warehouses. In order to
participate in the game, an agent has to connect to the game server. Each TAC SCM
agent has a bank account and receives a daily report regarding its current bank
balance. At the beginning of the game, the agent has no money and must therefore
loan money from the bank. The bank charges the agent interest for every day that the
agent is in debt. The winner of the game is the agent with the highest balance on its
bank account at the end of the game.

Each day, agents receive messages from the game server with all relevant
information concerning the state of the game, customers, suppliers, the bank and their
own factory and warehouse. Messages that an agent exchanges with customers and
suppliers are not available to other agents and there is no interaction between the
agents themselves. Hence, each agent faces strategic uncertainty since the strategies
of other agents remain unknown. Agents’ responsibilities can be divided into three
main tasks, which are described in the following subsections. They are:

• component procurement,
• product sales, and
• production and delivery.

1084 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

Figure 3: The architecture of the TAC SCM system

3.2 Component Procurement

In order to sell PCs, it is necessary to purchase components and produce PCs from
them. There are four different types of components: CPUs, motherboards, memory,
hard drives. PCs are assembled from one component of each type and there are two
suppliers for each type of component. A supplier has to handle three main daily tasks:

• manage limited production capacity which varies during the game,
• reply to agents’ Requests for Quotes (RFQs) by sending offers,
• ship ordered components to agents.

The purchasing protocol is rather simple. The agent sends RFQs to the supplier

that produces the needed component. The RFQ contains the requested quantity,
delivery date and the price the agent is willing to pay for the certain component type.
The supplier responds with an offer. Due to production capacity restrictions, it is
possible that the supplier may not be able to deliver the requested quantity by the
desired delivery date. If such is the case, it sends the agent two types of offers: a
partial offer proposing a smaller quantity of components than requested; and an
earliest complete offer proposing a later delivery date by which the requested quantity
could be delivered. If one of these offers fits the agent’s needs, the agent replies with
an order. Suppliers use reputation rating to discourage agents from sending RFQs
with no intention of buying in order to raise component prices by creating seemingly
high component demand.

3.3 Product Sales

Agents earn money by producing PCs and selling them to customers. The PC
purchasing protocol is very similar to the component purchasing protocol. Each day,
customers send RFQs to agents. Each RFQ specifies the requested PC type, quantity,

1085Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

due date, the reserve price they are willing to pay for the PCs, and the penalty the
agent will have to pay if the PCs are not delivered by the requested due date. Unlike
suppliers, agents cannot send different types of offers. The only parameter the agent
can negotiate on is the PC price. After receiving offers from all interested agents, the
customer sends an order to the agent who offered the cheapest PCs.

Agents whose offer was not the winning one are not informed about the winning
price or prices offered by other agents. The only information they receive is the
highest and the lowest price at which a certain PC type was sold on the previous day.
The number of RFQs and the RFQ parameters themselves vary throughout the game
according to a random walk, increasing the risk and uncertainty agents face each day.

3.4 Production and Delivery

Each agent has its own PC assembling factory and a warehouse for storing
components and assembled PCs. Each of four component types comes in two
different versions based on its characteristics. From these components, a total of 16
types of PCs can be assembled. Depending on the combination of components, PCs
require a different number of assembly cycles and can be classified into three market
segments: High range, Mid range, and Low range. The factory has a limited number
of assembly cycles so an agent has to carefully organize production in order to fulfil
all received customer orders. A storage fee is charged for keeping components and
PCs in the warehouse. This is meant to discourage agents from piling up a large
inventory over a long period of time.

4 Overview of the CrocodileAgent 2007

The CrocodileAgent is an intelligent trading agent developed at the Department of
Telecommunications, Faculty of Electrical Engineering and Computing in Zagreb,
Croatia. The CrocodileAgent [Petric, 05][Podobnik, 06b][Petric, 07a][Petric, 07b] is a
long-standing participant in TAC SCM competitions [Arunachalam, 05][Wellman,
05][Eriksson, 06].

4.1 The CrocodileAgent’s Architecture

The CrocodileAgent's architecture, shown in Figure 4, is based on incorporating the
generic intelligent software agent model (see Figure 1) into the Information-
Knowledge-Behaviour (IKB) framework [Vytelingum, 05]. The IKB framework is a
three layered agent-based framework for designing strategies in e-markets.

The first layer is the Information Layer (IL) which gathers data from the ongoing
game and assigns that data a meaning. This data can be divided into two parts: data
gathered from the market which is available to all agents (i.e., public data) and private
data regarding the agent's own states and actions throughout the game. Due to a
limited capacity, the IL cannot contain all the data available about the game. The data
that gets stored into the IL is determined by the Data Filter (DF).

1086 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

Behavioural layer

Knowledge layer

Information layer

Public information: public data given meaning
Private information

State of the market

Complete/incomplete public data
Perfect/imperfect public data

Data filter

E-MARKET

INTELLIGENT
TRADING
AGENT

(TAC SCM ENVIRONMENT)

AUTONOMY

REACTIVITY PROACTIVITY COOPERATIVITY

TEMPORAL
CONTINUITY

Learning
capabilities

Reasoning
mechanisms

Knowledge
about

environment

Knowledge
base

ADAPTIVITY

Owner's
profile

INTELLIGENCE

Knowledge derived from useful public and private
information

Figure 4: The CrocodileAgent's architecture

The second layer is the Knowledge Layer (KL) which represents knowledge
acquired from the information stored in the IL. The KL also contains data obtained
from previous games, enabling the agent to learn from past experiences. The KL
determines and modifies settings of the DF. Knowledge contained in the KL’s
knowledge base can be divided into the owner’s profile (i.e., the model of agent’s
owner) and the knowledge about its environment (i.e., the model of the market).

The third layer is the Behavioural Layer (BL) which is a decision-making
component that determines the agent's strategic behaviour. The BL uses knowledge
from the KL and utilises the agent’s reasoning capabilities to make important
decisions regarding component purchases, the production schedule, PC sales and
shipment.

1087Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

4.2 The CrocodileAgent’s Procurement Strategy

Component procurement mechanisms are responsible for assuring that there is always
enough components in stock (in order to maintain maximal utilization of production
capacity), while aiming to purchase components at the lowest possible price. Since a
storage fee is charged for keeping components in the warehouse, there is also
motivation to maintain minimal component stocks to reduce storage costs. The
uncertainty of future consumer demand, as well as supplier production, makes this
problem even more complex. Consequently, TAC SCM agents must balance between
short-term and long-term procurement, while constantly making trade-offs between
the quantity and price of their orders.

There are two different aspects of component procurement in the TAC SCM
game: day0 component procurement and ordering components during the game. A
close examination of the TAC SCM game rules [Collins, 07] suggests that
procurement of components at the very beginning of the game (day0 procurement)
may provide an agent with cheap components for the beginning of the game (since
there is no prior component demand), while long-term procurement in first few days
may ensure an agent have components with decent prices throughout the game.

4.2.1 Day0 procurement

The most important parameters used in day0 component procurement are:
• ddel[5] – the requested delivery dates,
• pmin[5] – the minimum prices (i.e., the reserve prices),
• qCPU[5] – the requested CPU quantities,
• qoth[5] – the requested quantities of other components than CPUs,
• pnom – the nominal component prices.

ddel pmin qCPU qoth

3 1.05×pnom
 150 300

5 1.02×pnom
 300 600

7 1.01×pnom
 300 600

10 0.97×pnom
 300 600

13 0.95×pnom
 450 900

Table 1: The actual parameter values in day0 RFQs

The goal of using the day0 procurement strategy is to obtain components for the
beginning of the game, when there is a lot of pressure on suppliers due to agents’
empty warehouses. The CrocodileAgent sends the day-maximum of five RFQs with
the parameters set to those shown in Table 1. The referred parameters were
determined after conducting a series of experiments. An unfavourable situation occurs

1088 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

when the chosen supplier cannot deliver the requested quantity on time. In this case,
the agent accepts partial offers.

4.2.2 Component purchase during the game

The most important parameters used in component purchase during the game are:
• Nmin – the minimal quantity of components required to be in storage (i.e.,

375 for CPUs and 750 for other components),
• Nmax – the maximal quantity of components allowed in storage (i.e., 550 for

CPUs and 1100 for other components),
• Nord – the maximal amount of components that can be ordered each day (i.e.,

150 for CPUs and 300 for other components),
• Ntdy – the quantity of a certain component used in PC production on the

current day,
• Ninv – the number of components currently stored in the warehouse,
• pmin – the minimum prices (i.e., the reserve prices),
• pnom – the nominal component prices.

It is important to point out that the values of parameters Nmin, Nmax and Nord are

not fixed throughout the game. In fact, they are multiplied by a dayFactor, which is
equal to 1 for the first 30 days, then increases linearly from 1 to 1.5 between days 31
and 140, and finally decreases linearly from 1.5 to 0.7 between days 141 and 200. The
dayFactor then stays at this level until the end of the game.

A special aspect of component purchase during the game is long-term
procurement. Although utilization of the long-term procurement strategy involves
certain risks, such as the possibility of creating a huge component stock and potential
component overpay (in games with longer periods of low consumer demand),
utilization of this strategy plays an important role in games with longer periods of
high consumer demand. This stems from the fact that component prices are usually
high (when consumer demand is high), while at the same time component availability
for short-term orders is usually very poor. In order to ensure an agent have decently-
priced components throughout the game, the CrocodileAgent uses the maximum of
five RFQs per day for the first 20 days of the game (components needed during those
days are purchased through day0 procurement, if possible). This gives a total of one
hundred RFQs in which the CrocodileAgent sends offers for long-term purchases of
all types of components. Delivery dates are uniformly distributed between days 15
and 210, making components arrive regularly every other day. The exact quantities
(i.e., []155 105,N ∈ for the CPUs and []315 180,N ∈ for other components) and
reserve prices (i.e., [] nommin p0.69 0.62,p ×∈ for the RFQs with later delivery due
dates and [] nommin p0.85 0.82,p ×∈ for the RFQs with earlier delivery due dates) in
these long-term RFQs depend only on the requested delivery due date. The referred
values were determined after conducting a series of experiments.

After day 20, the CrocodileAgent begins to apply short-term (lead time less than
7) and medium-term (lead time between 7 and 30) purchasing. At the start of each
day, the agent calculates the component quantity ordered, but not delivered, up to that
moment for each component separately. Since the orders with an earlier delivery date
will provide components earlier, the agent’s ordered quantities of components are

1089Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

multiplied with a distance factor. The distance factor is a value between 0 and 1; the
factor shrinks from 1 to 0 as the delivery date grows. When the delivery date reaches
30 days (from the current day) the distance factor becomes 0. The parameter obtained
by performing this calculation is referred to as the evaluatedQuantity. Similarly, the
evaluatedLongTermQuantity is calculated, which represents the quantity of all the
ordered components that have a delivery date higher than 30 days.

For each component, the agent checks to see if the following condition is met:

Ninv + evaluatedQuantity ≥ Nmax (1)

If so, the components are not ordered. However, in spite of condition (1), there
are two situations in which the CrocodileAgent may send some RFQs to component
suppliers. The first situation is a consequence of the fact that, due to the volatility of
supplier capacities throughout the game, the prices offered in response to RFQs
requesting near-immediate delivery are very unpredictable. To allow for the
possibility of achieving low-priced procurement (i.e., [] nommin p0.65 0.6,p ×∈), the
CrocodileAgent sends two RFQs requesting small quantities due within 2 days (the
minimum delivery timeframe possible). The exact quantities and reserve prices in 2-
day RFQs depend on the current date and Ninv. 2-day RFQs enable the agent to be
opportunistic in taking advantage of short-term bargains on components without
being dependent on the availability of such bargains [Pardoe, 06]. The second
situation in which the CrocadileAgent can ignore fulfilment of condition (1) is when it
has not sent any RFQs for a certain component over a longer period of time (at least
10 days). If the current date is before day 130 and the evaluatedLongTermQuantity is
lower than its upper limit (i.e, 1.77×Nmax), the agent sends one short-term RFQ to
ensure cheap components (i.e., [] nommin p0.67 0.62,p ×∈ and quantities are set to the
0.8×Nord) for the later stage of the game.

If condition (1) is not met, the following condition is considered:

Ninv + Ntdy > Nmin (2)

If condition (2) is not fulfilled, the agent purchases components more
aggressively with the aim of getting the number of components in the warehouse
above Nmin as soon as possible (i.e., the agent sends five RFQs requesting near-
immediate delivery and relaxes the pmin towards higher values). Otherwise, the
CrocodileAgent also sends five RFQs, but with the aim of maintaining the present
quantity of components in the warehouse.

It is important to point out that these are only the main characteristics of the
algorithm. Additionally, there are special mechanisms which calculate pmin and the
exact quantities which need to be ordered. A simplified description of some of these
mechanisms follows:

• The lowComponentAlarm contains several levels and marks a very low
quantity of a certain component in the warehouse. In case the alarm is set,
the agent is allowed to pay a higher price than usual for the corresponding
component.

• The demandPurchaseQuantityFactor is modified according to customer
demand. Sometimes during the game, customer demand may rise rapidly.
When this happens, the agent uses more components to produce more PCs.

1090 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

In this case, the parameter is increased to ensure that the agent does not run
out of components and consequently loose potentially profitable PC orders.

Special attention was paid to the end of the game. The intention was to maintain
at least a minimal level of all components in the warehouse up until the game’s end to
enable the CrocodileAgent to fulfil orders from customers for as long as possible. It is
very important to allow the agent to send RFQs requesting near-immediate delivery of
any type of component to prevent the situation where a large quantity of one
component is left over because the agent had to use all the other components to
produce a certain type of PC.

4.3 The CrocodileAgent’s Sales Strategy

Component procurement mechanisms are responsible for deciding which computers
to offer at what prices so that the available resources are used as efficiently as
possible. This usually leads to computing the highest offer price that can maintain
maximal factory utilization, while still obtaining marginal profit [Stan, 06].

4.3.1 An algorithm for sending offers

The CrocodileAgent sorts RFQs in decreasing order of their reserve prices, for every
PC type separately. After sorting RFQs, the agent starts to send offers if the agent’s
PC production cost (increased for the current days’ minimal profit percentage) is
lower than the customer’s reserve PC price and if the requested PCs can be delivered
from the already produced PC stock stored in the warehouse. In case the latter
condition is not fulfilled, the agent checks whether there are enough components
available to produce the requested PCs.

This algorithm comes in four versions. The version that is active on a certain day
depends on the stage of the game (beginning, middle, end), the number of production
cycles needed to produce all active orders, and the version of the algorithm that was
used the day before. These four versions mainly differ with respect to the method of
determining offer prices for PCs. The version most frequently used during the game is
the Normal version which determines the offer price using the method described in
subsection 4.3.2. The High Demand Version uses a “greedy” algorithm since offer
prices for PCs are always slightly lower than the customer’s reserve price. This
version is used when there is a very high customer demand for PCs since, in such
cases, agents do not usually send offers for all the RFQs received. The Game Start
Version is used in the beginning stage of the game, where only a few offers with very
high offer prices are sent to consumers since the CrocodileAgent’s component stocks
are not yet created. The End Game Version is used in the finishing stage of the game.
This version differs from the other three in the fact that it sorts RFQs in increasing
order of their corresponding penalties. The main aim of this version is to sell out the
whole inventory in the warehouse so that the profit the agent adds to the basic PC
price is minimal. All versions of the selling algorithm implement a mechanism for
preventing late deliveries. Each day, the agent monitors its obligations to customers
by calculating the number of factory cycles needed to fulfil its existing orders. Based
on this information, it determines the earliest possible delivery date for sending new
PC offers. This way the agent is prevented from sending offers which cannot be

1091Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

delivered by the requested delivery date. Additionally, to avoid great variations in the
number of orders won daily, special attention is paid to limiting the maximal number
of offers sent per day. This number depends on the number of RFQs issued by
consumers on that day, factory cycles won that day as a consequence of consumers
accepting offers sent yesterday, and the total number of factory cycles needed to
produce all active consumer orders.

4.3.2 Calculating the prices of components in the warehouse and the profit
margin

The basic PC price is calculated by summing up the average prices of all the
components incorporated in the PC. The agent always knows the price paid for each
component in its warehouse. If the current supply of components is higher than the
calculated optimal supply for that day, a discount for them is approved. The agent
also gives a discount on components at the end of the game in order to sell out
components still in the warehouse.

The offer price (used in the Normal version of the CrocodileAgent’s algorithm for
sending offers to consumers) is based on the previous day’s price report, which is
delivered to the CrocodileAgent on a daily basis and contains the lowest and highest
winning prices for each computer type. The CrocodileAgent first calculates the
average of the highest winning prices over the last three days of the game (for each
computer type separately). This number is then multiplied by the ordersWonFactor
(i.e., []1.07 0.92,∈actorordersWonF). This factor which depends on factory cycles
won that day as a consequence of consumers accepting offers sent yesterday, and the
total number of factory cycles needed to produce all active consumer orders.
Basically, this factor increases when the factory is too crowded since this is a sign of
too many won bids, and decreases when the factory is not utilized well enough [Stan,
06]. After the ordersWonFactor is applied, the final offer price is calculated in
accordance with two additional parameters:

• The due date listed in the customer RFQ
• An earlier due date causes a higher offer price and vice-versa;

• The demand level in the market segment the requested PC belongs to
• If demand is low, the offer price decreases and vice-versa.

4.4 The CrocodileAgent’s Production and Delivery Strategies

Initially, the CrocodileAgent produced PCs only after receiving customer orders, i.e.,
the PCs were not manufactured in advance. Later, we added the possibility of
producing PCs even if nobody ordered them. Due to the stochastic nature of the TAC
SCM game, customer demand varies during the game. If the agent does not produce
PCs and there is a low demand on the PC market, a large part of the agent’s factory
capacities stay unutilized. If the agent produces PC stock during a period of low PC
demand, its factory will be utilized and the agent will be prepared for a period of high
PC demand. However, in some cases, the agent may produce more PCs than it can
sell by the end of the game since future demands always have some degree of
uncertainty. We tried to lower this risk by introducing quantity limits which represent
the maximum number of PCs which can be available in stock. These limits are
modified during of the game. As the end of the game approaches, they are lowered

1092 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

accordingly. The limits also differ for each PC market segment. For example, if the
CrocodileAgent predicts that the demand for Mid Range PCs will be high, it increases
the limit for PCs in that range.

Each day, the CrocodileAgent sorts its list of active orders in chronological order
of their delivery dates after which the PC production and delivery algorithm is
executed. The algorithm runs as follows:

• If there are enough PCs in the warehouse to fulfil the order, they are reserved
and added to the delivery schedule,

• If there are not enough PCs, but there are enough components to
produce the requested PCs, the components are reserved and the
agent tries to add PCs to the production schedule,

• The production demand will be successfully fulfilled only
if there is enough free factory capacity for the next day,

• After analyzing all active orders, the agent makes plans for creating PC
stock,

• In order to create PC stock, the agent checks the amount of free
capacity available for the following day, whether there are enough
components to produce the PCs, and which PC types can be
produced without creating a larger stock than allowed.

5 The CrocodileAgent’s performance

The CrocodileAgent has participated in TAC SCM competitions since 2004. In this
section, we analyze the results of controlled experiments designed to evaluate the
impact of the changes we have made on the CrocodileAgent over the years. Since
there were significant rule changes after the TAC SCM 2004 competition,
CrocodileAgent 2004 is excluded from these experiments. Before the experiment
overview, we present a brief summary of the last TAC SCM competition.

5.1 The TAC Supply Chain Management Competition 2007

The TAC SCM 2007 competition was divided into three parts: qualifying rounds held
from June 14th-22nd, seeding rounds held from July 9th -17th and final rounds held
from July 23rd-25th. There were 18 teams competing in the 2007 TAC SCM. The
CrocodileAgent took 3rd place in the quarterfinals with an average score of 6.775 M
and 5th place with an average score 5.116 M in the semi-finals. The CrocodileAgent
ended its participation in TAC SCM 2007 as the Second Finals winner with an
average score of 24.43 M.

5.2 Experiments

We held three competitions with some of the best agents from the TAC SCM 2006
competition. There were six agents in each competition: five fixed opponents
(DeepMaize, Maxon, PhantAgent, Southampton and TacTex) and one version of the
CrocodileAgent (from TAC SCM 2005, 2006 or 2007 Final rounds). All opponent
agents were downloaded from the Agent Repository accessible from the official TAC

1093Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

Web page (http://www.sics.se/tac/showagents.php). Competitions were held in our
laboratory, each consisting of 25 games.

5.2.1 CrocodileAgent 2005 Performance

Place Agent Score Games played

1. DeepMaize 11 476 435 25

2. PhantAgent 11 164 750 25

3. Southampton 5 189 560 25

4. Maxon 4 517 666 25

5. TacTex 549 976 25

6. CrocodileAgent 2005 -143 117 25

Table 2: Competition 1 results at server pocahontas.zavod.tel.fer.hr

The final ranking of the first competition is shown in Table 2. After the competition
finished, we conducted a detailed analysis of the games played. The majority of the
analysis was done using the CMieux Analysis and Instrumentation Toolkit for TAC
SCM [Benisch, 05]. If we take a closer look at the overall results of the first
competition, we can see that the agents can be divided into three groups with respect
to their final scores and the differences between them. Since the final score is a result
of trading in both the B2B and B2C markets, we will discuss both component
procurement and PC sales for each agent.

65%

70%

75%

80%

85%

90%

CPUs Motherboards Memory Hard drives

Pe
rc

en
ta

ge
 o

f
co

m
po

ne
nt

 b
as

e
pr

ic
e

Component type

CrocodileAgent2005 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 5: The average prices of components purchased during Competition 1

1094 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

The first task was to analyze component purchases. After gathering information
regarding the prices agents paid for each component type and the quantities they
purchased, we calculated the average prices. Since components with different
performance characteristics have different prices, we used the ratio between the actual
prices agents paid for given components and the component base prices in order to
display the results. The average prices are shown in Figure 5.

Since the price of a CPU accounts for more than 50% of the total PC price, it is
very important to purchase cheap CPUs. We can see from Figure 5 that Maxon
bought some of the cheapest CPUs, while CrocodileAgent 2005 and TacTex paid the
highest prices for their CPUs. The situation is quite similar with non-CPU
components: CrocodileAgent 2005 and TacTex again paid the highest prices, while
DeepMaize and PhantAgent had the best purchasing algorithms and bought relatively
cheap components. Maxon’s purchasing algorithm functioned much better for CPUs,
while it bought non-CPU components at rather high prices in comparison with the
prices paid by other agents.

If we look at the average PC selling prices shown in Figure 6, we can see the
obvious reason for DeepMaize winning the competition. Namely, DeepMaize sold the
most expensive PCs (in addition to buying cheap components). TacTex also had a
very good PC selling algorithm, but its procurement strategies considerably lowered
its ranking. PhantAgent had a significantly better selling strategy than Southampton,
Maxon or the CrocodileAgent, whose results were all similar. The CrocodileAgent's
cheap PC sales, in combination with purchasing some of the most expensive
components, are the main reasons the agent finished last in the competition.

76%

77%

78%

79%

80%

81%

82%

83%

84%

Low Mid High

Pe
rc

en
ta

ge
 o

f
ba

se
 p

ri
ce

Market Segment

CrocodileAgent2005 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 6: The average prices of PCs sold during Competition 1

5.2.2 CrocodileAgent 2006 Performance

The performance of the CrocodileAgent which participated in TAC SCM 2006 was
analyzed from the results obtained in the second competition. In Table 3, we can see a
significant difference between the average results of the two leading agents which
changed places with respect to ranking from the first competition. The ranking of the
remaining agents did not change.

1095Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

Place Agent Score Games played

1. PhantAgent 14 215 509 25

2. DeepMaize 11 989 889 25

3. Southampton 7 202 768 25

4. Maxon 6 625 170 25

5. TacTex 897 503 25

6. CrocodileAgent 2006 -35 244 25

Table 3: Competition 2 results at server pocahontas.zavod.tel.fer.hr

The situation with respect to component procurement (see Figure 7) also
remained the same. Maxon bought the cheapest CPUs, PhantAgent and DeepMaize
bough the cheapest non-CPU components, while the CrocodileAgent and TacTex
bought the most expensive components.

When we compare the average selling prices (see Figure 8), we can see that the
CrocodileAgent significantly improved its selling algorithm, while the performance of
other agents was similar to their performance in the first competition. The
improvement of the CrocodileAgent’s selling policy was most likely caused by the
introduction of the “greedy” algorithm which is used in case there is a high consumer
demand. Another improvement is the increase of the CrocodileAgent’s
competitiveness in case there is a low consumer demand. It was obtained through the
modification of the mechanism for calculating PC prices by introducing a discount for
components which were present in the warehouse for a longer period of time.

65%

70%

75%

80%

85%

90%

CPUs Motherboards Memory Hard drives

Pe
rc

en
ta

ge
 o

f
co

m
po

ne
nt

 b
as

e
pr

ic
e

Component type

CrocodileAgent2006 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 7: The average prices of components purchased during Competition 2

1096 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

76%

77%
78%

79%
80%
81%

82%
83%

84%

Low Mid High

Pe
rc

en
ta

ge
 o

f
ba

se
 p

ri
ce

Market Segment

CrocodileAgent2006 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 8: The average prices of PCs sold during Competition 2

5.2.3 CrocodileAgent 2007 Performance

The third competition was carried out in order to analyze the performance of the
CrocodileAgent which participated in TAC SCM 2007. The two leading agents again
changed places, while the difference between their final scores was similar to their
difference in the first competition. The ranking and the difference between
Southampton and Maxon was also similar to that of prior competitions. We can see a
significant improvement in the latest version of the CrocodileAgent by looking at
Table 4.

According to the average component purchase prices (see Figure 9), Maxon still
bought the cheapest CPUs, although the CrocodileAgent's were just slightly more
expensive. Furthermore, the CrocodileAgent bought the second cheapest memory and
the cheapest motherboards and hard drives. The ratios of the other agents were the
same as those in prior competitions.

Place Agent Score Games played

1. DeepMaize 8 916 689 25

2. PhantAgent 8 661 415 25

3. CrocodileAgent 2007 4 357 205 25

4. Maxon 2 224 996 25

5. Southampton 2 091 718 25

6. TacTex -3 137 101 25

Table 4: Competition 3 results at server pocahontas.zavod.tel.fer.hr

1097Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

65%

70%

75%

80%

85%

90%

CPUs Motherboards Memory Hard drives

Pe
rc

en
ta

ge
 o

f
co

m
po

ne
nt

 b
as

e
pr

ic
e

Component type

CrocodileAgent2007 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 9: The average prices of components purchased during Competition 3

When observing the average PC selling prices (see Figure 10), we can see that the
CrocodileAgent sold the cheapest PCs and that its new selling algorithm obtained
worse results than its previous one. Comparing with prior competitions, we can see
that DeepMaize maintained the best PC selling strategy, while Southampton improved
its results in comparison with Maxon and came closer to PhantAgent's selling PC
prices.

76%

77%

78%

79%

80%

81%

82%

Low Mid High

Pe
rc

en
ta

ge
 o

f
ba

se
 p

ri
ce

Market Segment

CrocodileAgent2007 DeepMaize Maxon PhantAgent Southampton TacTex

Figure 10: The average prices of PCs sold during Competition 3

5.2.4 Old CrocodileAgent vs New CrocodileAgent

The purpose of the conducted experiments was to analyze the CrocodileAgent’s
performance and compare the results of the old versions with the new one. We can
see a significant improvement in the component purchasing mechanism (see Figure
11). The average price paid by the agent for CPUs was more than 6% lower in the
newest 2007 version than in the 2005 version.

1098 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

68%

70%

72%

74%

76%

78%

80%

82%

84%

86%

CrocodileAgent2005 CrocodileAgent2006 CrocodileAgent2007

Pe
rc

en
ta

ge
 o

f
ba

se
 p

ri
ce

CPUs Motherboards Memory Hard drives

Figure 11: The average prices the CrocodileAgent paid for components

The best improvement among the components was achieved for CPUs which is
very desirable since CPUs account for more than 50% of the total PC price. The
improvement was achieved by introducing different purchasing policies for CPU and
non-CPU components in order to prevent the agent from buying CPUs on
significantly higher prices than usual while the lowComponentAlarm is set. The
average prices paid for motherboards and hard drives were also several percent lower
than in the previous versions. The price paid for memory stayed the same. This does
not represent a significant drawback since memory is the cheapest of all the
components involved.

Unlike the purchasing mechanism, the modifications of the PC selling algorithm
did not bring the expected improvements. From Figure 12, we can see that the latest
version of the CrocodileAgent gave the lowest average PC selling price. This fact
does not necessary mean that CrocodileAgent 2005 implemented a better selling
mechanism than CrocodileAgent 2007 since a comparison of Figures 6, 8 and 10
reveals that the overall average selling PC prices were lowest in Competition 3. This
controversy, where CrocodileAgent 2007 has a significantly better total score when
compared to CrocodileAgent 2005, but has a statistically less efficient selling
mechanism, is a great example of SCM complexity. It is direct proof that advances in
SCM research cannot be made by isolating one SCM task (e.g., final product selling)
and optimizing its solution, but rather the SCM problem must be approached as
integral and indivisible.

Although five of six agents in Competitions 1 and 3 remained unchanged,
different strategies utilized by CrocodileAgents 2005 and 2007 caused perceptibly
different competition environments resulting in diverse efficiency levels and varying
final results of the other agents.

1099Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

76%

77%

78%

79%

80%

81%

82%
Pe

rc
en

ta
ge

 o
f

ba
se

 p
ri

ce

Low

Mid

High

13%

14%

15%

16%

CrocodileAgent2005 CrocodileAgent2006 CrocodileAgent2007

Pe
rc

en
ta

ge
 o

f
m

ar
ke

t
sh

ar
e

Market
Share

Figure 12: The average PC selling prices of the CrocodileAgent and its average
market share

6 Related Work

The TAC SCM game was created in 2003 in collaboration with Carnegie Mellon
University (CMU) and the Swedish Institute of Computer Science (SICS). Since then,
most of the agent development teams which have been competing in TAC SCM
competitions have published several papers describing their entries in the game. Most
of these papers can be found at http://tac.eecs.umich.edu/researchreport.html.

There are several approaches aimed at solving supply chain management
problems. In this section, we will address only those approaches which are used by
the agents we chose for our experiments.

SouthamptonSCM employs fuzzy reasoning for determining which customer
RFQs to bid on and for adapting PC offer prices to prevailing market conditions,
agent’s inventory level and the elapsed time of the game [He, 06]. On the B2B

1100 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

market, the agent uses a mixed component procurement strategy to balance long and
short-term component orders.

PhantAgent’s architecture consists of three correlated modules that are in charge
of the agent’s main daily tasks [Stan, 06]. Since the modules are strategically
interdependent, finding the optimal solutions for sub-problems does not necessarily
lead to the agent’s best overall performance. Thus, the PhantAgent uses heuristic
approximations instead of optimization algorithms.

The TacTex agent bases its actions on its predictions regarding the future of the
economy in the game, with an emphasis on component supplier offer prices and
customer demand [Pardoe, 04][Pardoe, 07]. The agent can adapt these predictions
based on the observed behaviour of other agents in the current game. TacTex also
adapts its strategies according to observations from past games, particularly focusing
on other agents’ strategies with respect to buying components at the beginning of the
game and selling computers at the end of the game.

Deep Maize is designed to estimate the marginal values for each component and
PC as accurately as possible, given predictions regarding market conditions and
production constraints [Wellman, 05][Kiekintveld, 06]. The agent first performs
centralized, high-level optimization to create a long-term projected production
schedule. In second-stage optimization, it forms a modified objective function from
the obtained resource values in order to make low-level decisions which affect
individual sub problems.

7 Conclusions and Future Work

In this paper, we presented the CrocodileAgent, a trading agent which represents
proof-of-concept of the proposed agent-based dynamic supply chain management
paradigm. After a brief game description, we listed the basic TAC SCM Agent tasks
and explained how they were implemented in CrocodileAgent 2007. Furthermore, we
presented the performance of the CrocodileAgent in TAC SCM 2007, and analyzed a
competition we held with CrocodileAgents 2005, 2006, and 2007, and five of the best
agents from TAC SCM 2006. We think that this is a good way to evaluate the impact
of the changes we have made in the CrocodileAgent over the years, and to determine
the CrocodileAgent’s soft spots.

A thorough analysis of the competitions was conducted. Special attention was
given to the performance of the last version of our agent, CrocodileAgent 2007. We
found evidence that component purchase mechanisms and algorithms for managing
factory activities function quite well. However, the CrocodileAgent’s reactive
algorithm for selling PCs did not perform as well as the selling algorithms employed
by the top TAC SCM agents. This algorithm does not predict the fluctuation of prices
on the PC market, but only reacts to its current state. Thus, further development of our
agent will focus on improving the PC selling algorithm, with an emphasis on
customer demand prediction and the prediction of winning PC prices. This does not
mean that the component procurement algorithms are going to be neglected. We plan
to improve our procurement algorithm by introducing multi-attribute decision making
techniques for evaluating suppliers’ offers and deciding which offer to accept [Sadeh,
03].

1101Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

This paper describes the shift from traditional SCM management to agile supply
chain practices. This includes adopting more flexible contractual relationships and
taking advantage of new levels of business interoperability across the supply chain.
We are all witnessing the emergence of similar trends and strategic interactions in the
service sector as well. Therefore, another important direction of our future work will
be broadening our supply chain research from the product to the service domain (in
the service domain, relationships across the supply chain are far more complex, so
here we speak of supply networks). Preparation for adapting our TAC SCM agent to
the service domain has already been done by changing our agent’s architecture from
functional [Petric, 07a] to IKB-based. An advantage of an IKB-based architecture is
the separation of the Information Layer (IL), the Knowledge Layer (KL) and the
Behaviour Layer (BL), which enables the physical distribution of layers on multiple
computers. Although the current version of the CrocodileAgent is run on only one
computer, for future work we plan to transform the CrocodileAgent into a JADE
[Bellifemine, 07] multi-agent system. In this system, the IL, KL and BL layers will be
distributed across multiple computers and various JADE agents will be allocated to
individual layers. An additional advantage of the IKB-based design model is system
scalability. Although such architecture is not imperative for the TAC SCM
environment, it is crucial for environments with a huge number of entities on both the
consumer and business sides of the supply chain/network (i.e., the telecom
environment).

Acknowledgements

This work was carried out within research projects 036-0362027-1639 "Content
Delivery and Mobility of Users and Services in New Generation Networks",
supported by the Ministry of Science, Education and Sports of the Republic of
Croatia, and "Agent-based Service & Telecom Operations Management", supported
by Ericsson Nikola Tesla, Croatia.

References

[Arunachalam, 05] Arunachalam, R., Sadeh, N. M.: “The Supply Chain Trading Agent
Competition”; Electronic Commerce Research and Applications, 4, 1 (2005), 66-84.

[Bellavista, 06] Bellavista, P., Corradi, A., Montanari, R., Tonin, A.: “ Context-Aware
Semantic Discovery for Next Generation Mobile Systems”; IEEE Communications, 44, 9
(2006), 62-71.

[Bellifemine (07)] Bellifemine, F. L., Caire, G., Greenwood, D.: “Developing Multi-Agent
Systems with JADE”; John Wiley Sons, Chichester (2007)

[Benisch, 05] Benisch, M., et. al.: "CMieux Analysis and Instrumentation Toolkit for TAC
SCM"; Carnegie Mellon University Technical Report CMU-ISRI-05-127, Pittsburgh, USA
(2005).

[Benisch, 06] Benish, M., Sardinha, A., Andrews, J., Sadeh, N.: "CMieux: Adaptive Strategies
for Competitive Supply Chain Trading"; Proceedings of the 8th International Conference on
Electronic Commerce (ICEC'06), Fredericton (2006), 1-10.

[Bradshaw (97)] Bradshaw, J. M.: “Software Agents”; MIT Press, Cambridge (1997)

1102 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

[Carlson, 04] Carlson, B.: “The Digital Economy: What is New and What is Not?”; Structural
Change and Economic Dynamics, 15, 3 (2004), 245-264.

[Chorafas (98)] Chorafas, D. N.: “Agent Technology Handbook”; McGraw-Hill, New York
(1998)

[Collins, 07] Collins, J., Arunachalam, R., Sadeh, N., Eriksson, J., Finne, N., Janson, S.: "The
Supply Chain Management Game for the 2007 Trading Agent Competition"; Carnegie Mellon
University Technical Report CMU-ISRI-07-100, Pittsburgh, USA (2007).

[Eriksson, 06] Eriksson, J., Finne, N., Janson, S.: "Evolution of a Supply Chain Management
Game for the Trading Agent Competition”; AI Communications, 19, 1 (2006), 1-12.

[Fasli (07)] Fasli, M.: “Agent Technology for E-Commerce”; Wiley Sons, Chichester (2007)

[Fensel (04)] Fensel, D.: “Ontologies: A Silver Bullet for Knowledge Management and
Electronic Commerce”; Springer, Berlin (2004)

[He, 06] He, M., Rogers, A., Luo, X., Jennings, N. R.: "Designing a Successful Trading Agent
for Supply Chain Management”; Proceedings of the 5th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS'06), Hakodate (2006), 1159-1166.

[Jordan, 06] Jordan, P. R., Kiekintveld, C., Miller, J., Wellman, M. P.: "Market Efficiency,
Sales Competition, and the Bullwhip Effect in the TAC SCM Tournaments"; Proceedings of
the AAMAS Joint International Workshop on the Trading Agent Design and Analysis and
Agent Mediated Electronic Commerce (TADA/AMEC'06), Hakodate (2006), 99-111.

[Ketter, 05] Ketter, W., Collins, J., Gini, M., Gupta, A., Shrater, P.: "Identifying and
Forecasting Economic Regimes in TAC SCM"; Proceedings of the IJCAI Workshop on
Trading Agent Design and Analysis (TADA'05), Edinburgh (2005), 53-60.

[Kiekintveld, 06] Kiekintveld, C., Miller, J., Jordan, P. R., Wellman, M. P.: "Controlling a
Supply Chain Agent Using Value-Based Decomposition"; Proceedings of the 7th ACM
conference on Electronic commerce (EC'06), Ann Arbor (2006), 208-217.

[Kontogounis, 06] Kontogounis, I., Chatzidimitriou, K. C., Symeonidis, A. L., Mitkas, P. A.:
"A Robust Agent Design for Dynamic SCM Environments"; Proceedings of the 4th Hellenic
Joint Conference on Artificial Intelligence (SETN'06), Heraklion (2006), 127-136.

[Jurasovic, 07] Jurasovic, K., Kusek., M.: “Verification of Mobile Agent Network Simulator”;
Lecture Notes in Computer Science, 3053 (2007), 520-529.

[Pardoe, 04] Pardoe, D., Stone, P.: "Bidding for Customer Orders in TAC SCM: A Learning
Approach"; Proceedings of the AAMAS International Workshop on Trading Agent Design and
Analysis (TADA'04), New York (2004), 52-58.

[Pardoe, 06] Pardoe, D., Stone, P.: "Predictive Planning for Supply Chain Management";
Proceedings of the International Conference on Automated Planning and Scheduling
(ICAPS’06), The English Lake District (2006) .

[Pardoe (07)] Pardoe, D., Stone, P.: “An Autonomous Agent for Supply Chain Management”;
In Adomavicius, G., Gupta, A. (eds.), “Handbooks in Information Systems Series: Business
Computing”; Elsevier, Amsterdam (2007)

[Petric, 05] Petric, A., Jurasovic, K.: "KrokodilAgent: A Supply Chain Management Agent";
Proceedings of the 8th International Conference on Telecommunications (ConTEL'05), Zagreb
(2005), 297-302.

1103Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

[Petric, 07a] Petric, A., Podobnik, V., Jezic, G.: "The CrocodileAgent 2005: An Overview of
TAC SCM Agent"; Lecture Notes in Computer Science, 4452 (2007), 219-233.

[Petric, 07b] Petric, A., Podobnik, V., Jezic, G.: "The CrocodileAgent: Designing a Robust
Trading Agent for Volatile E-Market Conditions"; Lecture Notes in Computer Science, 4496
(2007), 597-606.

[Podobnik, 06a] Podobnik, V., Trzec, K., Jezic, G.: "An Auction-Based Semantic Service
Discovery Model for E-Commerce Applications”; Lecture Notes in Computer Science, 4277
(2006), 97-106.

[Podobnik, 06b] Podobnik, V., Petric, A., Jezic, G.: "The CrocodileAgent: Research for
Efficient Agent-Based Cross-Enterprise Processes"; Lecture Notes in Computer Science, 4277
(2006), 752-762.

[Podobnik, 07] Podobnik, V., Trzec, K., Jezic, G.: "Context-Aware Service Provisioning in
Next-Generation Networks: An Agent Approach"; International Journal of Information
Technology and Web Engineering, 2, 4 (2007), 41-62.

[Sadeh, 03] Sadeh, N. Sun, J.: "Multi-Attribute Supply Chain Negotiation: Coordinating
Reverse Auctions Subject to Finite Capacity Considerations”; Proceedings of the 5th
International Conference on Electronic Commerce (ICEC '03), Pittsburgh (2003), 53-60.

[Sardinha, 07] Sardinha, A., Benisch, M., Sadeh, N., Ravichandran, R., Podobnik, V., Stan, M.:
"The 2007 Procurement Challenge: A Competition to Evaluate Mixed Procurement Strategies";
Carnegie Mellon University Technical Report CMU-ISRI-07-123, Pittsburgh, USA (2007).

[Stan, 06] Stan, M., Stan, B., Florea, A. M.: "A Dynamic Strategy Agent for Supply Chain
Management"; Proceedings of the 8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC '06), Washington (2006), 227-232.

[Trzec, 07] Trzec, K., Lovrek, I.: "Field-based Coordination of Mobile Intelligent Agents: An
Evolutionary Game Theoretic Analysis"; Lecture Notes in Computer Science, 4692 (2007),
198-205.

[Vytelingum, 05] Vytelingum, P., Dash, R. K., He, M., Jennings, N. R.: "A Framework for
Designing Strategies for Trading Agents"; Proceedings of the IJCAI Workshop on Trading
Agent Design and Analysis (TADA'05), Edinburgh (2005), 7-13.

[Weiser (97)] Weiser, M., Brown, J. S.: “The Coming Age of Calm Technology”; In Dening, P.
J., Metcalfe, R. M., Burke, J. (eds.), “Beyond Calculation: The Next Fifty Years of
Computing”; Springer, New York (1997)

[Wellman, 05] Wellman, M. P., Estelle, J., Singh, S., Vorobeychik, Y., Kiekintveld, C., Soni,
V.: "Strategic Interactions in a Supply Chain Game"; Computational Intelligence, 21, 1 (2005),
1-26.

[Wurman, 02] Wurman, P. R., Wellman, M. P., Walsch, W. E.: "Specifying Rules for
Electronic Auctions"; AI Magazine, 23, 3 (2002), 15-24.

1104 Podobnik V., Petric A., Jezic G.: An Agent-Based Solution ...

