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Abstract: Functional programs often combine separate parts of the program using
intermediate data structures for communicating results. Programs so defined are easier
to understand and maintain, but suffer from inefficiency problems due to the generation
of those data structures. In response to this problematic, some program transformation
techniques have been studied with the aim to eliminate the intermediate data structures
that arise in function compositions. One of these techniques is known as shortcut
fusion. This technique has usually been studied in the context of purely functional
programs. In this work we propose an extension of shortcut fusion that is able to
eliminate intermediate data structures generated in the presence of monadic effects.
The extension to be presented can be uniformly defined for a wide class of data types
and monads.
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1 Introduction

Functional programs often combine separate parts of the program using inter-
mediate data structures for communicating results. Programs so defined have
many benefits, such as clarity, modularity, and maintainability, but suffer from
inefficiencies caused by the generation of those data structures. In response to
this problematic, some program transformation techniques have been developed
aiming at the elimination of the intermediate data structures. One of these tech-
niques, known as shortcut fusion (or shortcut deforestation) [Gill et al., 1993],
has mainly been studied in the context of purely functional programs.

The aim of this paper is the proposal of an extension of shortcut fusion
for programs with monadic effects. The goal is to achieve fusion of monadic
programs, maintaining the global effects. Like standard deforestation, we will be
interested in eliminating the intermediate data structures generated in function
compositions, but with the difference that now those intermediate structures are
produced as the result of monadic computations. An important feature of the
extension to be presented is that it is generic, in the sense that it is given by a
uniform, single definition that can then be instantiated to a wide class of data
types and monads.
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This work has strong connections with previous work on fusion techniques
for programs with effects [Pardo, 2001, 2005]. The main difference is that in
the present work we adopt a shortcut fusion approach based on parametricity
properties of polymorphic functions, known in functional programming as free
theorems [Wadler, 1989]. The results of this paper were preliminary presented
in [Manzino, 2005]. Throughout we will use Haskell notation, assuming a cpo
semantics (in terms of pointed cpos), but without the presence of the seq function
[Johann et al., 2004].

The paper is organized as follows. We start in Section 2 with a review of
the concept of shortcut fusion. In Section 3, by means of specific examples,
we show the extension of shortcut fusion to programs with effects. The generic
constructions that give rise to the specific program schemes and laws presented
in Sections 2 and 3 are developed in Section 4; a proof of the monadic shortcut
fusion law is also presented. Section 5 summarizes related work, and Section 6
concludes the paper.

2 Shortcut fusion

Shortcut fusion [Gill et al., 1993] is a program transformation technique orig-
inally proposed for lists, but that can be defined for other datatypes as well.
Given a function composition c ◦ p, the idea of shortcut fusion is to eliminate
the intermediate data structure produced by p (the producer) and consumed by
c (the consumer) by a suitable combination of their definitions. We analyse the
case of lists and arithmetic expressions.

Lists Shortcut fusion requires the consumer to be given by a structural recursive
definition that treats all elements of a list in a uniform manner. This is captured
by a recursion scheme called fold:1

foldL :: (b, a → b → b)→ [a ]→ b
foldL (nil , cons) [ ] = nil
foldL (nil , cons) (a : as) = cons a (foldL (nil , cons) as)

A fold is a function that traverses the input list and replaces the occurrences
of the list constructors [ ] and (:) by nil and cons, respectively. For exam-
ple, foldL (nil , cons) applied to the list 1 : 2 : 3 : [ ] returns the expression
cons 1 (cons 2 (cons 3 nil)).

The producer, on the other hand, is required to be able to show that the list
constructors can be abstracted from the process that generates the intermediate
list. This is expressed by a function called build :

buildL :: (∀ b . (b, a → b → b)→ b)→ [a ]

1 The fold for lists is known as foldr in the functional programming jargon [Bird, 1998].
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buildL g = g ([ ], (:))

For example, the list 1 : 2 : 3 : [ ] can be written as buildL (λ(n, c) →
c 1 (c 2 (c 3 n))).

With the forms required to the producer and the consumer it is now possible
to state the following fusion law, known as shortcut fusion.

Law 1 (fold/build for lists)

foldL (nil , cons) (buildL g) = g (nil , cons)

The intuition behind this law is the following: since g explicitly exhibits that
the intermediate list generation relies on the constructors [ ] and (:), and those
constructors are immediately replaced by nil and cons by the fold, then the final
result corresponds to g applied directly to nil and cons .

To see an example, consider the following definition of factorial: fact n =
product (down n), where

product :: [Int ]→ Int down :: Int → [Int ]
product [ ] = 1 down 0 = [ ]
product (a : as) = a ∗ product as down n = n : down (n − 1)

Given n, we first compute the list of numbers between n and 1 and then calcu-
late their product. However, as we all know, it is not necessary to produce an
intermediate list to compute factorial. The listless definition can be obtained by
shortcut fusion. To do so we need to express product and down in terms of fold
and build , respectively: product = foldL (1, (∗)), and

down n = buildL (gdown n)
where gdown 0 (nil , cons) = nil

gdown n (nil , cons) = cons n (gdown (n − 1) (nil , cons))

By applying Law 1 we obtain fact n = gdown n (1, (∗)), which corresponds to
the usual definition of factorial: fact 0 = 1 and fact n = n ∗ fact (n − 1).

In addition to build, [Gill, 1996] also presents an alternative –and more
general– form of producer for lists, called augment :

augment :: (∀ b . (b, a → b → b)→ b)→ [a ]→ [a ]
augment g as = g (as , (:))

which satisfies that augment g as = build g ++ as . This function is appropriate
to express as producers functions with an extra list argument like append (++).
Associated with augment it is possible to state a shortcut fusion law:

Law 2 (fold/augment)

foldL (nil , cons) (augment g as) = g (foldL (nil , cons) as , cons)
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A generalization of augment and the fold/augment law to other datatypes is
presented in [Ghani et al., 2005].

Arithmetic expressions Consider a datatype for simple arithmetic expres-
sions formed by numerals and addition.

data Exp = Num Int | Add Exp Exp

The fold and build functions for this datatype are defined as follows:

foldE :: (Int → a, a → a → a)→ Exp → a
foldE (num, add) (Num n) = num n
foldE (num, add) (Add e e ′) = add (foldE (num, add) e)

(foldE (num, add) e ′)

buildE :: (∀ a . (Int → a, a → a → a)→ a)→ Exp
buildE g = g (Num,Add)

Law 3 (fold/build for expressions)

foldE (num, add) (buildE g) = g (num, add)

3 Monadic shortcut fusion

In functional programming, monads are a powerful mechanism to structure pro-
grams that produce effects, such as exceptions, state, or input/output [Wadler,
1995]. A monad is usually presented as a triple formed by a type constructor m,
a polymorphic function return and a polymorphic operator (>>=) (often called
bind), such that certain laws are satisfied [Wadler, 1995]. In Haskell, a monad
can be defined in terms of a class:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b
(>>) :: m a → m b → m b
m >>m ′ = m >>= λ → m ′

With the aim at improving readability of monadic programs, Haskell provides a
special syntax called the do notation. It is defined by the following translation
rules: do {x ← m;m ′} = m >>= λx → do {m ′}, do {m;m ′} = m >> do {m ′},
and do {m } = m.

Associated with every monad it is possible to define a map function, which
together with the type constructor m satisfies to be a functor in the sense we
will define in Section 4.

mmap :: Monad m ⇒ (a → b)→ (m a → m b)
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mmap f m = do {a ← m; return (f a)}
Before introducing a law corresponding to monadic shortcut fusion, we first

analyse what happens when we consider compositions of effectful functions. Af-
ter that we present a fusion law that considers a restricted form of monadic
compositions in which only the function that generates the intermediate data
structure may produce an effect, while the consumer is purely functional. The
conception of this law has strong connections with similar laws developed for
monadic recursion schemes like the monadic versions of fold and hylomorphism
[Pardo, 2001, 2005].

3.1 Fusion of effectful functions

Computations ordering is what makes effectful functions more difficult to be
fused. In fact, the main difference with fusion of pure programs is that, when
fusing two monadic functions, we must ensure the preservation of the order in
which monadic computations are performed. Like in the case of purely func-
tional programs, fusion laws for monadic programs rely on the representation of
the involved functions in terms of recursion schemes and the properties those
representations require to make fusion possible. For example, when the monadic
versions of fold and hylomorphism [Pardo, 2001, 2005] are used as representation,
a strong condition to the monad, namely, commutativity, is required in order to
make fusion possible. A monad is said to be commutative if the order in which
computations are performed is irrelevant. The essential property is the follow-
ing: do {a ← m; b ← m ′; return (a, b)} = do {b ← m ′; a ← m; return (a, b)}.
Cases like the state reader (also known as the environment monad) or the iden-
tity monad are commutative, while monads like state or IO are not.

We analyze examples on lists and binary trees; the case on trees will raise
the necessity of a commutativity condition for the monad.

Lists Consider the following composition of two effectful functions:

displaySeq :: Show a ⇒ [IO a ]→ IO ()
displaySeq ms = do {xs ← sequence ms ; display xs }
sequence :: [IO a ]→ IO [a ]
sequence [ ] = return [ ]
sequence (m : ms) = do {x ← m; xs ← sequence ms ; return (x : xs)}
display :: Show a ⇒ [a ]→ IO ()
display [ ] = return ()
display (x : xs) = do {display xs; putStr (show x )}
put x = do {putStr (show x ); return x }
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The sequence function executes a list of IO computations from left-to-right, col-
lecting their results in a list, while display prints the elements of a list in reverse
order. For example, when applied to the list [put 1, put 2, put 3], displaySeq
produces the string "123321" in the standard output.

A definition of displaySeq that avoids the generation of the intermediate list
can be derived by case analysis. Two cases have to be considered:

displaySeq [ ] = return ()
displaySeq (m : ms) = do {x ← m; displaySeq ms; putStr (show x )}

In this case fusion succeeds because the computations are in a “suitable”
order. This situation can be captured by the following shortcut fusion law, pre-
sented by Meijer and Jeuring [Meijer et al., 1995], which is associated to a re-
cursion scheme called monadic fold.

Law 4 (mfold/mbuild for lists)

do {as ← mbuildL g;mfoldL (mnil ,mcons) as } = g (mnil ,mcons)

where

mfoldL :: Monad m ⇒ (m b, a → b → m b)→ [a ]→ m b
mfoldL (mnil ,mcons) [ ] = mnil
mfoldL (mnil ,mcons) (a : as) = do {y ← mfoldL (mnil ,mcons) as ;

mcons a y }
mbuildL :: Monad m ⇒ (∀ b . (m b, a → b → m b)→ m b)→ m [a ]
mbuildL g = g (return [ ], λa as → return (a : as))

By writing sequence and display in terms of mbuildL and mfoldL, respec-
tively, we arrive at the same recursive definition of displaySeq shown before.

Trees Now, we present a similar example on trees but that requires the monad
to be commutative.

data Tree a = Leaf a | Join (Tree a) (Tree a)

displaySeqT :: Show a ⇒ Tree (IO a)→ IO ()
displaySeqT ms = do {t ← seqT ms ; displayT t }
seqT :: Tree (IO a)→ IO (Tree a)
seqT (Leaf m) = do {a ← m; return (Leaf a)}
seqT (Join ml mr) = do { l ← seqT ml ; r ← seqT mr ; return (Join l r)}
displayT :: Show a ⇒ Tree a → IO ()
displayT (Leaf a) = putStr (show a)
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displayT (Join l r) = do {displayT l ; displayT r }
The seqT function executes from left-to-right the IO computations stored
in the leaves of a tree, while displayT prints the elements that re-
sult from those computations. For example, when applied to the tree
Join (Leaf (put 1)) (Join (Leaf (put 2)) (Leaf (put 3))), displaySeqT produces
the string "123123" in the standard output.

In this case, we would like to eliminate the intermediate tree that is generated
by seqT and consumed by displayT . Like for lists, we proceed by case analysis.

displaySeqT (Leaf m) = do {a ← m; putStr (show a)}
However, in the case of a join node:

displaySeqT (Join ml mr)
= do { l ← seqT ml ; r ← seqT mr ; displayT l ; displayT r }

We get stuck at this point as it is not possible to reorder the terms in the do-
expression so that to introduce a recursive call to displaySeqT (a change in the
order of the IO computations would produce a different output).

Taking a slightly different approach, Chitil [Chitil, 2000] and Ghani and Jo-
hann [Ghani et al., 2008] give a shortcut fusion law that permits fusion of effectful
functions without requiring commutativity of the monad. The law presented in
[Ghani et al., 2008] is related with the shortcut fusion law to be introduced next.

3.2 Fusion with pure functions

Now we focus our attention on a restricted form of compositions involving effects.
Concretely, we will consider compositions between a monadic producer p and the
lifting of a fold: do {t ← p x ; return (fold h t)}. These are compositions where
the effect is produced by the first function and only propagated by the second
one. We introduce a shortcut fusion law for this kind of monadic compositions
by means of specific examples.

Lists Consider the following composition:

sumSeq :: Num a ⇒ [IO a ]→ IO a
sumSeq ms = do {xs ← sequence ms ; return (sum xs)}
sum :: Num a ⇒ [a ]→ a
sum [ ] = 0
sum (a : as) = a + sum as

For example, when applied to the list [put 1, put 2, put 3], sumSeq returns a
computation that yields 6 as result and prints the string "123" in the standard
output. A recursive definition can be derived for sumSeq:
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sumSeq [ ] = return 0
sumSeq (m : ms) = do {x ← m; y ← sumSeq ms ; return (x + y)}

In this case, we can observe that fusion simply performs the substitution of the
intermediate list constructors by corresponding actions in function sum. That
is, it is a substitution between purely functional objects; no effects are involved.

This transformation can be captured by a shortcut fusion law associated
with fold where we have to reflect the fact that the producer may be an effectful
function and that the consumer (a fold) must appear lifted.

Law 5 (fold/mbuild for lists)

do {as ← mbuildL g; return (foldL (nil , cons) as)} = g (nil , cons)

where

mbuildL :: Monad m ⇒ (∀ b . (b, a → b → b)→ m b)→ m [a ]
mbuildL g = g ([ ], (:))

The recursive definition of sumSeq can then be obtained by writing sum and
sequence in terms of fold and monadic build, resp., and then by applying Law 5.

sum = foldL (0, (+))

sequence ms = mbuildL (gseq ms)
where gseq [ ] (n, c) = return n

gseq (m : ms) (n, c)
= do {x ← m; y ← gseq ms (n, c); return (c x y)}

Like in the pure case, it is possible to introduce an alternative form of monadic
producer for lists in the sense of augment and a associated fusion law:

Law 6 (fold/maugment)

do {as ← maugment g bs; return (foldL (n, c) as)} = g (foldL (n, c) bs , c)

where

maugment :: Monad m ⇒ (∀ b . (b, a → b → b)→ m b)→ [a ]→ m [a ]
maugment g as = g (as , (:))

It is simple to see that this function satisfies that: maugment g bs =
do {as ← mbuildL g; return (as ++ bs)}.
Parsing Shortcut fusion is well suited to be used in the context of monadic
parsers [Hutton et al., 1998]. A parser usually returns an abstract syntax tree
which is then consumed by another function that performs the semantic actions.
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Using shortcut fusion, we show how these two phases can be merged together.
To illustrate this, we present a simple parser that recognizes natural numbers.
We adopt the usual definition of the parser monad (see [Hutton et al., 1998] for
more details):

newtype Parser a = P (String → [(a,String)])

instance Monad Parser where
return a = P (λcs → [(a, cs)])
p >>= f = P (λcs → concat [parse (f a) cs ′ | (a, cs ′)← parse p cs ])

parse :: Parser a → String → [(a,String)]
parse (P p) = p

pzero :: Parser a
pzero = P (λcs → [ ])

(⊕) :: Parser a → Parser a → Parser a
(P p)⊕ (P q) = P (λcs → case p cs ++ q cs of [ ]→ [ ]

(x : xs) → [x ])

item :: Parser Char
item = P (λcs → case cs of "" → [ ]

(c : cs)→ [(c, cs)])

Alternatives are represented by a deterministic choice operator (⊕), which re-
turns at most one result. The parser pzero is a parser that always fails. The item
parser returns the first character in the input string.

Suppose we want to parse a string formed by digits and return a list con-
taining their integer conversion. For example, given the string "123" the parser
returns the list [1,2,3].

digits :: Parser [Int ]
digits = do {d ← digit ; ds ← digits ; return (d : ds)} ⊕ return [ ]

digit :: Parser Int
digit = do {c ← item;

if isDigit c then return (ord c − ord ’0’) else pzero }
isDigit c = (c � ’0’) ∧ (c � ’9’)

We want to test whether the number represented by the list of digits is divisible
by 3, but without computing the number itself. It is well known that a number
is divisible by 3 if the sum of its digits is also divisible by 3.

sumDigits :: Parser Int
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sumDigits = do {ds ← digits ; return (sum ds)}
divby3 :: Parser Bool
divby3 = do {n ← sumDigits ; return (n ‘mod ‘ 3 == 0)}

Since digits can be written as a monadic build,

digits = mbuildL gdig
where gdig (nil , cons)

= do {d ← digit ; ds ← gdig (nil , cons); return (cons d ds)}
⊕ return nil

and sum is a fold, by Law 5 we obtain the following monolithic definition:

sumDigits = do {d ← digit ; y ← sumDigits; return (d + y)} ⊕ return 0

Arithmetic Expressions Let us now consider a parser for arithmetic expres-
sions. The parser takes a string containing an arithmetic expression and returns
an abstract syntax tree of type Exp. For example, given the string "1+2+3" the
parser returns the term Add (Num 1) (Add (Num 2) (Num 3)).

expression :: Parser Exp
expression = do {n ← number ; plusop; e ← expression;

return (Add (Num n) e)}
⊕ do {n ← number ; return (Num n)}

number :: Parser Int
number = do {(n, p)← numpow10 ; return n }
numpow10 :: Parser (Int , Int)
numpow10 = do {d ← digit ;

(n, p)← numpow10 ; return (d ∗ p + n, 10 ∗ p)}
⊕ return (0, 1)

plusop :: Parser ()
plusop = do {c ← item; if c == ’+’ then return () else pzero }

Given an arithmetic expression, we want to evaluate it.

evalexp :: Parser Int
evalexp = do {e ← expression; return (eval e)}
eval :: Exp → Int
eval (Num n) = n
eval (Add e e ′) = eval e + eval e ′

Function evalexp generates an intermediate expression that we would like to
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eliminate with fusion. The monadic shortcut fusion law in this case is the fol-
lowing:

Law 7 (fold/mbuild for expressions)

do {e ← mbuildE g; return (foldE (num, add) e)} = g (num, add)

where

mbuildE :: Monad m ⇒ (∀ a . (Int → a, a → a → a)→ m a)→ m Exp
mbuildE g = g (Num,Add)

Now, if we write eval and expression in terms of fold and build, respectively:
eval = foldE (id , (+)), and

expression = mbuildE gexp
where gexp (num, add)

= do {n ← number ; plusop; e ← gexp (num, add);
return (add (num n) e)}

⊕ do {n ← number ; return (num n)}
we can apply Law 7 to evalexp, obtaining the following definition:

evalexp = do {n ← number ; plusop; z ← evalexp; return (n + z )}
⊕ do {n ← number ; return n }

4 Shortcut fusion, generically

In this section, we show that the instances of fold , build , and shortcut fusion
presented in the previous sections correspond to generic definitions valid for a
wide class of datatypes.

4.1 Data types

The structure of datatypes can be captured using the concept of a functor. A
functor consists of a type constructor F and a function mapF :: (a → b) →
(F a → F b), which preserves identities and compositions: mapF id = id and
mapF (f ◦ g) = mapF f ◦ mapF g. A standard example of a functor is that
formed by the list type constructor and the well-known map function.

Semantically, recursive datatypes are understood as least fixed points of func-
tors. That is, given a datatype declaration it is possible to derive a functor F
such that the datatype is the least solution to the equation τ ∼= Fτ [Abramsky
et al., 1994; Gibbons, 2002]. We write μF to denote the type corresponding to
the least solution. The isomorphism between μF and F μF is provided by two
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strict functions inF ::F μF → μF and outF ::μF → F μF , inverses of each other.
Function inF packs the constructors of the datatype while outF the destructors.

For example, for arithmetic expressions we can derive a functor E such that:

data E a = FNum Int | FAdd a a

mapE :: (a → b)→ E a → E b
mapE f (FNum n) = FNum n
mapE f (FAdd a a′) = FAdd (f a) (f a′)

In this case, μE = Exp and

inE :: E Exp → Exp outE :: Exp → E Exp
inE (FNum n) = Num n outE (Num n) = FNum n
inE (FAdd e e ′) = Add e e ′ outE (Add e e ′) = FAdd e e ′

In the case of lists, the structure is captured by a bifunctor L (a functor on two
variables) because of the presence of the type parameter. That is, μ(La) = [a ].

data L a b = FNil | FCons a b

mapL :: (a → c)→ (b → d)→ L a b → L c d
mapL f g FNil = FNil
mapL f g (FCons a b) = FCons (f a) (g b)

4.2 Fold

Let F be a functor that captures the structure of a datatype. Given a function
h ::F a → a, fold [Gibbons, 2002] is defined as the least function foldF h ::μF → a
such that: foldF h ◦ inF = h ◦ F (foldF h). A function h :: F a → a is called an
F-algebra. For example, an algebra corresponding to the functor E is a function
h :: E a → a of the form:

h (FNum n) = num n h (FAdd a a′) = add a a′

with num :: Int → a and add :: a → a → a. In the specific instance of fold for
the Exp datatype we wrote an algebra h simply as a pair (num, add). For the
list datatype we did something similar, in the fold for lists we wrote an algebra
h :: L a b → b as a pair (nil , cons). The same can be applied to any other
inductive datatype.

An F-homomorphism between two algebras h ::F a → a and k ::F b → b is a
function f ::a → b such that f ◦h = k ◦F f . Notice that fold is a homomorphism
between the algebras inF and h.

4.3 Shortcut fusion

Given a functor F , we can define a corresponding build operator:
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buildF :: (∀ a . (F a → a)→ a)→ μF

buildF g = g inF

Together with fold , build enjoys the following fusion law [Takano et al., 1995],
which is an instance of a free theorem [Wadler, 1989].

Law 8 (fold/build) For strict h,2 foldF h (buildF g) = g h.

4.4 Monadic shortcut fusion

The shortcut fusion law for monadic programs can be obtained as a special
case of a generalized form of shortcut fusion that captures the case when the
intermediate structure is generated as part of another one given by a functor.
To state that law it is necessary to introduce a generalized form of build. Given
a functor F (signature of a datatype) and another functor N , we define:

buildF,N :: (∀ a . (F a → a)→ N a)→ N μF

buildF,N g = g inF

The standard buildF is obtained by considering the identity functor. When
N is a monad we obtain a monadic build,

mbuildF :: Monad m ⇒ (∀ a . (F a → a)→ m a)→ m μF

mbuildF g = g inF

Law 9 (generalized fold/build) For strict h and strictness preserving N ,

mapN (foldF h) (buildF,N g) = g h

Proof The free theorem associated with g’s type states that, for all types b
and b′, algebras ϕ :: F b → b and ψ :: F b′ → b′, and strict function f :: b → b′,
the following holds f ◦ ϕ = ψ ◦mapF f ⇒ mapN f (g ϕ) = g ψ. By considering
f = foldF h, ϕ = inF and ψ = h, we getmapN (foldF h) (g inF ) = g h, because,
again, the premise of the implication holds by definition of fold. Finally, we apply
the definition of buildF,N to obtain the law. The strictness on h is necessary for
instantiation: if the algebra h is strict, then so is foldF h, and we can instantiate
f with foldF h. The strictness-preserving assumption on the functor means that
mapN preserves strict functions, i.e., if f is strict, then so is mapN f . This
condition is necessary for stating the free theorem itself, and therefore it is
inherited by the instantiation. �

Monadic shortcut fusion is then obtained from this law by considering the
functor associated with a monad m and by unfolding the corresponding mmap
function:
2 The strictness condition on h was not mentioned in the concrete instances of the law

shown in Section 2 because a function defined by pattern matching is strict. That
was the case of the algebras for expressions and lists considered in those instances.

3443Manzino C., Pardo A.: Shortcut Fusion of Monadic Programs



Law 10 (fold/mbuild) For strict h and strictness preserving mmap,

do {t ← mbuildF g; return (foldF h t)} = g h

5 Related work

In [Pardo, 2001, 2005], fusion laws for monadic versions of some recursion
schemes (fold, unfold and hylomorphism) are presented. It is simple to see that
so-called acid rain laws (a kind of fusion laws) associated with monadic folds and
hylomorphisms are particular cases of monadic shortcut fusion. This is something
that should not be surprising if we take into account that corresponding laws
for purely functional versions of the same operators can be expressed in terms
of standard shortcut fusion [Takano et al., 1995]. Let us consider, for example,
the generic definition of monadic fold:

mfoldF :: Monad m ⇒ (F a → m a)→ μF → m a

mfoldF h = h • ̂F (mfoldF h) ◦ outF
where (f • g) x = do {y ← f x ; g y } and ̂F f = distF ◦mapF f , for monadic
functions f and g; function distF :: F (m a) → m (F a) distributes the functor
over the monad (see e.g. [Pardo, 2005]). Consider the following acid rain law as-
sociated with monadic fold: For τ ::∀ a . (F a → a)→ (G a → m a), strict h and
strictness-preserving mmap, do {t ′ ← mfoldG (τ inF ) t ; return (foldF h t ′)} =
mfoldG (τ h) t . If we define gmfold t ϕ = mfoldG (τ ϕ) t , then
mfoldG (τ inF ) t = gmfold t inF = mbuildF (gmfold t), and therefore the
acid rain law reduces to monadic shortcut fusion. For the acid rain law associ-
ated with monadic hylomorphism the situation is the same.

Chitil’s PhD thesis [Chitil, 2000] presents a generalized shortcut fusion law
for the list case that is able to fuse effectful functions. We recall that law by
giving its generic definition. Let q :: ∀ a . (F a → a) → (a → b) → c and
h :: F b → b. Then, q inF (foldF h) = q h id . To see an example, consider again
the function displaySeqT . If we define,

q (leaf , join) f = λms → do {t ← gseqT ms (leaf , join); f t }
gseqT (Leaf m) (lf , jn) = do {a ← m; return (lf a)}
gseqT (Join ml mr) (lf , jn) = do { l ← gseqT ml (lf , jn);

r ← gseqT mr (lf , jn); return (jn l r)}
displayT = foldT (putStr ◦ show , λml mr → do {ml ;mr })
foldT :: (a → b, b → b → b)→ Tree a → b
foldT (lf , jn) (Leaf a) = lf a
foldT (lf , jn) (Join l r) = jn (foldT (lf , jn) l) (foldT (lf , jn) r)
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then,

displaySeqT ms
= do {t ← seqT ms ; displayT t }
= q (Leaf , Join) (displayT t) ms
= q (putStr ◦ show , λml mr → do {ml ;mr }) id ms
= do {m ← gseqT (putStr ◦ show , λml mr → do {ml ;mr }) ms ;m }

Observe that the obtained expression is formed by a function that returns
a computation that yields computations as result, such that, the outer com-
putation produces the effects of the producer (seqT ), while the inner com-
putations produce the effects of the consumer (displayT ). By inlining f =
gseqT (putStr ◦ show , λml mr → do {ml ;mr }) we get a clear picture of the
generated computation.

f (Leaf m) = do {a ← m; return (putStr (show a))}
f (Join ml mr) = do {ml ′ ← f ml ;mr ′ ← f mr ; return (do {ml ′;mr ′})}

At the same time to us, but independently, Ghani and Johann [Ghani et al.,
2008] presented a shortcut fusion law that is able to fuse compositions of effectful
programs. Like our monadic shortcut fusion law, their fusion law is also based
on generalized shortcut fusion (Law 9). The crucial difference with ours is that
they consider a fold with monadic carrier as consumer. The law is the following:
For strict h, do {t ← mbuildF g; foldF h t } = do {m ← g h;m }. The left-
hand side of the expression can be rewritten as do {t ← mbuildF g;m ←
return (foldF h t);m }, which by Law 10 is transformed to the right-hand side.
It is interesting to see that the monadic expression obtained with this fusion law
is exactly the same as the one produced by Chitil’s law. In fact, if we define
q h f = do {t ← g h; f }, this law reduces to Chitil’s.

6 Conclusions and future work

This paper presented a shortcut fusion law tailored to a restricted form of com-
positions of programs with effects. The monadic shortcut fusion law introduced
is simple, generic, and easy to apply in practice. An interesting issue to study
is a generic formulation of monadic augment which combines the approach to
monadic shortcut fusion followed in this paper with the generic formulation of
augment based on inductive monads [Ghani et al., 2005].

We have used the rewrite rules mechanism (RULES pragma) of the
Glasgow Haskell Compiler (GHC) to obtain a prototype implementa-
tion of monadic shortcut fusion. Experimental results measuring time and
space improvements for a set of examples are available in the webpage
http://www.fing.edu.uy/~pardo/MonadicShortcut/.
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