
Exploring Lua for Concurrent Programming

Alexandre Skyrme
(Pontifical Catholic University of Rio de Janeiro (PUC–Rio)

Rio de Janeiro, Brazil
askyrme@inf.puc-rio.br)

Noemi Rodriguez
(Pontifical Catholic University of Rio de Janeiro (PUC–Rio)

National Education and Research Network (RNP)
Rio de Janeiro, Brazil
noemi@inf.puc-rio.br)

Roberto Ierusalimschy
(Pontifical Catholic University of Rio de Janeiro (PUC–Rio)

Rio de Janeiro, Brazil
roberto@inf.puc-rio.br)

Abstract: The popularization of multi-core processors and of technologies such as
hyper-threading demonstrates a fundamental change in the way processors have been
evolving and also increases interest in concurrent programming, particularly as a means
to improve software performance. However, concurrent programming is still considered
complex, mostly due to difficulties in using the available programming models, which
have been subject to recurring criticism. The increased interest in concurrency and the
lack of proper models to support it stimulates the development of proposals aimed at
providing alternative models for concurrent programming. In this paper, we work with
some of Lua’s facilities to explore such a model, based on user threads and message
passing. We also demonstrate why Lua was particularly well suited for this objective,
describe the main characteristics of the explored model and present a library developed
to implement it, along with results of a performance evaluation.

Key Words: Lua, preemptive multithreading, non-preemptive multithreading, con-
currency, luaproc, message passing

Category: D.1.3, D.3.2, D.3.3

1 Introduction

Regardless of its growing importance, concurrent programming is still mostly
based on dated models. Constructions like semaphores [Dijkstra 1983], condi-
tional critical regions [Hoare 1972], guards [Dijkstra 1975], and monitors [Hansen
1974, Hoare 1973] were all originally designed for operating systems and are ad-
mittedly complex for higher-level programming. Moreover, they do not scale well
for massive concurrency. This scenario has stimulated the proposal of alternative
models and constructions for concurrent programming, such as Erlang [Arm-
strong 1996], Polyphonic C# [Benton, Cardelli and Fournet 2002], Sequential

Journal of Universal Computer Science, vol. 14, no. 21 (2008), 3556-3572
submitted: 16/4/08, accepted: 5/6/08, appeared: 1/12/08 © J.UCS



Object Monitors [Caromel, Mateus and Tanter 2004], and the Concurrency and
Coordination Runtime [Chrysanthakopoulos and Singh 2005].

Since 2003 the Lua programming language [Ierusalimschy et al. 1996, Ierusal-
imschy et al. 2006, Ierusalimschy et al. 2007] features coroutines, which enables
collaborative multithreading. However, a common criticism of coroutines is that
they cannot explore hardware parallelism, such as provided by multi-core pro-
cessors. In 2006, Ierusalimschy [Ierusalimschy 2006] proposed the use of multiple
independent states in Lua to implement Lua processes, based on some form of
message passing. In this paper we advance that proposal, building a complete
library for concurrent programming in Lua based on message passing over chan-
nels. As we will see, the resulting library showed encouraging performance results
even when running hundreds of thousands of simultaneous processes.

The rest of this paper is organized as follows. In section 2 we point out some
of the downsides of multithreading and present the model which we chose to
explore for concurrent programming in Lua. In section 3 we describe how we
implemented this model and in section 4 we present some results of a perfor-
mance evaluation of the implementation. Finally, in section 5, we draw some
conclusions.

2 Concurrent Programming in Lua

Programming with preemptive multithreading and shared memory demands syn-
chronization constructions to ensure mutual exclusion and conditional synchro-
nization [Andrews and Schneider 1983]. Unfortunately, the synchronization bur-
den, the difficulty to debug code, and the lack of determinism during execution
make development with preemptive multithreading and shared memory admit-
tedly complex [Lee 2006].

Moreover, as argued by Ousterhout [Ousterhout 1996], the criticism of multi-
threading is not limited to development complexity. It is often difficult to obtain
good performance when using preemptive multithreading with shared memory. A
too coarse locking reduces the opportunities for concurrency, while a fine-grained
locking may add too much overhead to the program. Due to these difficulties,
many standard libraries are not thread-safe, that is, cannot ensure proper be-
havior of their functions during simultaneous execution by multiple threads,
hampering software from exploring this kind of multithreading. Problems with
performance are greatly increased when scaling up to massive multithreading.

These issues have encouraged the development of alternative models for con-
current programming. In this work we explore a model based on execution
threads with no shared memory, which uses message passing for synchronization
and communication. We implemented this concurrency model for Lua through a
library called luaproc. Next, we describe the model details and the API provided
by this library.

3557Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



Because they have independent resources, we call each thread in the library a
Lua process. We create Lua processes through calls to the luaproc.newproc func-
tion. As user threads, Lua processes are entities scheduled exclusively through a
scheduler which runs in user space, without direct relation to operating system
processes or other kernel scheduled entities.

Communication between Lua processes occurs exclusively through message
passing. On the one hand, communication with message passing can be slower
when compared to shared memory. On the other hand, the lack of shared memory
avoids the performance and complexity penalties associated to shared-memory
synchronization primitives. Besides, programs can use the same communication
model for processes within the same machine and for processes in a distributed
environment.

As their own names imply, the luaproc.send function sends messages and
the luaproc.receive function receives messages. Message addressing is based on
channels. Channels must be explicitly created by the luaproc.newchannel func-
tion and destroyed by the luaproc.delchannel function. A channel is an entity
on its own, without any direct relation to Lua processes. Each channel is named
by a string, which must be specified as a parameter to the luaproc.newchannel

function. Each process may send to and receive from any channel, as long as the
process knows the channel name. Thus, it suffices to know a channel name in
order to use it.

Each message carries a tuple of atomic Lua values: strings, number, or
booleans. More complex types must be encoded in some form. For instance,
it is easy in Lua to serialize data [Ierusalimschy 2006], that is to convert it into
a stream of bytes or characters, in order to save it in a file, send it through
a network connection or, in this case, send it in a message. Structured values
can easily be encoded as a piece of Lua code (as a string) that, when executed,
reconstructs that value in the receiver.

The luaproc.send operation is blocking: it returns only after another Lua
process has received its message on the targeted channel or if the channel does
not exist. Otherwise the sending Lua process is blocked until one of these two
conditions happen.

The luaproc.receive function, on the other hand, can be either blocking or
non-blocking, depending on a parameter. A blocking receive behaves similarly
to a blocking send: it only returns after matching with a send operation on that
channel, or if the channel does not exist. The non-blocking receive operation,
in contrast, always returns immediately; its result indicates whether it got any
message.

The reason we opted for blocking on send operations is that this provides a
simpler, more deterministic, programming model. When a call to luaproc.receive

returns successfully, it is possible to assert that the message was received. Addi-

3558 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



tionally, non-blocking sends increase implementation complexity. Of course, the
programmer can still send messages without blocking the main execution flow.
One easy way to do that is to create a new Lua process with the sole purpose
of sending a message. Because the creation of Lua processes is a non-blocking
operation, control is immediately returned to the creator process and any occa-
sional communication block affects only the newly created Lua process. Another
option is to create a “queue process” to enqueue messages to a channel.

3 Model Implementation

In its standard configuration, Lua includes concurrent programming support
through the use of coroutines. Each coroutine represents a different execution
flow in user space. Execution control relies on a cooperative model and can be
accomplished through calls to the coroutine.yield and coroutine.resume func-
tions. Calls to the coroutine.yield function suspend the coroutine’s execution,
while calls to the coroutine.resume resume it. Once a coroutine starts running,
it runs until it finishes or yields.

The API that Lua offers to C includes a function to create coroutines, as
well as functions to suspend and resume their execution. This facility, allied to
the flexibility offered by the API for interaction with the Lua interpreter from C
code and to the dissociation between coroutines and kernel threads, makes Lua
particularly well suited for the exploration of our chosen model for concurrent
programming.

Another important facility offered by Lua is the possibility of multiple Lua
states. The entire API that Lua offers to C operates over an abstract type called
a Lua state. By creating multiple Lua states, a C program can have multiple
Lua programs that are completely independent.

Our library, luaproc, uses Lua states and coroutines to implement Lua pro-
cesses. Each process runs as an exclusive coroutine inside its own Lua state.
These processes are run by workers, which are kernel threads implemented with
the POSIX Threads library (pthreads) [IEEE 1995]. There is no fixed relation-
ship between workers and Lua processes. Each worker repeatedly gets a process
from the ready queue and runs it until it finishes or blocks. Even though we use
kernel threads, there is no memory shared among Lua processes, because each
has its own Lua state.

The following sub-sections present a more detailed description of our library’s
implementation and characteristics.

3.1 Lua Processes

Using Lua code from within C code is normally preceded by the creation of a
Lua state, represented in C by a variable of type lua State. A Lua state defines

3559Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



the interpreter’s state and keeps track of functions and global variables, among
other information related to the interpreter.

Once Lua code has been loaded in a Lua state, it is possible to control its
execution through functions provided by the C API for Lua. Control takes place
as if the Lua code was executed as a coroutine. Therefore, even if the Lua code
does not include explicit calls to Lua’s standard coroutine handling functions,
it is possible to suspend and resume its execution through C functions. This
feature is essential to allow control over Lua processes execution.

Each Lua process is comprised by an independent Lua state, where the pro-
cess code is loaded during process creation. The independence between Lua
states ensures the lack of shared memory between Lua processes and helps to
enforce message passing as a means for interprocess communication. The remain-
ing structure used to implement Lua processes is compact and has few members
other than the process Lua state. Among relevant structure members are the
process execution state (idle, ready, blocked or finished) and the number of ar-
guments that must be used when resuming its execution in case it is blocked.
No unique process identifier (PID) is included since there is no fixed relation
between workers and processes.

Even though the creation of a Lua state is a cheap operation, loading all
standard Lua libraries can take more than ten times the time required to create
a state [Ierusalimschy 2006]. Thus, to reduce the cost of creating Lua processes,
only the basic standard library and our own library are automatically loaded
into each new Lua process. The remaining standard libraries (io, os, table, string,
math, and debug) are pre-registered and can be loaded with a standard call to
Lua’s require function.

Our library also offers a facility to recycle Lua processes, which is optionally
activated through a call to the luaproc.recycle function. Recycling consists in
reusing states from finished Lua processes to execute new processes. Instead
of being destroyed after finishing its execution, a state can be stored for reuse.
Creation of a Lua process can then be done by loading new Lua code in a recycled
state, thus eliminating the costs of creating a new state and loading libraries.

3.2 Scheduler

The scheduler is automatically initialized when our concurrent programming
library is loaded. During its initialization, which occurs in the context of the
operating system thread responsible for executing the code that loads our library,
a worker is created.

The scheduler manages a single ready queue (FIFO), which holds Lua pro-
cesses ready for execution. The scheduler itself is responsible for adding newly
created Lua processes to the end of the ready queue. Workers execute the Lua
code associated with each Lua process.

3560 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



Workers are simply kernel threads, managed with the POSIX Threads library
(pthreads), which perform the following cycle: it retrieves the first Lua process
from the ready queue; executes the Lua code associated with the process until it
finishes, blocks or yields; and takes appropriate measures depending on execution
outcome. Creation and destruction of workers in execution time is supported
through the API functions luaproc.createworker and luaproc.destroyworker.

If the execution of a Lua process ends because the Lua code related to the
process has finished normally, the worker closes the corresponding Lua state and
destroys the process. If, during the execution of a Lua process, a call is made
to the standard Lua function coroutine.yield, the worker simply reinserts the
process at the end of the ready queue. This suspends the process execution and
allows other processes to execute, which is the expected behavior of a yield. If
the execution of a Lua process results in an unexpected error, the worker prints
an error message, closes the corresponding Lua state and destroys the process.

Since there is only a single ready queue, all workers must get Lua processes
from the same queue. This implies that shared memory synchronization primi-
tives had to be used to serialize access and manipulation of the queue. To that
matter, conditional variables and mutual exclusion were used, as they are both
supported by the POSIX Threads library (pthreads).

3.3 Inter-process Communication

Lua uses a virtual stack to pass values to and from C. Each element in this
stack represents a Lua value. Calls from Lua to functions implemented in C use
the virtual stack to pass function arguments. Likewise, these C functions use
the virtual stack to pass results back to Lua. Therefore, passing messages in
our library simply implies copying data from the sender’s virtual stack to the
receiver’s virtual stack.

3.4 Blocking Strategy

In our library, a Lua process can only have its execution blocked in two distinct
situations:

1. when it calls the blocking receive function with a channel where there are
no processes waiting to send, that is, when an attempt to receive a mes-
sage occurs without a previous corresponding attempt to send to the same
channel;

2. when it calls the send function with a channel where there are no processes
waiting to receive, that is, when an attempt to send a message occurs without
a previous corresponding attempt to receive from the same channel.

3561Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



When a Lua process blocks, the worker adds it to the corresponding channel’s
queue and gets another process from the ready queue in order to run it. A blocked
Lua process is unblocked only if there is a matching call on the same channel or if
the channel where it is blocked is destroyed. When such a matching call happens,
the same worker that is executing the process that made the call removes the
blocked process from the channel queue, copies message data between virtual
stacks, and places the unblocked process at the end of the ready queue.

To keep track of Lua processes that are blocked trying to communicate, each
channel has two distinct queues (FIFO): one holds processes blocked when trying
to send messages to the channel and another holds processes blocked when trying
to receive messages from the channel. At most one of these queues will not be
empty at any given time, otherwise the processes from each queue could match.

3.5 A Sample Application

In this section we present, in listing 1, the source code of a sample “hello world”
application developed with our library.

Listing 1: A simple ‘hello world” application with Lua processes.

-- load our concurrent programming library
require "luaproc"

-- create an additional worker
luaproc.createworker ()

-- create a new lua process
luaproc.newproc( [==[

-- create a new channel
luaproc.newchannel( "achannel" )
-- create a new lua process
luaproc.newproc( [=[

-- send a message to the channel
luaproc.send( "achannel", "hello world" )

]=] )
-- create a new lua process
luaproc.newproc( [=[

-- receive a message from the channel
msg = luaproc.receive( "achannel" )
-- print the received message
print( msg )

]=] )
]==] )

-- wait until all lua processes
-- have finished before exiting
luaproc.exit()

As we can see, the program begins by loading our library with the standard
Lua require function. Then, it creates an additional worker and a main Lua

3562 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



process that will hold the remaining of our application. This main Lua process
creates a channel and two additional Lua processes. While one of these processes
sends a message on the channel, the other one receives the message and then
prints it. We ensure that our application will not exit before all Lua processes
have completed their execution by calling the luaproc.exit function, which sim-
ply prevents workers from exiting while there are unfinished Lua processes.

4 Performance Evaluation

In this section we describe some experiments we made to evaluate the perfor-
mance of luaproc. All tests, unless stated otherwise, were conducted on a com-
puter running the Linux operating system, with an AMD Athlon 64 X2 dual-core
3600+ processor with 3 GB of RAM. The chosen Linux distribution was Ubuntu
7.10 (Gutsy Gibbon), with standard kernel 2.6.22-14-generic #1 SMP and Na-
tive POSIX Threads library (NPTL) 2.6.1. All tests used two workers in order
to exploit both processor cores and stimulate parallelism.

The tests ran on an unprivileged user account on the operating system. Each
test was executed at least three times and the results presented in this section
correspond to the values’ arithmetic mean. Execution times were measured with
Linux’s Bourne Again shell (bash) time command.

We also carried out some comparative tests to evaluate our library against
Erlang [Armstrong 2007]. Despite syntax heterogeneity and implementation dif-
ferences, notably Erlang’s built-in support for most of the functionalities we
implement through a library, these tests represent an important benchmark.
Moreover, further analysis of their results could result in future improvements
to our library.

Erlang offers three different execution modes: interpreted code (escript),
compiled code with symmetric multiprocessing (SMP) support enabled (erl
-smp), and compiled code with SMP support disabled (erl). In all our tests
there was just a slight variation in execution time between compiled code with
SMP support enabled and compiled code with SMP support disabled. In fact,
our tests consistently showed slightly worse (higher) execution times when SMP
support was enabled. Furthermore, SMP support is disabled by default for com-
piled code and not supported for interpreted code. For these reasons, we choose
only to present times for interpreted code and compiled code with SMP support
disabled.

Further comparative tests were also carried out in order to evaluate our
library against a traditional kernel multithreading with shared memory model
by using the POSIX Threads library (pthreads) [Skyrme 2008]. We believe this
comparison is not as interesting as the one with Erlang, since the pthreads
library does not include built-in message passing primitives and is not known to

3563Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



offer scalability that allows for massive concurrency. Therefore, we opted not to
present them in this work.

4.1 Process Creation

In this simple test we measure execution time to create increasing number of
Lua processes. First, a main Lua process which will host the remainder of our
application’s code is created. Then, from within the main Lua process, the same
number of Lua processes and communication channels are created, as if each
Lua process had its own channel. The spawned Lua processes simply wait for a
message from the main Lua process, which is only sent after all of them have
been spawned, and then finish their execution.

We reproduced a similar test with Erlang. Just as in the Lua processes test,
a certain number of Erlang processes are created and wait for a message, sent by
a main process, before finishing their execution. The main difference is that in
Erlang there is no need (nor support) to create communication channels, since
messages are addressed using process identifiers (PIDs).

Figure 1 shows the total execution times for creating increasing quantities
of Lua processes, along with the total execution times for creating, both us-
ing interpreted code and compiled code, Erlang processes. Erlang’s interpreter
(escript) limits process creation to 30,000 processes, which explains why the
corresponding line in the figure reaches an upper bound at that point.

As we can observe in the figure, execution time increased almost linearly with
the number of processes, both in Lua and in Erlang.

4.2 Memory Usage

In this test we measure the memory usage caused by process creation. Like in
the previous test, we first create a main Lua process and then, from within
that process, we create the same number of communication channels and Lua
processes which wait for a message that is only sent after all processes have been
spawned. However, for this test, we introduced delays immediately before and
immediately after creating channels and processes, in order to allow for external
memory usage measurement with Linux’s pmap command, which maps virtual
memory usage per process.

We ran an analogous test with Erlang. Also like in the previous test, we cre-
ated a certain number of Erlang processes which waited for a message that was
only sent after all processes had been created and we did not create or used com-
munication channels. For this test, though, we introduced delays immediately
before and immediately after creating processes, in order to measure memory
usage by the same means described previously.

3564 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



 1

 2

 3

 4

 5

 6

 7

 8

 9

 5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

E
xe

cu
tio

n 
T

im
e 

(s
)

Processes

Lua
Erlang compiled

Erlang interpreted

Figure 1: Execution times to create n processes in Lua and Erlang.

Initial memory usage, before process and communication channel creation in
Lua, was almost constant and around 33.15MB. In Erlang, on the other hand,
initial memory usage before process creation was also almost constant but this
time around 25.54MB for interpreted code and 23.53MB for compiled code.
Figure 2 shows the total memory usage after the creation of Lua processes and
communication channels, along with the total memory usage after the creation
of Erlang processes, both using interpreted code and compiled code. Once again,
the line in the figure which corresponds to Erlang’s interpreter (escript) reaches
an upper bound at 30,000 processes due to an interpreter limitation.

As the figure shows, memory usage increased almost linearly with the num-
ber of processes in Lua and linearly with the number of processes in Erlang.
Regardless of Erlang’s lower memory consumption, the test results confirms our
library seems suitable for massive concurrency and offers considerable improve-
ment, concerning memory usage, over traditional kernel based multithreading
with shared memory.

4.3 Communication

Message passing is the intended way for Lua processes to communicate and
synchronize, therefore it is important to evaluate how it performs. In this test we
sequentially send and receive messages of different sizes and measure execution
time. First, the message contents are read from a file composed of copies of the

3565Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5000  10000  15000  20000  25000  30000  35000  40000  45000  50000

M
em

or
y 

U
sa

ge
 (

M
B

)

Processes

Lua
Erlang compiled

Erlang interpreted

Figure 2: Memory usage measured immediately after creating n processes in Lua
and Erlang.

same string separated by newlines. Then, a main Lua process that will host the
remainder of our application’s code is created. Next, from within the main Lua
process, a communication channel is created and a new Lua process, whose sole
purpose is to receive messages, is spawned. Finally, the main Lua process sends
the same message sequentially, 1,000 times, to the second Lua process.

We conducted a similar test using Erlang. Just as in the previous tests, the
main difference between our Lua code and our Erlang code was the lack of need
to create communication channels in the later. Apart from that, Erlang code also
differs slightly since a few additional messages must be sent in order to inform
the receiver process identifier (PID) to the sender process and to ensure proper
synchronization.

Figure 3 shows the total execution times for sending and receiving messages
of increasing sizes using our library and Erlang. Once again, we present both the
results for interpreted and compiled Erlang code.

As we can see in the figure, our library presented good communication perfor-
mance, with execution times below 0.1s to send messages with up to 10,000 bytes.
Erlang, in turn, presented better performance when interpreted, rather than
compiled. It presented almost constant execution times when compiled, which
suggests it relies on an O(1) operation to perform message passing, such as copy-
ing a pointer that points to a shared memory address that holds message data.

3566 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1  10  100  1000  10000

E
xe

cu
tio

n 
T

im
e 

(s
)

Message size (bytes)

Lua
Erlang compiled

Erlang interpreted

Figure 3: Execution times for sequentially sending 1,000 messages of increasing
sizes.

4.4 Process Recycling

In this test, we evaluate how valuable the state recycling feature described in
section 3 can be, if used under the right circunstances. This time, we created a
fixed number of Lua processes sequentially and had them print a simple message
to standard output before exiting. No inter-process communication was used and
thus no communication channels were created. The lower individual execution
time allowed for better evalution of the process recycling feature.

We changed the recycled process limit and measured the total execution time
for creating and running all the Lua processes. The recycled process limit simply
determines the maximum number of Lua states from finished Lua processes
which are stored for further recycling when new processes are created. If this
limit is set to zero, the recycling feature is disabled and no Lua states from
finished Lua processes are kept. If it is set to n, at any given time there will be
at most n stored Lua states from finished Lua processes.

An altered version of the library was used for this test just to allow for
displaying how many processes were created with recycled Lua states. Figure 4
shows the total execution times for creating 100,000 Lua processes using different
recycle limits and redirecting standard output to the null device, along with
recycle counts.

As the figure shows, the process recycling feature can offer significant per-

3567Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Recycle
Limit 0

Recycle
Limit 1

Recycle
Limit 10

Recycle
Limit 100

Recycle
Limit 1000

E
xe

cu
tio

n 
tim

e 
(s

)

0
Processes
Recycled

65,391
Processes
Recycled

99,869
Processes
Recycled

99,936
Processes
Recycled

99,819
Processes
Recycled

Figure 4: Execution times to create 100,000 processes in Lua using at most n

recycled processes.

formance improvements under some circumstances, such as the reduction by
almost five times in total execution time observed in this test when using a re-
cycled process limit of just ten processes. However, results also indicate total
execution time can cease to decrease, and even increase, after certain recycled
process limits. This demonstrates proper care should be taken when using this
feature, so the performance cost of recycling processes does not exceed the ex-
pected performance impromevement.

4.5 Parallelism

The use of multiple workers in multi-processed environments allows for parallel
execution of Lua processes. In this test we explore our library’s parallelization
potential by implementing a parallel string search application. We also imple-
mented a serial version of the same application, using only standard Lua libraries,
to evaluate if there is any significant performance cost when our library is used.

The parallel version of the application is divided in three modules. The first
module is responsible for initializing the application: it creates workers and com-
munication channels, spawns a coordinator Lua process and several searcher Lua
processes, and then sends messages to the coordinator Lua process with the
names of the file that holds the patterns and the target to be searched.

3568 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



The second module is responsible for coordinating job distribution and for
centralizing results. It reads the patterns from a file, sends them to the searchers
and then starts to progressively distribute target file names to searchers. It also
receives results from searchers and notifies them when all target files have been
searched.

The third module is the searcher, that is, it is responsible for searching target
files for patterns. Each searcher receives a single file name at a time and only
sends back its results to the coordinator after processing the whole file. The
results sent are composed by the lines of the target file that matched any of the
patterns.

This test was exceptionally carried out on a computer with four AMD Opteron
dual-core 2.2 GHz processors, for a total of eight processor cores, and 32 GB of
RAM. Its operating system was also Linux, but this time with the CentOS 5.1
distribution, standard kernel 2.6.18-53.1.6.el5xen #1 SMP and Native POSIX
Threads library (NPTL) 2.5.

Initially, six workers were used to run the parallel version of the application
in order to stimulate parallelism and reduce concurrency in the execution of one
coordinator and five searcher Lua processes. Next, still using the parallel version
of the application, just a single worker was used, in order to allow for a more
balanced comparison with the serial version. The pattern file used throughout the
test was the same and it contained 25 lines, with one string per line. The target
files were copies of a single file, which included 6,605,423 lines and 2,147,483,849
bytes (around 2 GB). Results are shown in figure 5.

The results indicate that exploitation of parallelism on multi-processed envi-
ronments, as expected, can result in proportional reductions in execution time.
As we can observe, when using the serial version of the application or the paral-
lel version with a single worker (kernel thread) execution time increased almost
linearly with the number of target files. On the other hand, when the parallel
version runs with six workers, execution times for one or five target files was
almost the same, which strongly suggests that while one worker acted as the co-
ordinator, the other five workers acted as searchers and processed the five target
files in parallel. Still regarding the parallel version with six workers, it is worth
noticing that, once again as expected, execution time increased linearly when
the number of target files increased from five to ten.

Finally, results also show an almost insignificant difference in execution times
between the serial version of the application, which uses only standard Lua
libraries, and the parallel version, which uses our library, when it ran with a
single worker.

3569Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



 0

 2000

 4000

 6000

 8000

 10000

 12000

1 target file 5 target files 10 target files

E
xe

cu
tio

n 
tim

e 
(s

)

Serial version
Parallel version - 1 worker

Parallel version - 6 workers

Figure 5: Execution times for serial and parallel string search.

5 Conclusion

In this work we explored an alternative model for concurrent programming in
Lua. The model is characterized by using message passing, as opposed to shared
memory, as the only inter-process communication method. Its implementation
uses kernel threads as workers so that multiple processes can run in parallel.

The lack of shared memory eliminates the need to control access to data
shared among execution flows and critical regions, which simplifies development
and reduces the probability of inconsistencies which can result in data corruption
and execution failures. The predictability of blocked communication, in turn,
facilitates debugging and increases determinism of execution flows.

The Lua programming language, despite not being specifically developed for
concurrent programming, demonstrated enough flexibility to allow satisfactory
implementation of the chosen model for concurrent programming. Additionally,
it provided adequate performance and scalability to our library, as can be ob-
served through the results presented in section 4.

Although our library is intended to be used locally only, that is, in individual
computers, it is easy to extend it to support execution of Lua processes in a dis-
tributed environment. We have already successfully developed and experienced
with a very simple client-server application that uses LuaSocket [Nehab 2007], an
extension library that adds network support to Lua, to allow for remote creation

3570 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



of Lua processes.
The use of the POSIX Threads library (pthreads) as a means to benefit

from kernel threads allowed for the exploitation of parallelism intermediated by
the underlying operating system. Nevertheless, paradoxically, it also resulted
in a significant increase in development complexity, mostly due to the need to
handle typical obstacles related to using preemptive multithreading with shared
memory.

The difficulties we experienced while developing the library to implement the
chosen model confirm the criticism of preemptive multithreading with shared
memory and reinforce the necessity of newer approaches to concurrent program-
ming. The limitations of preemptive multithreading with shared memory, in
particular the complexity in development, create difficulties even when it is used
just as a building block to structure alternative solutions.

This work does not exhaust the investigation of the chosen model for concur-
rent programming in Lua, nor the exploration of new alternatives for concurrent
programming. Our library could be further improved by new functionalities and
it could be further evaluated by development of more complex, or so-called “real–
world”, applications combined with a more extensive performance evaluation. In
addition, the usability of our library, which we intuitively believe to be better
than other libraries, still lacks proper testing. Nevertheless, the results presented
in this work represent an important step towards allowing other contributing ef-
forts to be undertaken.

References

[Andrews and Schneider 1983] Andrews, G. R., Schneider, F. B.: “Concepts and No-
tations for Concurrent Programming”; ACM Comput. Surv., 15, 1 (1983), 3–43.

[Armstrong 1996] Armstrong, J.: “Erlang - a Survey of the Language and its Industrial
Applications”; INAP’96 — The 9th Exhibitions and Symposium on Industrial
Applications of Prolog, Hino, Tokyo, Japan (1996), 16–18.

[Armstrong 2007] Armstrong, J.: “Programming Erlang”; Pragmatic Bookshelf (2007),
ISBN 193435600X.

[Benton, Cardelli and Fournet 2002] Benton, N., Cardelli, L., and Fournet, C.: “Mod-
ern Concurrency Abstractions for C#”; ECOOP ’02: Proceedings of the 16th Euro-
pean Conference on Object-Oriented Programming, Springer–Verlag (2002), ISBN
3-540-43759-2, 415–440.

[Caromel, Mateus and Tanter 2004] Caromel, D., Mateu, L., and Tanter, E.: “Sequen-
tial Object Monitors”; ECOOP 2004 – Object-Oriented Programming, 18th Euro-
pean Conference, Springer-Verlag, 3086, 316–340.

[Chrysanthakopoulos and Singh 2005] Chrysanthakopoulos, G., and Singh, S.: “An
Asynchronous Messaging Library for C#”; Synchronization and Concurrency in
Object-Oriented Languages (SCOOL), OOPSLA 2005 Workshop, San Diego, Cal-
ifornia, USA.

[Dijkstra 1975] Dijkstra, E. W.: “Guarded commands, nondeterminacy and formal
derivation of programs”; Commun. ACM 18, 8 (1975), 453–457.

[Dijkstra 1983] Dijkstra, E. W.: “The structure of THE - multiprogramming system”;
Commun. ACM 26, 1 (1983), 49–52.

3571Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...



[Hansen 1974] Hansen, P. B.: “A Programming Methodology for Operating System
Design”; IFIP Congress (1974), 394–397.

[Hoare 1972] Hoare, C. A. R.: “Towards a theory of parallel programming”; Operating
System Techniques (1972), Academic Press, 61–71.

[Hoare 1973] Hoare, C. A. R.: “Monitors: an operating system structuring concept”;
Stanford University, Stanford, CA, USA (1973).

[IEEE 1995] IEEE: “1003.1c-1995: Information Technology - Portable Operating Sys-
tem Interface (POSIX) - System Application Program Interface (API) Amendment
2: Threads Extension (C Language)”; IEEE Computer Society Press (1995).

[Ierusalimschy et al. 1996] Ierusalimschy, R., Figueiredo, L. H., and Celes, W.: “Lua -
an extensible extension language”; Software: Practice and Experience, 26, 6 (1996),
635–652.

[Ierusalimschy et al. 2006] Ierusalimschy, R., Figueiredo, L. H., and Celes, W.: “Lua
5.1 Reference Manual”; Lua.Org (2006), ISBN 8590379833.

[Ierusalimschy et al. 2007] Ierusalimschy, R., Figueiredo, L. H., and Celes, W.: “The
Evolution of Lua”; Third ACM SIGPLAN Conference on History of Programming
Languages , San Diego (Jun 2007), 2-1–2-26.

[Ierusalimschy 2006] Ierusalimschy, R.: “Programming in Lua”; Lua.Org (2006), Sec-
ond Edition, ISBN 8590379825.

[Lee 2006] Lee, E. A.: “The Problem with Threads”; EECS Department, University of
California, Berkeley (2006), UCB/EECS-2006-1
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.

[Nehab 2007] Nehab, D.: “LuaSocket: Network support for the Lua language”;
http://www.tecgraf.puc-rio.br/luasocket.

[Ousterhout 1996] Ousterhout, J.: “Why Threads Are a Bad Idea (for most purposes)”;
Presentation given at the 1996 USENIX Annual Technical Conference, January.

[Skyrme 2008] Skyrme, A.: “An Alternative Model for Concurrent Programming in
Lua”; Master’s thesis (2008), Pontifical Catholic University of Rio de Janeiro
(PUC–Rio).

3572 Skyrme A., Rodriguez N., Ierusalimschy R.: Exploring Lua ...


