Journal of Universal Computer Science, vol. 14, no. 21 (2008), 3498-3516
submitted: 16/4/08, accepted: 5/6/08, appeared: 1/12/08 © J.UCS

Controlling Aspect Reentrancy!

Eric Tanter
(PLEIAD Laboratory
Computer Science Department (DCC)
University of Chile, Chile
etanter@dcc.uchile.cl)

Abstract: Aspect languages provide different mechanisms to control when an aspect
should apply based on properties of the execution context. They however fail to explic-
itly identify and cleanly capture a property as basic as that of reentrancy. As a result,
aspect developers have to resort to low-level and complex pointcut descriptions that
are error prone and hamper the understandability of aspect definitions. We analyze the
issue of aspect reentrancy, illustrate how current languages fail to properly support it,
and define a new linguistic construct to control aspect reentrancy. Considering aspect
reentrancy from the start in the design of an aspect language simplifies the task of
aspect programmers by raising the level of abstraction of aspect definitions.
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1 Introduction

In the pointcut-advice  (PA)  family of  aspect-oriented lan-
guages [Wand et al. 2004], as represented by Aspect] [Kiczales et al. 2001],
crosscutting behavior is defined in aspects, i.e. modules that encompass a
number of pointcuts and advices. Points during execution at which advices may
be executed are called (dynamic) join points. A pointcut identifies a set of join
points, and an advice is the action to be taken at a join point matched by a
pointcut. A particular area of research is that of dynamic join point selection,
for which many mechanisms exist [Tanter 2007, Avgustinov et al. 2007], for
instance, based on lexical scope and dynamic context like within and cflow in
AspectJ.

Aspect developers are frequently exposed to the issue of reentrant aspect ap-
plication [AspectJ List 2008], that is, when an aspect matches join points that
are triggered by its own execution or a recursive base program. As a result, ad-
vices are executed multiple times, or the program enters infinite loops. Although
most of the time reentrant application of aspects is a programming error, de-
velopers are left with low-level idioms to address this issue [Bodden et al. 2006].
These idioms, which rely on combining lexical and dynamic pointcut designa-
tors, are error prone and hamper the understandability of aspect definitions.
This indicates a limitation of current aspect language design.

1 This work is partially funded by FONDECYT Project 11060493.
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We identify and illustrate different cases of aspect reentrancy and their as-
sociated idioms; this leads us to identify a flaw in the semantics of mainstream
AspectJ implementations (Section 2). Our contribution is to make reentrancy
an explicit concept in the design of an aspect language (Section 3). We in-
troduce a new default semantics for pointcut-advice aspect languages, which
avoids unwanted reentrant aspect application, and a dedicated construct to con-
trol reentrancy at a fine-grained level when needed, at the appropriate level of
abstraction. We illustrate our proposal and formulate its semantics. Section 4
discusses related work and Section 5 concludes.

1.1 Running Example

We illustrate our argument using a simple example familiar to the aspect com-
munity: that of Point objects that can be moved. Class Point is defined in a
very standard manner:

Program 1 Definition of points.

public class Point {
int x,y;
public int getX() { return x; }
public void setX(int x) { this.x = x; }
//similarly for getY and setY
public void moveTo(int x, int y){ setX(x); setY(y); }
public String toString(){ return getX() + "@" + getY(); }

We introduce an aspect whose role is to emit a notification whenever a Point
object is “active”, that is, one of its method is executing on it. A first naive
definition of this aspect is as follows:

Program 2 Activity notifier aspect.

public aspect Activity {
before() : execution(* Point.*(..)){
System.out.println("point active");

H}

The following section discusses the problems of this first definition, coming
from reentrant application of the aspect. We also consider progressive refine-
ments of the aspect functionality. At each step, we discuss how to address the
reentrancy issue, whenever possible. The solutions make use of pointcut designa-
tors that are used to control the scope of an aspect based on lexical and dynamic
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contexts. To this end, aspect languages support different kinds of scoping con-
structs [Tanter 2007, Tanter 2008]. Although the argument is formulated in the
context of AspectJ, it applies to any aspect language in the pointcut-advice
family [Wand et al. 2004].

2 Reentrant application of aspects

Whenever a join point is matched by a pointcut, the associated advice is exe-
cuted. During the process of pointcut matching, advice activation, or subsequent
base program execution, a join point may be generated that is matched by the
same aspect. This potentially reentrant application of aspects can manifest ei-
ther as an advice executing several times instead of once, or worse, as an infinite
loop.

To better understand the phenomena at stake, we distinguish three kinds of
reentrancy, depending on the code that may emit the join point that potentially
triggers the reentrancy; we call such a join point a reentrant join point. This
categorization of the kinds of reentrancy is useful to study the different remedies
that can be devised, as well as for the formulation of our proposal.

2.1 Base-triggered reentrancy

Base-triggered reentrancy refers to cases where the base program is responsible
for the reentrancy. This can be due to base-level recursive calls, for instance,
if the aspect advises a recursive method. Another example occurs when a base
method whose execution is advised by an aspect invokes another method that
is also advised by the same aspect. This case of reentrancy is well-known in the
aspect community as it was used since the early days of AOP as a motivating
example for control-flow related pointcut designators.

Consider the activity notifier aspect of Program 2. When moveTo is called
on a Point, the aspect applies and issues a notification. However, moveTo in
turns calls the coordinate setter methods of the point, resulting in execution
join points that are again matched by the aspect. As a result, we get three
notifications instead of one. Similar cases can occur with nested invocations of
constructors or super calls.

Antidote. To avoid base-triggered reentrancy, programmers usually resort
to an idiom that consists in extending the definition of the aspect to ensure it
only matches on top-level execution join points. This discrimination relies on
execution flow information. AspectJ supports two pointcut designators for this:
cflow discriminates join points that are in the control flow of a given pointcut,
while cflowbelow matches join points below that control flow.
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In the case we are considering, the antidote consists in filtering out reen-
trant join points by discriminating them based on the fact that they are below
the control flow of an already-matched join point (Program 3). Note that it is
compulsory to introduce the named pointcut active in order to refer to it in
the cflowbelow expression (otherwise the full definition of active has to be
manually inlined). This is because AspectJ supports neither recursive pointcut
definitions nor a “this pointcut” variable.

Program 3 Avoiding base-triggered reentrancy.

public aspect Activity {
pointcut active(): execution(* Point.*(..));

before() : active() |&& !cflowbelow(active()) | {
System.out.println("point active");

H}

2.2 Advice-triggered reentrancy

Advice-triggered reentrancy occurs when the execution of an advice itself pro-
duces reentrant join points. This kind of reentrancy manifests as infinite ad-
vice execution. This phenomena is well-known in the reflection community
as the infinite meta-regression problem [Kiczales et al. 1991, Chiba et al. 1996,
Denker et al. 2008]. It has also been identified in the case of AspectJ by Bodden
and colleagues [Bodden et al. 2006], as discussed in Section 4.

There are two variants of advice-triggered reentrancy. The execution of the
advice can produce reentrant join points that are either (a) join points of the
base program, e.g. by invoking a method on an object; (b) join points of its
own execution, e.g. by invoking one of its methods, or by matching the advice
execution itself.

Let us consider an extension of the Activity aspect such that it prints
out the point object that is active (Program 4). Here reentrancy occurs
because the advice prints the currently-executing Point object, which im-
plies a call to its toString method. The execution of the toString method is
in turn matched by the pointcut. As a result, the program enters an infinite loop.

Antidote. It is important to understand here that the
Icflowbelow(active()) condition does not help in avoiding reentrant
execution of the aspect. This is because the reentrant join point, the execution
of toString, does not occur in the control flow of the execution join point that
triggered the advice: indeed, the advice is executing before the method executes
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Program 4 Printing the active point.

public aspect Activity {
pointcut active(): execution(* Point.*(..));

before(Point p) : active() |&& this(p) | && !cflowbelow(active()) {

System.out.println("point active: " + p);

H}

on the Point object. Rather, the reentrant join point is in the control flow of
the advice execution itself.

There are different idioms that one can apply to avoid this kind of reen-
trancy. The AspectJ programming guide recommends using the within point-
cut to exclude join points that are in the lexical scope of the aspect?. How-
ever, this is a very narrow antidote that does not apply in our case, be-
cause the reentrant join point does not occur lexically in the aspect, but
rather occurs in the control flow of the advice execution. One could there-
fore use the !'cflow(adviceexecution()) idiom. While this solution works,
it is too extensive because adviceexecution does not discriminate between
the different aspects that may exist in a system. A more precise solution
is to use !cflow(within(A)), where A is the aspect that reentrantly ap-
plies [Bodden et al. 2006]. This well-known idiom excludes all join points that
occur in the control flow of any join point that is lexically in the aspect A.
Program 5 shows our fixed example.

Program 5 Avoiding advice-triggered reentrancy.

public aspect Activity {
pointcut active(): execution(* Point.*(..));
before(Point p) : active() && this(p)
&& !cflowbelow(active())
|4t 1ctlow(within(Activity)) | {

System.out.println("point active: " + p);

2.3 Pointcut-triggered reentrancy

Most aspect languages today support dynamic pointcut designators. These
pointcuts generally cannot be fully evaluated at compile time. Depending on
the semantics of the aspect language, runtime evaluation of dynamic pointcuts
may generate reentrant join points.

2 http://www.eclipse.org/aspectj/doc/released /progguide/pitfalls-infiniteLoops.html
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AspectJ supports several dynamic pointcut designators, such as runtime type
checks of join point attributes, and if pointcuts. Runtime type checks cannot
cause reentrancy because instanceof checks are not join points in the AspectJ
join point model. However, the if pointcut can contain any valid Java boolean
expression. This expression can invoke any accessible method, and can also ac-
cess join point attributes provided that they are exposed by the pointcuts (for
instance to check that the argument of a join point matches a given criteria).

As an example, consider an extension of the Activity aspect such that
only points that are located within a certain area are monitored (Program 6).
We assume that point objects have an isInside method that takes an area
object as parameter. The invocation of isInside in the if pointcut leads to
an execution join point of the denoted method, which causes the pointcut
evaluation to reenter. The pointcut evaluation process therefore enters in an
infinite loop, resulting in a stack overflow error.

Program 6 Pointcut-triggered reentrancy.

public aspect Activity {
Area area = /* obtain reference to user-selected area */
pointcut active(): execution(* Point.*(..));
before(Point p) : active() && this(p)
&& !cflowbelow(active())
&& !'cflow(within(Activity))

4 i1 (p.isInside(area)) | {
System.out.println("activity in " + p);

b}

Antidote. One would expect the previous antidote —which rules out join
points that are in the control flow of a join point occurring lexically in the aspect—
to suffice here. Indeed, the call to isInside in the if pointcut of Program 6 does
occur lexically in the aspect, and triggers the execution join point that provokes
non-termination. So, the condition !cflow(within(Activity)) should make it
possible to avoid pointcut-triggered reentrancy as well.

However, it turns out that the semantics of AspectJ as implemented by the
two main AspectJ compilers, ajc and abc [Avgustinov et al. 2006], do not match
with what one would expect. These compilers both adopt the same strategy
with respect to evaluation of if pointcuts: join points that are lexically in the
if pointcut definition are hidden. Join points that are in the execution flow of
these join points are, however, visible. This means that in Program 6 the call
join point to isInside is not visible, and hence cannot be used to rule out the
subsequent execution join point of isInside.
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Program 7 Avoiding pointcut-triggered reentrancy.

public aspect Activity {
Area area = /* obtain reference to user-selected area */
pointcut active(): execution(* Point.*(..));
before(Point p) : active() && this(p)
&& !cflowbelow(active())
&& !'cflow(within(Activity))

System.out.println("activity in " + p);

‘boolean checkArea(Point p) { return p.isInside(area); }‘

}

A solution to this problem can be obtained by moving the actual body of the
if pointcut to a separate method in the aspect, as illustrated on Program 7. This
refactoring “works” because while the call to the newly-introduced checkArea
method remains hidden, its execution is fully visible. This means that the execu-
tion of isInside now occurs in the control flow of a join point lexically present in
the aspect body. Alternatively, we could have moved the call to isInside to the
advice body —although that would defeat the purpose of having if pointcuts—.

We claim that the semantics currently implemented by main AspectJ com-
pilers is flawed for the following reasons:

— The semantics of a program should not be affected by moving the body of
an if pointcut to a separate method (as illustrated in Program 7), or to the
advice itself. Hiding the join points that are lexically in if pointcuts violates
this equivalence.

— Hiding join points can result in inconsistencies. For instance, if another as-
pect needs to intercept all calls to isInside (e.g. to intervene on the area
that is used), it will not be aware that the method is called when the if
condition of Activity evaluates.

To sum up, as a consequence of the multiple ad hoc and idiomatic solutions
we had to use in order to avoid all three kinds of reentrancy, our aspect definition
has become fairly complex and obscure (Program 7), in particular if compared
with an ideal definition that would match our original intensions:

public aspect Activity {
Area area = ...;
before(Point p) : execution(* Point.*(..)) && this(p)
&& if(p.isInside(area)) {
System.out.println("activity in " + p);

b}
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2.4 Over-strict control of reentrancy

After having illustrated the different kinds of reentrancy and the way they can
be addressed, we would like to raise the issue of over-strict control of reentrancy.
We now turn our attention to the fact that for our activity aspect, execution of
methods on different Point objects should be different activities.

Consider the aspect definition of Program 3: it uses a ! cflowbelow condition
in order to avoid base-triggered reentrancy. Let us now consider an extension of
the Point class with an attract method, that moves the argument point next
to the receiver point:

void attract(Point p){
p.-moveTo(this.x+1, this.y);

If we run the following program, with the Activity aspect, we would expect
to be notified of the activity of both p1 and p2:
Point pl = new Point(1,2);

Point p2 = new Point(3,4);
p2.attract(pl);

However, we only get notification of the activity of p2. Why is it so? When
attract executes, it calls moveTo on pl; however, the execution of moveTo oc-
curs below the control flow of the attract execution join point, therefore the
cflowbelow condition discards it. If we remove the cflowbelow condition, we
are back to the beginning, facing unwanted base-triggered reentrancy.

Therefore we are unable to respect the semantics of the Activity aspect: to
notify of each activity starting in point objects. The root of the problem here
is that cflowbelow is a property that holds for a whole thread of execution,
regardless of the object that is currently executing.

If we were to specify a solution to this problem, we would have to introduce
a whole infrastructure to keep per-point thread-local state. For the interested
reader, the code of a possible implementation is given on Program 8. It is clear
that this solution is not at the right level of abstraction. It basically boils down
to reimplementing an object-local version of cflowbelow by hand.

3 Supporting Aspect Reentrancy

The previous section clearly illustrates that the issue of reentrant aspect appli-
cation, although conceptually simple to apprehend, is not well served by current
aspect language design. Out of the three cases of reentrancy we discussed, two
require different idioms built out of low-level mechanisms, and one is simply not
solvable with current semantics, unless the program is refactored.



3506 Tanter E.: Controlling Aspect Reentrancy

Program 8 Definition of the Activity aspect with per-object thread-local state.

public aspect Activity {
ThreadLocal<Integer> Point.count = new ThreadLocal<Integer>(); // 0
void Point.inc() { /* increment count */;}
void Point.dec() { /* decrement count */;}
int Point.count() { return (int) count.get();}
boolean Point.active() { return count() > 0; }

pointcut active(): execution(* Point.*(..));
pointcut active-nr(Point p):
active() && this(p) && !cflow(within(Activity));

before (Point p) : active-nr(p) {
if(p.count() == 0) System.out.println("activity in " + p);
p-incQ;

after (Point p) : active-nr(p) {
p-decQ);

Furthermore, the idioms we have presented also have their limitations. First,
having to combine them makes pointcut definitions complex. Second, they re-
quire references to static elements like named pointcuts and aspect type names,
creating unnecessary dependencies that hamper reuse and extensibility.

The claim of this paper is that this issue deserves a unified language mecha-
nism to make avoiding reentrant application of aspects a triviality, while allowing
particular reentrancy scenario expressible. This section exposes our proposal.

3.1 Language design choice

From a language design point of view, we have to make a choice between propos-
ing a backward-compatible extension to AspectJ that allows for aspect reen-
trancy control, and formulating a new semantics for AspectJ that breaks back-
ward compatibility but promotes reentrancy control at the core of the pointcut
language.

The first alternative consists in adding a pointcut called reentering that is
true whenever any kind of reentrancy is involved. This provides a simple way for
programmers to say “do not match if the join point is reentering”, and thereby
avoid all cases of reentrancy at once. With such a design, programmers have to
explicitly state when reentrancy should be avoided, as in Program 9. (Note that
this program does not solve the per-object reentrancy issue.)

Although preserving backward compatibility, this approach requires explicit
thinking about reentrancy. We agree with Bodden et al. that reentrant applica-
tion of aspects is almost always a programming error [Bodden et al. 2006]. It is
very easy to find numerous cases of unwanted reentrancy, while actual exam-
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Program 9 Using the reentering pointcut.

public aspect Activity {
Area area = ...;
before(Point p) : execution(* Point.*(..)) && this(p)

&& if(p.isInside(area)) ‘&& !reentering()‘ {

System.out.println("activity in " + p);

H}

ples where matching reentrant join points is needed are fairly scarce. Section 2.4
presented one of these.

Contrasting with the current AspectJ semantics, we opt to promote aspect
stability above all, by making avoiding matching reentrant join points a default
in the language. Instead, we provide a means to recover the possibility to match
reentrant join points when needed, by means of a dedicated pointcut designator,
exposed below in Section 3.2. It will become clear to the reader that adopting
one or the other approach does not impact on the essence of our proposal, whose
semantics is described in Section 3.3.

3.2 A pointcut for dealing with reentrancy

Our proposal makes non-matching of reentrant join points a default. This means
that the correct definition of the Activity aspect is a straightforward expression
of our design intensions, as shown on Program 10. Reentrant join points caused
by execution of setters while moving a point, the verification that the point is
located in the given area in the if pointcut, and the invocation of toString as
part of the advice, are simply not matched by the aspect.

Program 10 Non-reentrant aspects as a language default.

public aspect Activity {
Area area = ...;
before(Point p) : execution(* Point.*(..)) && this(p)
&& if(p.isInside(area)) {
System.out.println("activity in " + p);

H}

There are indeed cases where an aspect needs to match some reentrant join
points, based on a certain scope. For instance, in our example (Sect. 2.4) we want
the Activity aspect to support object-level reentrancy: the aspect must notify
of the activity of each single object, even if it is activated below the control flow
of the activity of another one.
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|pointcut definition |reentrant join points matched?

pcO never

reentrant (pc()) always (AspectJ)

reentrant [this] (pc()) if currently-executing objects differ
reentrant [target] (pc()) if target objects differ

reentrant [class-of (this)] (pc()) |if classes of currently-executing objects differ

Table 1: Controlling reentrancy: some strategies.

To this end, we introduce a higher-order pointcut designator called
reentrant, that can be used to define precise reentrancy strategies, as shown on
Table 1. For instance, Program 11 refines the previous program by supporting
object-level reentrancy: the original pointcut is wrapped with reentrant [this].
Here, this is a function that specifies the scope of reentrancy: it extracts the
currently-executing object at a join point, which is then used to discriminate
reentrancy.

Program 11 Object-level reentrancy.

public aspect Activity {
Area area = ...;
before(Point p) : reentrant[this] (
execution(* Point.*(..)) && this(p) && if(p.isInside(area))) {
System.out.println("activity in " + p);

b}

Since the scope is defined by a function, it is possible to use any computable
criteria to define the scope of reentrancy. For instance, one can abstract over in-
dividual objects when defining the scope of reentrancy, e.g. class-level reentrancy
can be defined using reentrant [class-of (this)]. Other scoping semantics are
possible, for instance to control reentrancy by object groups, like in the POM
language for coordination of parallel activities [Caromel et al. 2008], or to dis-
criminate reentrant join points based on their target object, arguments, lexical
scope, etc.

Finally, if the scope function is omitted, then all reentrant join points are
matched: this is the closest to the current AspectJ semantics®.

3 The difference being that AspectJ hides join points that are lexically in if pointcuts
(which we consider a flaw, as discussed at the end of Section 2.3).
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3.3 Semantics

We now give a definition of the semantics of our proposal. It boils down to
defining what it precisely means for a join point to be considered reentrant,
for a given aspect, and a given scope. We first introduce a simple model of
execution traces with join points and aspects, and illustrate the different cases
of reentrancy. We then present our extension to this model to support both
global and scoped reentrancy.

3.3.1 Preliminaries: join points and aspects

An execution trace is modeled as an ordinal tree whose nodes are join points. A
join point consists of a kind, some data (like the name of the called/executing
method, the currently-executing object, the target object, the arguments), and
the previous join point. Attributes of a join point are accessed with a standard
dot notation, like jp.kind, jp.this, and jp.parent. A join point is an abstraction
of the control stack [Wand et al. 2004]; stack(jp) denotes the set of prior join
points of jp.

An aspect is modeled as a set of pointcut-advice pairs. Pointcuts and advices
are modeled as functions, following [Dutchyn et al. 2006]. This means that
equality of pointcuts and equality of advices are defined as equality of functions:
two functions are deemed equal if they have the same body and close over the
same lexical environment.

Illustration. Figure 1 shows the execution trace of evaluating
p.moveTo(a,b). A node is a join point and a vertex represents the par-
ent join point relation. For call join points, we include the name of the called
method and the target object, while for execution join points, we include the
name of the executing method and the currently-executing object (this). A grey
join point denotes a join point matched by the Activity aspect.

((call(moveTo,p) J&—{ exec(moveTo,p) call(setX,p) J&—{ exec(setX,p) )
[: call(setY,p) Jo—{ exec(setY,p) )

Figure 1: Execution trace with join points.

We can visualize on Figure 1 the occurrence of base-triggered reentrancy: the
setter execution join points are matched by the aspect, and are in the control
flow of a matched join point (the execution of moveTo).

Figure 2 extends the representation with the execution of the advice of
Activity, triggered by the matching of exec(moveTo,p). An advice execution
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join point is generated (as in AspectJ), following which a call to toString occurs.
This call results in an execution join point that is also matched by the aspect,
resulting in an infinite loop. This is a case of advice-triggered reentrancy.

(call(moveTo,p) adv-exec() J—{ call(toString,p) J®—{ exec(toString,p) )

Figure 2: Advice execution and advice-triggered reentrancy.

Figure 3 illustrates the case of pointcut-triggered reentrancy, as in Program 6.
The call to isInside that occurs within the if triggers a reentrant execution
join point exec(isInside,p). We can see the crux of the problem: the reen-
trant join point does not have any relation in its stack history that can be used
to discriminate it in order to avoid reentrancy. Indeed, its parent join point,
call(isInside,p) is hidden so it appears as if it is a join point completely
unrelated to the aspect matching process. It is also not in the control flow of
another execution join point. So the infinite loop cannot be avoided.

call(moveTo,p

exec(moveTo,p

Figure 3: Pointcut matching and pointcut-triggered reentrancy.

3.3.2 Global reentrancy

Let us first look at the semantics of a reentrant join point, when we only con-
sider global reentrancy. To detect base-triggered reentrancy, the semantics of
cflowbelow is therefore sufficient.

To detect advice-triggered reentrancy we need a join point for advice execu-
tion. This is semantically more appropriate than the lexical-scope discrimination
used in the Aspect] idiom !cflow(within(A)). Indeed, in AspectJ and most
languages, aspect instances are objects upon which methods can be called, inde-
pendently of any advice execution. The typical AspectJ idiom is therefore flawed
in this respect. AspectJ already includes an advice execution join point, but as
we already explained it is too general as it represents any advice execution. To
avoid this pitfall in our model, advice execution join points are parametrized by
the advice that is (about to be) executing.
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Definition 1 Global reentrancy

A join point jp is reentrant for the pointcut-advice pair (pc, adv)
<= djps2 € stack(jp), such that one of the following properties holds:

(BR) match(pc, jp2)
(PR) jpa.kind = PC_.MATCH A jps.pc = pc

(AR) jpe.kind = ADV_EXEC A jps.adv = adv

Finally, to detect pointcut-triggered reentrancy there is no option but to
introduce a pointcut matching join point. This allows us to discriminate join
points that are in the control flow of a pointcut evaluation. A pointcut matching
join point is also parametrized by the pointcut that is being evaluated.

Definition 1 formalizes the semantics of a globally reentrant join point. It
basically says that for a join point to be reentrant for a given pointcut-advice
pair, it has to be either base reentrant (BR) —this is equivalent to cflowbelow—,
pointcut reentrant (PR) —meaning it is in the control flow of the evaluation of
the pointcut—, or advice reentrant (AR) —meaning it is in the control flow of
the execution of the advice. Note that this definition ensures that two advices
(e.g. before and after) can be associated to the same pointcut and both execute
without being ruled out for reentrancy concerns (because the advice comparison
of (AR) will fail).

Figure 4 illustrates how this applies to our example. Thanks to the pres-
ence of the pc-match and adv-exec join points, the execution join points of
isInside and toString are straightforward to discriminate (using (PR) and
(AR) respectively).

call(moveTo, pc-match(pc) Jo—{ call(isInside,p) J@—{ exec(isInside,p) )
(adv-exec(adv) Je—{ call(toString,p) J@—{ exec(toString,p) )

exec(moveTo,p) b—[: call(setX,p) J#—{ exec(setX,p) )
call(setY,p) Je—{ exec(setY.p)

Figure 4: Introducing pc-match and adv-exec to determine reentrancy.
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3.3.3 Scoped reentrancy

Let us now look at the semantics of a reentrant join point for a finer-grained,
scoped notion of reentrancy, such as per-object reentrancy.

As briefly mentioned in Section 3.2, the scope of reentrancy is defined in our
model by a context function of type CTX = JP — Value. That is, a context
function takes a join point and returns one of its (computed) characteristics. For
instance:

— The function to extract the currently-executing object: this = jp — jp.this
— The function to extract the target object: target = jp — jp.target

— We can also define abstraction mechanisms, eg: class_of : CTX — CTX,
so we can use class_of(this) as a context function and get class-based reen-
trancy.

We use context functions to relate two different join points at the time where
the question is raised of whether or not the latter is reentrant. If the context
function that defines the scope of reentrancy yields the same value for both
join points, then the latter is reentrant. Therefore, we have to be able to relate
a potentially reentrant join point with the join point that originally triggered
the aspect application process, called root join point (exec(moveTo,p) in our
example).

We hence extend the model so that the pc-match and adv-exec join points
reference the root join point. This way we can retrieve this join point later when
examining the stack history of a join point that may cause reentrancy. The
updated illustration is given on Figure 5. The root join point (denoted rjp on
the figure) is kept within the pc-match and adv-exec join points.

(call(moveTo,p) pc-match(pc,rjp) J&—{ call(isInside,p) Jo—{ exec(isInside,p) )
(adv-exec(adv,rjp) }—{ call(toString,p) J@—{ exec(toString,p) )

{ exec(moveTo,p) )O—I:: call(setX,p) J&—{exec(setX,p) )
P call(setY,p) Je—{ exec(setY,p) )

Figure 5: Including current join point jp in pc-match and adv-exec to deter-
mine scoped reentrancy.

With these elements at hand, Definition 2 refines the previous definition of
join point reentrancy to formalize scoped reentrancy®. The only difference is the

4 Definition 1 is equivalent to Definition 2, where ctz is a constant-valued function,
i.e. such that VaVy, ctz(z) = ctz(y).
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Definition 2 Scoped reentrancy

A join point jp is reentrant for the pointcut-advice pair (pc, adv) for scope ctx
<= Jjp2 € stack(jp) such that one of the following properties holds:

(BR) match(pe, jp2) A ctx(jp) = cta(jpz)
(PR) jpa.kind = PC_.MATCH A jps.pc=pc A ctx(jp) = ctx(jp2.jp)

(AR) jpeo.kind = ADV_EXEC A jps.adv =adv A ctx(jp) = ctz(jpa.jp)

conjunction of a condition on the context function. Note that in the case of (PR)
and (AR), we use the fact that the pc-match (resp. adv-exec) join point jps
holds the original join point, and apply the context extractor function on that
join point. In our example (Figure 5), this makes it possible to relate the p of
the exec(isInside,p) join point to the p of the not-yet matched join point jp
that is the root cause of this pointcut evaluation.

3.4 Implementation

With the definition of the semantics of our proposal for reentrancy control in
an aspect language, the question of how to implement it can be raised. Looking
at the definitions of reentrant join points, we can see that the only reasoning
needed is very similar to that of a control flow pointcut, possibly with context
exposure. In addition, there exists a wide body of knowledge on how to effi-
ciently implement control flow based matching (e.g. [Avgustinov et al. 2005]).
This is much simpler than the general case of trace monitoring, where relations
between join points cross over stack boundaries [Avgustinov et al. 2007]. Our
work is concerned first and foremost with the semantic issues in aspect lan-
guages; we deliberately leave the door open to the study of how to efficiently
support the proposed semantics in AspectJ.

4 Related Work

The issues of infinite regression have been widely explored in the reflec-
tion community [Kiczales et al. 1991, Chiba et al. 1996], and continue to be
so [Denker et al. 2008]. The focus is on handling the regression caused by meta-
level entities. This corresponds to advice-triggered reentrancy in our terminology.
Although base-triggered reentrancy does apply, it is generally not considered. Re-
flective architectures do not have pointcuts, so pointcut-based reentrancy does
not apply.

POM [Caromel et al. 2008] is a domain-specific aspect language for coordi-
nation of parallel activities. POM gives control over reentrancy of requests in
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schedulers. This corresponds to addressing base-triggered reentrancy explicitly in
advices. POM is not a full-fledged aspect language, so pointcut-based reentrancy
does not manifest.

A semantics for pointcuts and advices is given in [Wand et al. 2004]. No par-
ticular provision is made to deal with reentrancy beyond the presence of an
advice execution join point and the control flow primitives, which make it pos-
sible to express the AspectJ idioms we have discussed. The model does not con-
sider if pointcuts, so the necessity of a pointcut matching join point to address
pointcut-based reentrancy is not identified.

To our knowledge Bodden et al. [Bodden et al. 2006] are the first to explore a
solution to the problem of recursive advice application beyond AspectJ idioms.
Their work is very related to work on metalevel architectures, because they
recognize the meta-ness of advices and provide a means to specify the exact level
at which join points are potentially matched. Although very satisfying from a
theoretical viewpoint, this approach puts high demands on programmers. Our
proposal is less expressive (it does not distinguish exact levels of reentrancy), but
it promotes simplicity. Finally, stratified aspects only address advice-triggered
reentrancy, while we uniformly deal with the three kinds of reentrancy.

In recent work, we propose expressive scoping semantics for dynamically-
deployed aspects, called deployment strategies [Tanter 2008]. While reentrancy
is related to scoping, deployment strategies are independent from the actual
pointcut language semantics. In contrast, this work addresses reentrancy at the
level of the pointcut language, and even requires the introduction of new kinds
of join points.

5 Conclusion

Current aspect languages fail to explicitly identify and cleanly capture aspect
reentrancy, leaving developers with low-level, error-prone, and invasive means
to address this issue. We propose to treat aspect reentrancy as a first-class
concern in the design of an aspect language, by avoiding reentrant aspects by
default, and providing an appropriate language construct to specify precise
and structured reentrancy semantics when required. Our proposal is consistent
with respect to join point visibility, and requires the introduction of pointcut
matching and advice execution join points. These join points are primarily
meant to be used by the aspect runtime to properly deal with reentrancy. The
language design we propose promotes a safe default for aspects, making them
more stable and simple. We believe that this work is a valuable step towards
pointcut definitions that are more faithful to the intensions of the programmer.
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