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Abstract: Proxima is a generic structure editor suitable for a wide range of structured
document types. It allows edit operations on the document structure as well as on
its screen representation (i.e. free-text editing), without the need to switch between
the two modes. The system maintains a bidirectional mapping between the document
structure and its presentation. Besides obvious applications, such as word-processor
and spread-sheet editors, Proxima is especially well-suited for defining source editors
for programming languages.

Presentation-oriented edit operations require that an edited presentation can be parsed
to yield an updated document structure. However, conventional parsing techniques
cannot readily be applied, since presentations in Proxima are not restricted to text but
may also contain graphical elements. For example, an exponential may be presented as
32. Although this graphical presentation may not be directly edited at the presentation
level, its components may. Hence, instead of simply parsing the changed representation,
we have to take into account the existing structure.

This paper explains the scanning and parsing process for presentations that are a
possibly nested combination of text and graphical elements. For textual parts of the
presentation a Haskell combinator parser needs to be provided. The parser for graphical
parts, on the other hand, is constructed by Proxima, based on information in the
presentation. White space in the presentation can be handled automatically, if desired.
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1 Introduction

The generic structure editor Proxima [Schrage 2004] is suitable for a wide range
of structured document types. Its key feature is the modeless combination of
structural editing and presentation editing. Figure 1 is a screenshot of Prox-
ima at work, showing an editor for the functional programming language He-
lium [Heeren et al. 2003]. The editor shows inferred type signatures and provides
a list with type information for the identifiers in scope. Note that various graph-
ical presentations of code fragments are supported, as shown in the declaration.

When editing program code, a structure-based view of the text often comes
in handy. One might want to select a complete function or a subexpression by
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Figure 1: An editor for Helium.

a simple gesture and be assisted by an editor that knows the structure of the
document. We refer to such edit operations as structural or document-oriented,
edit operations.

On the other hand, we also have presentation-oriented edit operations that
do not necessarily correspond to meaningful operations on the document. If, for
example, the middle part of the expression (1 + 2) × ( 3 + 4) is deleted, we
again get a correct expression (1 + 3 + 4). This edit operation does not directly
correspond to a structural edit operation.

In order to support editing on both the document structure and the presen-
tation, Proxima maintains a bidirectional mapping between two data structures:
the structural description of the document, and its actual presentation on the
screen. This mapping is described as a composition of a number of smaller map-
pings, several of which are parameterized by so called sheets. Together with a
document type definition, these sheets form the instantiation of an editor. By
supplying a document type, a presentation sheet, and a scanner and parser, a
syntax-aware editor may be constructed with little effort.

To illustrate the scanning and parsing process, we focus on a small example.
Figure 2 shows a declaration that has a mixed textual and graphical presentation.
The fraction and the exponentiation both have a graphical presentation, which
we will refer to as a structural presentation. A textual presentation, on the other
hand, is denoted by the term sequential presentation.

The figure shows that a sequential presentation may contain structural pre-
sentations (e.g. the sequential presentation of the declaration contains a struc-
tural fraction), and vice versa. The fraction, for example, has sequential presen-
tations for the numerator and the denominator (the latter containing a structural
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Figure 2: A graphically presented declaration.

presentation again for 32).
Because of the complexity of parsing visual languages in general, Proxima

disallows presentation editing on structural presentations. Any sequential subp-
resentation (such as the numerator and denominator), however, is editable again.
Hence, in Figure 2 we can type “+1” next to the 1 in the numerator, but we
cannot delete the horizontal line. We can delete the entire fraction though, by
putting the caret after it and pressing backspace. A fraction may be introduced
using a menu, or by typing a ‘/’ operator, which is replaced by a graphical frac-
tion after the next successful parse. The caret remains at the right place after
such a transformation.

Summarizing, we have two kinds of presentations:
• Sequential presentation A presentation that consists of a sequence of

items, each of which is either text or a structural presentation. It supports
structure editing as well as presentation editing.

• Structural presentation A possibly graphical presentation that does not
support presentation editing. It may contain either nested structural or se-
quential presentations, with the latter supporting presentation editing again.
After the presentation of a document has been edited, the modified presen-

tation needs to be mapped back onto the document. However, due to the mix
of structural and sequential presentations, conventional parsing methods cannot
readily be used. In this paper, we show how the Proxima scanner and parser
co-operate in this reverse mapping.

Figure 3 shows the result of the Proxima scanner when it is applied to the
presentation in Figure 2. It consists of a nested structure of SequentialTk tokens
and StructuralTk tokens that matches the structure of the presentation. Tex-
tual tokens are represented by UserTk tokens. Each token has a unique number,
which is denoted by a subscript, and is referred to as its presentation identity.
Presentation identities have type IDP and are used to associate a token with its
white space. In addition to a sequence of tokens that represent its children, a
structural token also contains a reference to the structured-document fragment it
represents (denoted by the parameter loc). The document fragment is necessary,
because a structural presentation does not always contain enough information
to reconstruct the document tree. In the scannedDecl value, we represent the
location reference by the document subtree. (A SequentialTk token also con-
tains a loc parameter, as well as a parser, but for brevity, these are not shown in
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data Token loc userToken
= SequentialTk IDP loc (Parser userToken) [Token node userToken]
| StructuralTk IDP loc [Token node userToken]
| UserTk IDP userToken String
| ErrorTk IDP String

scannedDecl :: Token loc UserToken
scannedDecl =
SequentialTk0

[ UserTk1 (IdentToken "x")
, UserTk2 (OpToken "=")
, StructuralTk3 (DivExp (IntExp 1) (PlusExp ...))
[ SequentialTk4 [ UserTk5 (IntToken 1) ]
, SequentialTk6 [ StructuralTk7 (PowerExp (IntExp 3) (IntExp 2))

[ SequentialTk8 [ UserTk9 (IntToken 3) ]
, SequentialTk10 [ UserTk11 (IntToken 2) ] ]

, UserTk12 (OpToken "+")
, UserTk13 (IntToken 5) ] ]

, UserTk14 (OpToken "+")
, UserTk15 (IntToken 1)
, UserTk16 (SymToken ";") ]

whitespaceMap :: IntMap IDP (NrOfBreaks, NrOfSpaces)
whitespaceMap = [1 �→ (0, 1), 2 �→ (0, 1), 3 �→ (0, 1), 14 �→ (0, 1), 16 �→ (1, 0)]

Figure 3: A scanned declaration.

the value.) Together with the tokens, the scanner produces a white-space map:
a mapping between a token’s presentation identity and its trailing white space.

Parsing the token structure in Figure 3 is relatively straightforward. For the
sequential parts, we use a combinator parser that has a special primitive for
structural tokens. The presentation sheet specifies the parser to be used. The
structural parts, on the other hand contain enough information to be parsed
without the need to specify a parser.

The paper is organized as follows. We start by providing a brief overview of
Proxima’s architecture (Section 2) and the kind of document types that can be
defined (Section 3). Then, we explain the components and data types involved in
computing the presentation of a document in Section 4. The Proxima scanning
and parsing algorithms, explained in sections 5 and 6, form the core technical
content of this paper. Section 7 describes related work, and Section 8 concludes.

2 The architecture of Proxima

The core architecture of Proxima consists of a number of layers, each commu-
nicating with its direct neighbors. The layered structure is based on the staged
nature of the presentation process and its inverse, the interpretation process.
The positions at which the document, the rendering, and the intermediate data
structures reside are called levels. Between each pair of levels we have a layer

3417Schrage M.M., Swierstra S.D.: Beyond ASCII ...



that maintains the mappings between its adjacent levels. Each layer consists
of a presentation component and an interpretation component and may be pa-
rameterized by a sheet. Figure 4 schematically shows the levels and layers of
Proxima. From a document type definition, a code generator generates a num-
ber of Haskell modules, which are compiled together with the sheets and the
Proxima base modules to yield an editor.

Figure 4: The levels and Layers of Proxima.

A data level in Proxima is not simply an intermediate value in the presenta-
tion computation. It is an entity in its own right and maintains part of the state
of the editor. The six levels of Proxima are:
• Document: The document structure.
• Enriched Document: The document attributed with derived values and

structures, such as the type of a function or a table of contents, typically
computed by an attribute grammar [Reps and Teitelbaum 1984].

• Presentation: A logical description of the presentation of the document,
consisting of rows and columns of presentation elements with attributes.
The presentation also supports formatting based on available space (e.g. line
breaking).
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data Decl = Decl ident:Identifier exp:Exp {idP1,idP2}

data Identifier = Ident str:String {idP1}

data Exp = PlusExp exp1:Exp exp2:Exp {idP1}
| DivExp exp1:Exp exp2:Exp {idP1}
| PowerExp exp1:Exp exp2:Exp {idP1}
| IntExp val:Int {idP1}

Figure 5: A document type for simple declarations.

• Layout: A presentation with explicit white space, which does not contain
tokens.

• Arrangement: A formatted layout with absolute size and position infor-
mation.

• Rendering: A bitmap of the arrangement.

Presentation-oriented editing actually takes place at the layout level rather
than the presentation level, thus allowing free-text editing also on white space
(which is absent on the presentation level). Hence the two levels that are directly
editable are the document level and the layout level. After an edit operation
on the document, all levels from document to rendering are updated to reflect
the update. After an edit operation on the layout level, the modified layout is
scanned, parsed and reduced, to obtain the corresponding updated document,
from which an updated rendering is computed. Scanning and parsing does not
occur after every presentation edit operation. Depending on the editor, it may
occur either on a navigation operation, after a certain time interval, or at an
explicit request by the user.

In this paper, we will focus mainly on the presentation layer and layout layer,
and, more specifically, on the scanner and parser in these layers. Because we do
not refer to the evaluation layer, we will use the term document also to refer to
the enriched document.

3 The document structure

The document type in Proxima is a monomorphic (i.e. parameter free) Haskell
data type with lists. Figure 5 shows the definition for a type Decl that represents
declarations of simple expressions. This definition is the base from which a code
generator creates a Haskell data type, as well as a number of utility functions.

In contrast to Haskell syntax, named fields are specified by putting an iden-
tifier and a colon in front of a child type. Furthermore, at the right of each
constructor we have a number of identifiers that declare presentation identity
fields, which refer to the tokens occurring in the presentation. For example,
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Decl (Identifier "x")
(PlusExp (DivExp (IntExp 1)

(PlusExp (PowerExp (IntExp 3) (IntExp 2))
(IntExp 5)))

(IntExp 1))

Figure 6: A value of type Decl.

Decl has two fields, one for the equals sign and one for the semicolon, whereas
PlusExp has only one for the plus operator. A future version of Proxima will
allow presentation identities to be specified in the presentation sheet rather than
the document type. In the Haskell data type that is generated from this type
definition, the presentation identity fields are placed in front of the other fields.
Furthermore, two special constructors are added to each type: a hole constructor
for representing incomplete documents, and parse error constructor for repre-
senting parse errors.

If we leave away the presentation identities, the declaration in Figure 2 is
represented by the value in Figure 6. (The full version is provided in Section 6.3.)

4 The presentation process

Before discussing the scanner and parser components, we briefly discuss their
counterparts in the presentation direction: the presenter and layout components.
The presenter component maps an (enriched) document onto the presentation
level, according to rules in the presentation sheet, which is specified with an at-
tribute grammar. The presentation itself is a value of type Xprez, computed in
a compositional way, using the Xprez combinator language. After the presenta-
tion phase, the presentation level is mapped onto the layout level by the layout
component. In the next three subsections, we introduce the language Xprez,
the attribute grammar formalism used in the presentation sheet, and the layout
component.

4.1 The Xprez presentation language

Xprez [Schrage 2004] is a combinator library for specifying graphical presenta-
tions with support for alignment and stretching. The basic building blocks of
Xprez are text and graphical elements such as polygons, circles, and images.
Combinators are used to combine presentations in rows and columns. The el-
ements of a row or column are aligned along horizontal and vertical reference
lines of their children, and do not overlap. Besides rows and columns, Xprez

also supports overlapping presentations and a flow layout for line breaking. We
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frac :: Xprez -> Xprez -> Xprez
frac e1 e2 = let numerator = hAlignCenter (pad (shrink e1) )

denominator = hAlignCenter (pad (shrink e2) )
in colR 2 [ numerator, vSpace 2, hLine

, vSpace 2, denominator ] ‘withHStretch‘ False

pad xp = row [ hSpace 2, xp, hSpace 2 ]

shrink e = e ‘withFontSize_‘ (\fs -> (70 ‘percent‘ fs) ‘max‘ 10)

Figure 7: The definition of Frac.

give an introduction to the language based on an example function frac, defined
in Figure 7. The result of frac (text "1") (text "1+x") is:

The colR combinator takes an argument that denotes which of its chil-
dren provides the vertical reference line (in this case, the horizontal line in the
fraction). The withHStretch function prevents the fraction from being hori-
zontally stretchable. Finally, to shrink presentations, we use the combinator
withFontSize , which takes a function argument that computes the new font
size, given its previous value. Besides combinators that produce presentations,
Xprez also has combinators for specifying edit operations in context menus,
reactions to mouse clicks, and keeping track of document locations in the pre-
sentation.

4.2 Document presentation

For the presentation of the document, as well as for the computation of derived
values and structures, Proxima uses the attribute grammar formalism. The pre-
sentation sheet is a file with an attribute grammar definition, which is compiled
to Haskell by the Utrecht University AG compiler [Swierstra et al. 2008].

For each type of node in the document, the presentation sheet defines a
synthesized attribute pres of type Xprez. The definition of pres may refer to
presentations of children of the document node. Besides the presentation, any
number of attributes can be defined on the document tree. In this way we can
easily add static checks or compute all variables in scope at some document loca-
tion. Moreover, functions from external Haskell modules may be called, allowing
for more complex computations, such as type checking.

Each presentation rule states whether the presentation is sequential or struc-
tural. A sequential presentation consists of a sequence of tokens, which may be
strings or structural presentations. In the presentation sheet, the top-most el-
ement of the sequential presentation (the one that is an immediate child of a
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SEM Decl
| Decl loc.pres = sequence parseDecl [ @ident.pres, key @idP1 "="

, @exp.pres, symb @idP2 ";" ]
SEM Exp
| PlusExp loc.pres = sequence parseExp [ @exp1.pres

, operator @idP1 "+"
, @exp2.pres ]

| DivExp loc.pres = sequence parseExp [ structuralToken @idP1 $
frac @exp1.pres @exp2.pres ]

key idp str = token idp str ‘withColor‘ blue
operator idp str = token idp str ‘withColor‘ green
sym idp str = token idp str ‘withColor‘ orange

Figure 8: Presentation sheet fragment.

structural presentation) must specify a parser, which is the parser to be applied
to the sequence after it has been edited.

Since a structural presentation may not be edited at the presentation level,
it is straightforward to map it back onto the document level, even if it has a
graphical presentation. Hence, no parser needs to be specified in the presentation
sheet.

Figure 8 shows three presentation rules for the declaration document type
from Section 3. For brevity, the rules for Ident, PowerExp, and IntExp have
been omitted. The Haskell type system enforces a sequential presentation to
consist only of tokens and nested sequential presentations. Two functions are
available for creating tokens: token and structuralToken. The first parameter
of both functions is a presentation identity, the value of which comes from one
of the idP fields specified in the document type definition (Figure 5). Note that
we not only specify a parser for Decl, since it is the top-level type, but also
for Exp, since it may appear as a child of the structurally presented DivExp (or
PowerExp). The definition of these parsers is provided in Section 6.

4.3 The layout component

The main function of the layout component is to restore the implicit white space
that is kept separately in the white-space map. Besides the white space, also the
presentation focus (i.e. the caret or the selection) is stored in the white-space
map. This is necessary because parsing followed by presenting is not necessarily
an identity mapping. After parsing, document structures represented by tokens
may be presented graphically, and thus give rise to a restructured presenta-
tion. Recall that typing a ‘/’ in the Helium editor causes the introduction of
a graphical fraction after parsing and presenting. The focus restoration mecha-
nism ensures that after parsing and presenting the presentation focus remains in
the same token, provided it is still part of the presentation. If the presentation
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focus cannot be restored from the tokens, the layout component will restore it
by using its absolute coordinates in the presentation.

Apart from white space, the layout level has the same structure as the pre-
sentation level. Hence, analogously, we have sequential and structural layouts.
The layout component is not parameterized by a sheet. The reason is that al-
though we need a specification in order to create tokens from a string, the reverse
process is straightforward, since each token contains its string representation.

5 Scanning

The Proxima scanner maps character sequences in sequential layouts onto tokens,
as specified in the scanning sheet. If the sequential layout contains any structural
layouts, these are recursively scanned and recorded by special tokens.

5.1 The Token type

Tokens are represented by the type Token, of which a simplified version is shown
in Figure 3. A number of type parameters that are not important for this discus-
sion are left out. Each constructor has an IDP field that denotes its presentation
identity number. Both SequentialTk and StructuralTk have a loc field that
refers to the node in the document tree from the presentation of which the to-
ken originated. (Because ErrorTk tokens originate from the scanner they do not
have this field.) The loc field is used when parsing structural layouts (which is
explained in Section 6.1.)

A SequentialTk represents a sequential layout. The Parser userToken field
is the parser that is used to parse the list of child tokens. This list contains no fur-
ther SequentialTk tokens; tokens from all sequential descendents are collected
and placed in the same list. On the other hand, a StructuralTk represents a
structural layout and has a list of tokens for each of its child layouts. Finally,
a UserTk represents a string token, and an ErrorTk is used to represent lexical
errors.

5.2 Scanning the layout tree

The scanner creates a tree of structural and sequential tokens that matches the
structure of the layout level. Its behavior is determined by the kind of layout on
which it is called.

Structural layout. A structural layout of a document node is an Xprez tree con-
taining layouts stemming from the presentation of child nodes. The scanner
traverses the layout tree and makes a recursive call on each child layout that is
encountered. The list of child tokens is put in a StructuralTk and returned as
the result of the scanner.
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data
UserToken =

IdentToken String | OpToken String | SymToken Char | IntToken Int

$opChar = [\+ \- \=]
$symChar = [\;]
tokens :-
$digit+ { mkToken $ \s -> IntToken (read s) }
$opChar+ { mkToken $ \s -> OpToken s }
$symChar { mkToken $ \[c] -> SymToken c }
$lower [$alpha $digit \_ \’]* { mkToken $ \s -> IdentToken s }

Figure 9: Example UserToken and scanning sheet.

Sequential layout. A sequential layout consists of a column of rows, which contain
either strings or structural layouts. Each structural layout is mapped onto a
structural token by recursively scanning it. The sequences of strings between
the structural tokens are first extended with new-line characters to mark the
transitions between rows. The resulting lists of characters are mapped onto lists
of UserTk tokens according to the scanning sheet. The final list of child tokens
is the result of merging the structural tokens with the recognized user tokens.

5.3 The scanning sheet

The lexical analysis of textual tokens is based on the Haskell lexical analyzer
generator Alex [Marlow 2007], which is comparable to the lex and flex tools
for C and C++. An editor designer has to define the data type UserToken

and provide an Alex specification for the tokens. Figure 9 shows an example
UserToken and scanning sheet. The Alex specification consists of a a number of
macro definitions followed by a set of rules, each defining a token. A rule is a
regular expression together with an action that constructs the token.

5.4 Handling white space

In order to use the automatic white-space recognition, the following rule must
be added to the scanning sheet:

[\n \ ]+ { collectWhitespace }

This rule causes the scanner to emit a special white-space token for each
sequence of white space. A post-processing phase removes these white-space
tokens, and records the trailing white space for each token in the white-space
map. For the first token, also its leading white space is recorded. In case there
are no tokens, any white space is associated with the presentation identity of the
SequentialTk value that contains the list of tokens.
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The white-space model is currently somewhat limited, since white space is
assumed to be a number of line breaks followed by a number of spaces. However,
the model is easily extended to handle arbitrary white space and also comments
that need to be treated similar to white space.

6 Parsing

Unlike ordinary parsers, which take a list of tokens to produce a value, the
Proxima parser is a function that takes only one token as input. This token can
be either a structural token or a sequential token. In case of a structural token,
the value is constructed automatically from the list of child tokens. If the token
is a sequential token, its list of children is fed into the parser that was specified
in the presentation sheet.

6.1 Structural presentations

A structural token corresponds to the presentation of a certain document node
and contains a list of tokens that correspond to presentations of children of that
document node. Each child may be presented multiple times, or even not at
all. Furthermore, the order in which the child presentations appear may not
correspond to the order of the children in the document node.

Nevertheless, we can parse a structural token automatically, since each child
token contains a loc reference to the document node (and path) of which it is
a presentation. Hence, for each token, we can determine the corresponding child
of the document node. Because structural presentations are not editable at the
presentation level, this information remains valid under presentation editing.

For child i of the document node, the parser takes the list of tokens corre-
sponding to presentations of that child. If this list is empty, the presentation does
not contain a presentation for the child, and we use its previous value, which is
stored in the structural token. If the list is not empty, the token for the presen-
tation that was edited is recursively parsed to yield a value for child i. In case no
presentation was edited, then the child value is also reused from the structural
token for efficiency reasons. There will be at most one edited presentation, since
Proxima does not allow editing multiple presentations of a single value at the
same time.

6.2 Sequential presentations

The parser for a sequential presentation cannot be constructed automatically.
Instead, we use the parser that was specified in the presentation sheet, which
is stored in the SequentialTk value. Such parsers are specified using the UU
Parsing library [Hughes and Swierstra 2003, Swierstra 2008]. This is a library
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parseDecl :: Parser Decl
parseDecl = (\id eqIdp exp semiIdp-> Decl eqIdp semiIdp id exp)

<$> parseIdent <*> pToken (KeyToken "=")
<*> parseExp <*> pToken (SymToken ’;’)

parseExp :: Parser Exp
parseExp = pStructural Node_Div

<|> pStructural Node_Power
<|> (\plusIdp e1 e2 -> PlusExp plusIdp e1 e2)

<$> pToken (OpToken "+") <*> parseExp <*> parseExp

Figure 10: Parsing-sheet fragment for Decl and Exp.

for creating fast error correcting parsers with support for user-friendly error
messages. Because of the error recovery, parsing does not stop after the first
error, and hence multiple parse errors in different parts of the presentation can
be reported.

A Proxima parser is very similar to a regular parser specified with a combina-
tor parser library. The only difference is that, in order to let the scanner handle
white space and focus restoration, the presentation identities of the parsed tokens
need to be stored in the appropriate fields of the document node.

The list of tokens to which the parser is applied consists only of UserTk,
StructuralTk, and ErrorTk tokens, since nested SequentialTk tokens are not
created by the scanner. Primitive parsers are available for user tokens and struc-
tural tokens. No primitive parser is offered for error tokens, since these represent
a lexical error by the scanner, which should always lead to a parse error.

Figure 10 shows the parsing sheet for the declaration type from the previous
examples. The parser does not take into account priorities. The pToken parser
is a primitive parser that succeeds on its argument UserToken value and returns
the presentation identity of the token. The pStructural parser succeeds on
a structural token for the constructor that is denoted by its argument. The
argument has type Node, which is a generated type that represents the union of
all constructors in the document type.

Note that we do not restore the presentation identity of the SequentialTk

value itself in the Exp parser. The reason is that this is only necessary if the
parser accepts an empty list of tokens. This is not true for the expression parser,
so when only white space is present, a parse error is returned, which takes care of
handling the white space. For a top-level parser that does accept an empty token
list (e.g. a parser for a list of declarations), a special combinator is available that
provides the parser with the presentation identity of the SequentialTk value.

Although Proxima currently uses the UU Parsing library, this connection is
not fixed. In fact, any parser library that is parameterized with its input token
type is suitable. Hence, a binding with another library, such as, for example,
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Decl2,16 (Identifier1 "x")
(PlusExp14 (DivExp3 (IntExp5 1)

(PlusExp12 (PowerExp7 (IntExp9 3) (IntExp11 2))
(IntExp13 5)))

(IntExp15 1))

Figure 11: A parsed declaration.

Parsec [Leijen and Meijer 2001], is also possible. The only thing that needs to be
done in order to use a different library is to define a primitive parser pStructural
and a combinator that applies a top-level parser and returns an error value in
case of a parse error.

6.3 Example

As an example for the parser, we show the result of parsing the tokens in Figure 3
that were obtained from scanning

Figure 11 contains the resulting document structure. The value is in fact the
example from Section 3 with the presentation identities shown as subscripts. The
presentation identities correspond to the identities of the tokens in Figure 3. The
Decl node has two presentation identities: 2 for the equals sign and 16 for the
semicolon. All other nodes have only one.

6.4 Parse errors

On a parse error, a parser does not return a document tree, which means there
will not be a document to present. To account for this, the parser returns the
special value for which a constructor was added to each type in the document.
For a document type Type, this constructor reads:

data Type =
...
| ParseErr Type IDP [ErrorMessage] [Token node userToken]

When a parse error is encountered, the parser constructs a ParseErr value
and supplies it with a list of error messages and the list of tokens it tried to
parse. The presentation identity comes from the parsed SequentialTk value
and is used to handle white space in absence of tokens. The presenter uses the
list of tokens when the parse error node is to be presented. In addition, squiggly
lines are placed at the presentation of each token that is referred to by the error-
message list. The white space for the tokens in the parse error node was already
handled by scanner, and is restored by the layout component in the same way
as it is for tokens stemming from ordinary presentations.
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Each type of node in the document has a (generated) synthesized attribute
parseErrors, which is the collection of all parse errors in the nonterminal or
its descendents. This attribute can be used to show a list of parse errors in the
presentation.

Lexical errors require a special treatment. When Alex encounters a lexical
error, it stops at the offending character. The offending character and the re-
mainder of the input are put in an ErrorTk token, which will always cause a
parse error since no primitive parser is offered that accepts it. Since scanning the
string stops at the offending character, all following white space will be recorded
in the string, rather than stored in the white-space map. Therefore, the layout
component treats error tokens specially by expanding any white space encoded
in the string.

7 Related work

We can distinguish two main classes of structure editors: syntax-directed edi-
tors (which derive a presentation from the document structure), and syntax-
recognizing editors (which derive the structure from the presentation). Syntax
directed editors, such as the Synthesizer Generator [Reps and Teitelbaum 1984],
LRC [Saraiva et al. 2000], SbyS [Magnusson et al. 1990], and the Redwood en-
vironment [Westphal et al. 2004] allow graphical presentations, but do not have
a parser for editing mixed presentations. On the other hand, syntax recogniz-
ing editors, such as Pan [Ballance et al. 1992] and Harmonia [Boshernitsan 2001]
support presentation-oriented editing, but do not allow mixed graphical presen-
tations.

Examples of systems that do support editing (and parsing) of mixed presenta-
tions are editors for mathematical formulas, such as MathSPad [Verhoeven 2000],
Amaya [World Wide Web Consortium 2008], and the commercial system Math-
ematica. However, these systems work for a fixed document type, and are not
easily extensible. Somewhat more general, Eisenberg and Kiczales describe a
presentation extension formalism [Eisenberg and Kiczales 2007] for Eclipse, but
their solution is targeted at extending Java only.

The Barista framework [Ko and Myers 2006] has similarities to Proxima, al-
though it is targeted mainly at code editors. The system allows graphical presen-
tations for program structures, but these are expanded to the underlying textual
presentation when edited. Although this is good to have as optional behavior, it
is in many cases unnecessary.

8 Conclusion

Editors for programming languages can benefit much from editable graphical pre-
sentations of programs. Such graphical presentations, however, cannot be parsed
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with conventional parsing techniques. In this paper, we introduced a method for
scanning and parsing mixed textual and graphical presentations. A combinator
parser is used for textual parts of the presentations, whereas the graphical parts
are recognized automatically, based on information in the presentation itself.
Performance is adequate for regular-sized documents, whereas for larger doc-
uments (i.e. with a presentation of multiple thousands of lines), several hooks
exist for optimizing the algorithms and adding incremental behavior. The scan-
ner and parser are part of the Proxima generic editor, and have been used to
implement a number of prototype editors.
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