
A Lightweight and Extensible AspectJ Implementation1

Rodolfo Toledo
(PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile, Santiago, Chile

rtoledo@dcc.uchile.cl)

Éric Tanter
(PLEIAD Laboratory

Computer Science Department (DCC)
University of Chile, Santiago, Chile

etanter@dcc.uchile.cl)

Abstract: Extending AspectJ to experiment with new language features can be cum-
bersome, even with an extensible implementation. Often, a language designer only
needs a rapid prototyping environment, but has to deal with a full compiler infras-
tructure, and must address low-level implementation issues. This work completes a
lightweight extensible implementation of AspectJ with a declarative assimilation layer
based on Stratego. This layer brings together an extensible syntax definition of AspectJ
and the core semantics provided by the Reflex AOP kernel. Using this implementation,
language extensions are defined using declarative high-level constructs, significantly
reducing the cost of the extension process.

Key Words: Aspect-oriented programming, AspectJ, extensible implementation

Category: D.1.m, D.3.4

1 Introduction and Motivation

A concern is said to crosscut an application if its code is spread in several mod-
ules. Examples of this kind of concerns are: logging, synchronization and error-
handling, among others. The consequence of the existence of these concerns is
that they can not be implemented in a modular way using traditional paradigms.
Aspect-Oriented Programming (AOP) was proposed as a new paradigm to solve
these modularization problems [Elrad et al. 2001]. AOP introduces the notion of
an aspect: a modular implementation of a crosscutting concern.

AspectJ [AspectJ Website 2002] is one of the most popular languages for
AOP in Java. It allows the definition of aspects by means of pointcuts and
advices (among other features). An advice describes the action to take when
a join point (an execution point) is matched by a pointcut; a pointcut is a
composable descriptor that matches a set of join points based on lexical or
1 This work is partially funded by FONDECYT Project 11060493.

Journal of Universal Computer Science, vol. 14, no. 21 (2008), 3517-3533
submitted: 16/4/08, accepted: 5/6/08, appeared: 1/12/08 © J.UCS

dynamic conditions. The weaving process connects the application code to the
aspects definitions.

17 kinds of pointcuts designators for selecting execution points can be found
in AspectJ. Some of them are static designators as their join points can be
determined statically given their kind (method invocation, field read access, etc.)
and their lexical pattern. Examples are call and get that select join points of
the aforementioned kinds. Other class of pointcuts are dynamic designators,
which impose dynamic restrictions over a join point. For example, if restricts
the match to obey an arbitrary condition. Finally, some other pointcuts are
context-sensitive because they can expose context information present at the
join point or impose a type restriction over that context. For example, this can
be used either to expose the current object at the join point or to impose a type
restriction on it; similarly with args and target.

Extending AspectJ. Despite the number of AspectJ pointcuts, the exploration
of new ones is a research issue [Avgustinov et al. 2006, Gybels and Brichau 2003,
Harbulot and Gurd 2006, Ostermann et al. 2005, Tanter et al. 2006], mostly mo-
tivated by the quest for increased expressiveness. Unsurprisingly, many AspectJ
extensions are focused on pointcuts. Among these extensions we can find new
pointcuts like cast and global in the EAJ extension [Avgustinov et al. 2006].
The cast pointcut matches type casts events; and the global pointcut allows
the factorization of a common pointcut expression in one global declaration.

Other extensions to the pointcut language of AspectJ are proposed for context-
aware aspects [Tanter et al. 2006]. Two general-purpose pointcuts descriptors
are presented: inContext imposes a restriction enforcing a certain context to
be currently active at the join point; createdInCtx checks that the current
object at the join point was created when a certain context was active. These
pointcuts are similar to an if pointcut, except that they can be used to expose
external context values to the advice. [Tanter et al. 2006] also motivates the need
for being able to easily define domain-specific pointcuts, especially tailored for
an application or domain.

Even though some of these context-aware pointcuts (and maybe other ex-
tensions to the pointcut language) can be simulated using standard AspectJ,
the fundamental difference resides in expressiveness. For example, using plain
AspectJ, one aspect would be necessary just to record the context in which an
object is created. This aspect must also provide an interface to access that in-
formation, necessary to determine if a pointcut restricted to objects created in
a certain context matches or not.

Researchers wanting to experiment with AspectJ extensions face the problem
that extending the standard AspectJ compiler (ajc) is hard and implementing
a customized version of it from scratch is not an option. This is the motivation
behind abc [Avgustinov et al. 2006], an extensible compiler for AspectJ.

3518 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

input

output

code
AspectJ

+ links
Java code

definition
Stratego

parser
SGLR

SDF
definition

parse
table

Assimilation

weaving

Reflex

(c) Reflex

(b) Stratego

(a) SDF

JVM

Figure 1: ReflexBorg architecture.

Contributions. Our stake on this issue is that some simple extensions do not
require all the machinery of a full-fledged compiler like abc. When initially ex-
perimenting with such extensions, a lightweight extensible implementation of
AspectJ suffices, allowing rapid prototyping. At this stage, performance con-
siderations are not necessarily an issue. When the extension matures and opti-
mizations are considered, then turning to a full compiler infrastructure makes
sense.

The contribution of this work is to provide an extensible and lightweight
AspectJ implementation over a declarative intermediate language (Section 3)
based on the ReflexBorg approach (Section 2). We demonstrate its extensibil-
ity by actually extending it to support the cast and global pointcuts, and
context-aware aspects (Section 4). We validate our approach by comparing the
implementation of these extensions in ReflexBorg and abc (Section 5). Section 6
concludes.

2 ReflexBorg Approach

The ReflexBorg approach is a method for implementing aspect-oriented exten-
sions of Java, including both their syntax and semantics. This work reports on
completing an AspectJ implementation using ReflexBorg.

ReflexBorg consists of three layers (Figure 1): syntax definition of the lan-
guage (or its extensions) are expressed in SDF (Sect. 2.1); ultimately, the seman-
tics of the language are realized in Reflex (Section 2.3), which takes care of as-
pect weaving. In between, an assimilation layer defined in Stratego (Section 2.2)
transforms abstract terms of the aspect language into Java code instantiating
Reflex elements.

3519Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

2.1 SDF

SDF (Syntax Definition Formalism) is an extensible and modular language for
defining syntax [Visser 1997]. Definitions (derivations, lexical restrictions, termi-
nals, keywords, etc.) are done in modules that can be extended and reused. An
SDF grammar is processed by the SGLR parser generator to generate a parse ta-
ble. With this parse table and the provided scannerless generalized-LR (SGLR)
parser, abstract syntax is obtained (Figure 1a). A major interest of SGLR pars-
ing technique is that it can parse any context-free grammar, not only the LL or
LALR subclasses; this is interesting because context-free grammars are closed
under composition. For these reasons, GLR is specially well-suited compared
to other technologies for parsing complex languages that are a composition of
substantially different languages. AspectJ is made up of the Java language, the
pointcut language and the advice language; it can be defined in SDF in a declar-
ative, formal and extensible way [Bravenboer et al. 2006a].

2.2 Stratego/XT

Stratego and XT [Visser 2004] represent a powerful machinery for program trans-
formation. Stratego is a declarative language for transforming trees through the
application of rewrite rules, composed by means of rewriting strategies for modu-
lar transformation and fine-grained control over their application. Rewrite rules
can use the concrete syntax of the host language in their definitions. Stratego
also provides dynamic rewrite rules, for context-sensitive program transforma-
tion [Bravenboer et al. 2006b]. Dynamic rewrite rules can be progressively de-
fined at runtime (that is, during rewriting itself) and can therefore use dynamic
context information to drive further rewriting.

Finally, XT is a toolset which offers a collection of extensible and reusable
transformation tools such as the SGLR parser used in conjunction with SDF.
The transformation process of AspectJ into Reflex (Figure 1b) will hereafter be
called assimilation (after [Bravenboer and Visser 2004]).

2.3 Reflex

Reflex is a Java implementation of a versatile kernel for aspect-oriented pro-
gramming using bytecode transformation [Tanter and Noyé 2005]. The role of
Reflex in the ReflexBorg approach is to act as a weaver, connecting the ap-
plication code and aspects (Figure 1c). As a general-purpose kernel for reflec-
tive and metaprogramming, Reflex provides basic building blocks for imple-
menting aspects in Java, whose expressiveness covers the range of AspectJ fea-
tures [Rodŕıguez et al. 2004]. As an AOP framework, Reflex has been used to
implement several extensions, including the core semantics of context-aware as-
pects [Tanter et al. 2006].

3520 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

Links. The central abstraction to drive weaving in Reflex is that of explicit
links binding a set of program points (a hookset) to a metaobject. A link is
characterized by a number of attributes, e.g., the control at which metaobjects
act (before, after, around), and a dynamically-evaluated activation condition. A
link therefore corresponds to a single pointcut/advice pair.

Hooksets. Program points are described as occurrences of operation classes,
such as MsgSend, and FieldRead. A hookset uses an operation selector to select
points of interest, occurring within classes specified by a class selector. When
a link is deployed, hooks are inserted appropriately to provoke reification at
runtime, following the protocol specified for each link delegating the control to
the specified metaobject.

Metaobjects. A metaobject implements the action associated to an aspect. In
Reflex, it can actually be any standard Java object.

2.4 Contribution

Figure 2 clarifies the context in which the present work is developed. The SDF
definition of AspectJ, altogether with several extensions including EAJ and
context-aware aspects (CAA) was described in [Bravenboer et al. 2006a]. Reflex
has been used to implement AspectJ in [Rodŕıguez et al. 2004]; context-aware
aspects were implemented as a Reflex framework in [Tanter et al. 2006]; and the
building blocks for implementing EAJ are provided by [Tanter and Noyé 2005].
The contribution of this work is to complete the extensible implementation of
AspectJ by providing the missing middle layer: the Stratego assimilation of
AspectJ abstract syntax into Reflex definitions (links), and showing its extensi-
bility by considering both EAJ and context-aware aspects.

3 Defining AspectJ in ReflexBorg

Consider the following AspectJ aspect that prints a message to standard input
at the beginning of the main method:

aspect HelloWorld {
void before(String[] argsv) :

call(void main(String[]) && args(argsv) {
System.out.println("Hello World " + argsv[0] + "!");

} }

The code above uses call to select the main method and args to expose
the parameter argsv. Listing 1 shows the result of its assimilation: advices are
translated into Java methods and static pointcuts into hooksets; the link binding
these elements is configured depending on what is specified in the advice and

3521Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

[b] : [Rodríguez et al. 2004] [c] : [Tanter and Noyé 2005] [d] : [Tanter et al. 2006]

CAA
EAJ

Extensions

AspectJ

[a] : [Bravenboer et al. 2006a]

[d]
[c]

[b]

[a]
[a]

[a]

XXX XXX

SDF Stratego Reflex

This work

Figure 2: Elements of the ReflexBorg approach for an extensible AspectJ imple-
mentation.

Listing 1 HelloWorld aspect assimilation into Reflex
class HelloWorld {

void adv_1(String[] argsv){
System.out.println("Hello World " + argsv[0] + "!");

}
public void initReflex(){
Link link = API.links().createLink(new HelloWorld());
link.addHookset(new Hookset(MsgSend.class, new AllCS(),

new AJOS("void main(String[]")));
link.setControl(Control.BEFORE);
link.setCall("HelloWorld", "adv_1", new IdxParam(1));

} }

the pointcuts, such as the exposed context information (argsv) and the kind of
the advice (before in this case).

Previous experience tells us that taking a direct approach to assimilate
AspectJ into Reflex definitions results in overly complex Stratego rules. The rea-
sons for this complexity are several. First, the inherent complexity of AspectJ
where, for example, arguments passed to the advice are not specified together
but are spread in several pointcut designators. Second, the mismatch between
AspectJ and Reflex constructs: most pointcuts are assimilated into hooksets,
advices into methods, but the communication protocol between the base code
and the advice has not direct equivalence. And last but not least, the complexity
associated to the generation of valid Java code.

Listing 1 perfectly exemplifies the complexity involved in the direct assim-
ilation of AspectJ to Reflex. First, the value of argsv is determined by the
args pointcut, but needs to be placed along other information to conform the
setCall invocation; this gathering of information introduces coupling in the

3522 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

assimilation of different AspectJ constructs. Second, the information necessary
to construct the setCall method must be extracted from several AspectJ con-
structs, highlighting the mismatch between AspectJ and Reflex: the metaobject
type (HelloWorld) comes from the name of the aspect, the method name (adv 1)
from the name given to the advice and the argument from the args pointcut. Fi-
nally, the order in which the statements are placed in the final code is important:
the link must be declared before it is actually used.

To tackle all the aforementioned issues, we first introduce a intermediate
declarative language for the assimilation of AspectJ into Reflex: DKLang (Sec-
tion 3.1). In addition to DKLang, we define a stratified assimilation process (Sec-
tion 3.2). The objective of this stratification is to reduce even more the coupling
in the assimilation of different AspectJ constructs.

3.1 Declarative Kernel Language

DKLang is a declarative interface to Reflex. The main abstraction, as in Reflex,
are links. Each link has a number of properties corresponding to the ones we
can find in Reflex. Some properties can take their values from a finite set of
alternatives, like the control property; others can take an arbitrary Java ex-
pression, like the hooksets property. DKLang includes an assimilation layer in
charge of producing the equivalent Reflex definitions. This layer ensures that
syntactically-correct Java code is finally generated.

One important feature of DKLang is that its assimilation into Reflex defini-
tions is immune to the order of the declarations. This makes irrelevant the order
in which the original constructs are assimilated. This feature is fundamental for
the decoupling of the AspectJ assimilation process. This is in contrast with the
first attempt at defining a language for Reflex [Tanter 2006b].

DKLang is designed to decouple as much as possible the assimilation of differ-
ent constructs of AspectJ. Despite the fact that DKLang was originally designed
for AspectJ, we have used it also in the assimilation of KALA, a language for
advanced transaction management [Fabry and D’Hondt 2006] and in the assim-
ilation of a extension of KALA with the pointcut language of AspectJ.

The basic syntax of DKLang can be summarized as:

linkID "." propertyName ["="|"+="] propertyValue

linkID can be any normal Java identifier and serves to discriminate among
different links. propertyName corresponds to the name of the property being
defined and propertyValue to the actual value being set. There are two possible
operators depending on the property being set: = and +=, for single-valued and
multiple-valued properties respectively.

Let us revisit the example of Listing 1. We can observe the complete de-
coupling in the assimilation of different AspectJ constructs if we use DKLang

3523Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

(Listing 2). The reason is that the assimilation of each AspectJ construct pro-
duces one (or more) DKLang declarations without having to interact with other
constructs. For example, the components of the call to the metaobject (type,
method name and parameters2) do not need to be combined explicitly: only in-
dividual declarations are necessary as the combination and generation of valid
Reflex definitions are handled automatically by the DKLang assimilation layer.

Listing 2 HelloWorld aspect expressed in DKLang
link.mo = new HelloWorld()
link.hooksets += new Hookset(MsgSend.class, new AllCS(),

new AJOS("void main(String[]")))
link.control = before
link.call.type = "HelloWorld"
link.call.method = "adv_1"
link.call.params[1] = $params[1]

In addition to properties, DKLang also supports per-link variables. This al-
lows each link to define a local scope for auxiliary variables used during the as-
similation. These variables allow the assimilation of different AspectJ constructs
to cooperate in the production of a link. A variable expression can be used
anywhere an arbitrary Java expression can, e.g. in hooksets and call.method

properties. Since variables are link-local, no name clashes occur between links,
ensuring an hygienic assimilation. The examples we give in the remainder of this
paper make us of link variables.

It is important to notice the difference between link properties and link vari-
ables. Link properties are predefined and correspond to the attributes of links
in Reflex. Link variables can be defined freely and their existence only depends
on the particular assimilation of a construct. Link variables also differ in their
syntax: a variable x in link l is referred to as l[x].

3.2 Assimilation Stages

The overall structure of the assimilation process is described in Figure 3. There
are two main stages called general rewriting and top-down assimilation.

3.2.1 General Rewriting Stage

The general rewriting stage provides an entry point for extensions that want to
operate on the abstract syntax tree (AST) before it starts being assimilated. For
instance, we make use of a general rewriting rule that inlines all the named point-
cuts, leaving the AST normalized (this prevents each extension from providing
2 We use $params[1] to access the value of the first parameter of the call to main

3524 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

its own pointcut name binding mechanism). This stage can be used for other
purposes, such as static analysis, although this dimension has not been explored
yet. Extensions must declare a GeneralRewrite rule matching the entire AST.
The implementation of this stage is as follows:

MainGeneralRewrite :
ast -> new-ast

where
new-ast := <repeat(GeneralRewrite)> ast

First, the MainGeneralRewrite rule matches the original ast. Then, it ap-
plies the GeneralRewrite until it fails. When this failure occurs, the result of
the successive repetition of GeneralRewrite is returned through the new-ast

variable.
Extension writers ought to implement the GeneralRewrite rule in a way so

it only succeeds once. If several implementations are provided, they are applied
in an unspecified order. This does not represent a limitation as extension writers
can still compose rules using Stratego [Visser 2004] (for example, sequences can
be specified by s1; s2).

Example of use: global Pointcut Assimilation.
The purpose of the global pointcut is to factorize a set of pointcut restric-

tions in one declaration. It is usually used to specify some global restriction on
already-defined aspects or to adapt a generic aspect to different needs.

Consider the following example that protects the implementation details of
the HiddenImplementation class from all aspects whose name do not start with
Privileged [Avgustinov et al. 2006]:

class HiddenImplementation {
global : !Privileged* : !within(HiddenImplementation);
...

}

The abstract syntax in SDF of the global pointcut declaring it as a new
type of pointcut declaration is [Bravenboer et al. 2006a]:

"global" ":" ClassNamePattern ":" PointcutExpr ";" -> PointcutDec

SDF declarations are expressed in inverse BNF notation. In this case, a
PointcutDecmust start with the global keyword followed by a colon, after that,
a ClassNamePattern, another colon and a PointcutExpr. The whole pointcut
declaration ends with a semicolon.

To assimilate this pointcut we use a general rewriting rule (step 1 Figure 3).
Following is the main part of the general rewriting rule:

GeneralRewrite :
CompilationUnit(pkg,imports,decls) -> 1

CompilationUnit(pkg,imports,new-decls) 2

3525Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

Assimilation
Top−down Assimilation

Other Assimilation

PA Assimilation
General Rewriting

0..*

2

3

1

Figure 3: Assimilation process.

where
global-decls := <collect-all(?Global(_,_))> decls ; 3

i-decls := <map(inline-globals(|global-decls))> decls ; 4

new-decls := <remove-all-rec(?Global(_,_)|)> i-decls 5

This rule accomplishes the effect of expanding the factorization expressed in
the global declaration: line (1) matches the CompilationUnit node, which rep-
resents the AST of the file being assimilated; and then replaces its declarations
with new ones obtained after the assimilation (line (2)). Line (3) collects all the
global declarations, line (4) inlines them and finally, line (5) recursively removes
the global declarations from the AST.

The inline-globals rule used above (line 4) is based in this rule:

inline-global : pointcut-expr -> |[(pointcut-expr) && global-decl]|

Here a new conjunction is constructed between the original pointcut expres-
sion and the global declaration. The |[...]| syntax is provided by Stratego to
allow the use of concrete syntax in the assimilation rules. In our case, we use this
feature to assimilate using AspectJ syntax (as in the code above) or DKLang
syntax (later in this paper).

3.2.2 Top-down Assimilation Stage

This stage assimilates AspectJ constructs into Reflex links. The process consists
in traversing the AST top-down, assimilating one sub-tree at a time, in two sub-
stages (Figure 3): one for assimilating pointcuts and advices (PA), and another
for other AspectJ features, such as inter-type declarations (not discussed here).

The assimilation of a pointcut/advice pair is done using DKLang concrete
syntax. The result of this assimilation is a new Reflex link. We focus here on the
assimilation of pointcuts, since they are the most frequent locus of extension.

The first step in this stage is, for each advice, to expand the pointcut expres-
sion into a disjunctive normal form. The objective of this expansion is to process
one conjunction of pointcut designators at a time. Then, for each pointcut des-
ignator, an Assim-Pc rule matching that particular kind of pointcut is invoked.

3526 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

This rule is in charge of assimilating the AspectJ pointcut into DKLang declara-
tions. To accomplish this assimilation, the rule is provided with two parameters:
the advice formal parameters and a list of other pointcuts in the same conjunc-
tion. Due to the functional nature of Stratego, these parameters can only be
read and not overwritten. This avoids side effects resulting from the assimilation
of a particular pointcut, fostering the decoupling.

When each pointcut in the conjunction has been assimilated into DKLang
declarations, no further configuration is needed because the assimilation layer of
DKLang takes care of obtaining the final link. Single-valued properties are com-
bined if necessary (e.g.setCall method arguments). Multi-valued properties are
also combined according to their particular semantics (e.g.values of the hookset
property are combined using a special-purpose Reflex hookset that computes
their intersection).

Example of use: cast pointcut assimilation.
The cast pointcut is intended for intercepting occurrences of type cast events

matching a lexical pattern. Consider the following advice that prints a warning
whenever a downcast with loss of precision is performed [Avgustinov et al. 2006]:

before(int i): cast(short) && args(i) &&
if(i < Short.MIN_VALUE || i > Short.MAX_VALUE) {

System.err.println("Warning: casting " + i + " to a short.");
}

The abstract syntax of the cast pointcut in SDF declaring it as a new kind
of pointcut expression is [Bravenboer et al. 2006a]:

"cast" "(" TypePattern ")" -> PointcutExpr

The cast pointcut falls into the static pointcuts category because it relies
only on a lexical pattern. Since Reflex already supports altering cast occur-
rences (by means of the Cast operation class), the assimilation of this pointcut
is straightforward (Listing 3): it augments the hooksets property of the current
link with the appropriate operation class and selectors (lines (6)-(7)). The cur-
rent link identifier is obtained using the this-link rule (line (8)), provided by
the assimilation layer of DKLang. Due to space limits, we do not describe type
pattern assimilation here.

4 Context-Aware Aspects Extension

In the previous section we introduced DKLang and the stratified assimilation
process. We exemplified their use through the assimilation of the global and
cast pointcuts (both part of Extended AspectJ [Avgustinov et al. 2006]). In
this section we show how to define the context-aware aspects extensions as
in [Tanter et al. 2006].

3527Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

Listing 3 cast Pointcut Assimilation.
Assim-Pc(|formalParams,context) :
Cast(type-pattern) -> |[6

~link-id .hooksets += new Hookset(Cast.class, ~cs, ~os) 7

]|
where

link-id := this-link ; 8

cs := <assim-typepattern-cs> type-pattern ;
os := <assim-typepattern-os> type-pattern

4.1 Context-Aware Aspects

Context awareness is the ability to reason about the surrounding context of an
application. This awareness could mean to know in which context the applica-
tion is at some point in time, or in which context it was when some past event
occurred. Context-aware aspects [Tanter et al. 2006] introduce two new general-
purpose pointcuts: inContext, a restriction over the currently-active context;
and createdInCtx, a restriction over the context in which an object was cre-
ated.3 An example of a context-aware aspect is:

aspect Discount {
pointcut amount(double rate):
execution(double ShoppingCart.getAmount()) &&
inContext(StockOverloadCtx[.80]) && inContext(PromotionCtx(rate));

double around(double rate): amount(rate) {
return proceed() * (1 - rate);

} }

The Discount aspect uses an advice to apply a discount of the specified rate

to the total price of the shopping cart. The advice replaces the execution of the
getAmount method of a ShoppingCart only if both the StockOverloadCtx and
the PromotionCxt contexts are active. The StockOverloadCtx is parametrized
to be active only when an 80% threshold is reached. The PromotionCtx de-
termines the actual discount rate, which is exposed to the advice following the
AspectJ context information exposure mechanism.

4.2 Assimilation of Context-Aware Aspects

In [Tanter et al. 2006], the authors develop an open framework for context-aware
aspects implemented over Reflex as a class library, but do not implement the
actual extension. We therefore choose to assimilate context-aware aspects into
this framework.

Below is the result of assimilating the inContext(PromotionCtx(rate))

pointcut of the Discount aspect.
3 Due to space limitations we focus on the implementations of these general-purpose

pointcuts, and not on the domain-specific ones introduced in [Tanter et al. 2006].

3528 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

Context context_1 = new PromotionCtx();
CtxActive activation_1 = new InContext(context_1);
link.addActivation(activation_1);

link.setCall("Discount", "adv_1", activation_1.getCtxParam("rate"));

First, a Context object is created. This object represent the current promo-
tion context. Then, a Reflex activation in created to restrict the execution of
the metaobject (i.e.advice) only when the application is in the promotion con-
text. Finally, the framed expression corresponds to the rate parameter, which
is passed to the metaobject.

Listing 4 presents the assimilation rules for the inContext pointcut (rules
for createdInCtx are very similar). The Assim-Pc rule matches an InContext

pointcut node (9). Line (10) creates the object representing the context with its
corresponding parameters and then, the object representing the dynamic restric-
tion (11). Then, the current link is configured to obey that restriction (12). Finally,
the parameters to be passed to the advice are determined by the application of
the assim-adv-param rule (14). This rule uses the position in which a parameter
appears in the signature of the advice (15) and the activation object (16) to set
the call.params property of the link.

Listing 4 inContext Pointcut Assimilation.
Assim-Pc(|formalParams,context) :

InContext(ActualCtx(TypeName(x),params,ctx)) -> |[9

~this-link [context] = new ~id:x (~*caa-params); 10

~this-link [activation] = new InContext(~this-link [context]); 11

~this-link .activation = ~this-link [activation] 12

~*link-params
]|
where
caa-params := <assimilate-params> params ; 13

~link-params := <map(assim-adv-param(formalParams)> ctx 14

assim-adv-param(|formalParams) :
x@Id(i) -> |[
~this-link .call.params[~idx] = 15

~this-link [activation].getCtxParam(~i) 16

]|
where
idx := <get-index>(x, formalParam)

5 Evaluation

In this section we report on a first experimental study of the lightweight property
of the ReflexBorg approach. We compare the implementation of the cast, global
and inContext pointcuts in both ReflexBorg and abc. Extensibility is very hard

3529Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

: core: generation: syntax

(n) : number of modules

5004003002001000

global

LOC

reflexborg

abc

reflexborg

abc

reflexborg

abc

cast

inContext
(2)(10)

(1)

(6)(1)

(3)(10)

(1)

(12)

Figure 4: Size of new pointcut definitions in abc and ReflexBorg.

to measure, so our study adopts objectives (and discussable) metrics like number
of lines of code and number of modules to define. These numbers are taken in
isolation: we consider, for each new pointcut, that the starting point is the core
system, naked. That is, we do not consider ad hoc reuse strategies between
extensions. Results are given on Figure 4.

For each pointcut, we indicate the number of lines of code to define the
extension. We differentiate between three steps: a) the syntax definition (SDF
in ReflexBorg, PPG in abc), b) the definition of the generation phase (Stratego
in ReflexBorg, AST definitions and analysis in abc), and c) the extensions to the
core framework (e.g. a Reflex library). For each step, we indicate the number of
modules (e.g. Java classes) to define.

For the syntax, because the extensions are fairly standard, both approaches
(SDF for ReflexBorg and PPG for abc) give approximately the same results.
However, the declarative nature of SDF is definitely a plus in terms of expres-
siveness. Also, previous work has shown the advantages of SDF over PPG for
more intricate cases of AspectJ-like syntax [Bravenboer et al. 2006a]. For the
two other steps, it is clear that abc requires a lot more code to be written than
ReflexBorg. On average we can observe that using ReflexBorg results in having
to write from 2 to 5 times less code than with abc.

The difference is mainly due to the following: (i) abc is a full compiler in-
frastructure, so it is necessary to deal with many optimization-related elements
and code generation with low-level structures, while Reflex provides a relatively
simple reflective model with few higher-level abstractions; (ii) the generation
phase in ReflexBorg is doubly declarative: the language used to specify trans-
formation, Stratego, is declarative, and the target language, DKLang, as well;
in contrast, in abc this step has to be specified in plain Java, dealing with intri-
cate inheritance and delegation patterns. Of course, these results serve only as a
preliminary validation of the lightweight nature of ReflexBorg extensions. They

3530 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

should be taken with care and more work is needed to be able to generalize them
to any kind of AspectJ extensions.

6 Discussions and Conclusions

Limitations. At the time of this writing, our assimilation layer does not sup-
port certain features of AspectJ: pointcuts such as advice execution and excep-
tion handlers; declare error/warning; reflective join point information; and
aspect precedence. Most of these features are direct to support since Reflex
provides the necessary mechanisms, in particular with respect to aspect com-
position [Tanter and Noyé 2005] and static weaving [Tanter 2006a]. Also, a full
AspectJ implementation would need a type checker. At present the assimilation
process assumes type-correct input code, otherwise incorrect code can be gen-
erated. The general rewriting stage can be used to perform this kind of static
analysis, among others.

Related Work. In [Rodŕıguez et al. 2004], an implementation of AspectJ over
Reflex is presented. Their work is based on the modification of the AspectJ com-
piler to produce, instead of bytecode, Reflex links. They show that the model of
Reflex is expressive enough for supporting AspectJ, but the solution is not ex-
tensible at all. Indeed, their implementation is tied to one version of the AspectJ
compiler. Since they do not consider the definition of the syntax, adding new
extensions is barely feasible. In contrast, our solution is designed to be extensible
at all levels (recall Figure 2).

Josh [Chiba and Nakagawa 2004] is an open compiler for an AspectJ-like lan-
guage. In Josh, it is possible to extend the available set of pointcuts through the
specification of static methods that can alter the application code using low-
level transformations. In contrast, the ReflexBorg approach provides high-level
declarative abstractions to implement language extensions.

As mentioned before, abc [Avgustinov et al. 2006] is a full-fledged AspectJ
open compiler, designed for extensibility. The key issue to consider when choosing
between abc and ReflexBorg is whether the full power of a complete compiler
is needed, or if a rapid-prototyping approach is enough. For studying efficient
implementations of aspect language features, in particular using advanced static
analysis, abc is definitely the alternative of choice [Avgustinov et al. 2005].

Conclusions. To address the issue of rapid prototyping of AspectJ language ex-
tensions, we presented a lightweight and extensible implementation of AspectJ
that relies on the ReflexBorg approach. The implementation is extensible at
all levels: syntax (SDF), assimilation (Stratego) and implementation/weaving
(Reflex). This work has focused on the assimilation layer of ReflexBorg for

3531Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

AspectJ which is based on a declarative language and several stages for in-
creased decoupling of different constructs. We have demonstrated its extensibil-
ity by showing various extensions and comparing them to their definitions in the
AspectBench Compiler. Future work includes integrating more AspectJ features,
and experimenting with more demanding AspectJ extensions in order to refine
our extensibility comparisons.

Acknowledgments

We thank Martin Bravenboer, Eelco Visser, and the Stratego project members
for their support in the development of ReflexBorg. Part of this work was devel-
oped during the visit of Rodolfo Toledo at Delft University, under the guidance
of Martin Bravenboer.

References

[AspectJ Website 2002] AspectJ Website (2002). The AspectJ website.
http://www.eclipse.org/aspectj.

[Avgustinov et al. 2005] Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S.,
Lhoták, J., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J.
(2005). Optimising AspectJ. In Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI 2005), pages 117–128, Chicago, USA.

[Avgustinov et al. 2006] Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S.,
Lhoták, J., Lhoták, O., de Moor, O., Sereni, D., Sittampalam, G., and Tibble, J.
(2006). abc: an extensible AspectJ compiler. In Transactions on Aspect-Oriented
Software Development, volume 3880 of Lecture Notes in Computer Science, pages
293–334. Springer-Verlag.

[Bravenboer et al. 2006a] Bravenboer, M., Tanter, É., and Visser, E. (2006a). Declar-
ative, formal, and extensible syntax definition for AspectJ – a case for scannerless
generalized-LR parsing. In Proceedings of the 21st ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications (OOPSLA
2006), pages 209–228, Portland, Oregon, USA. ACM Press.

[Bravenboer et al. 2006b] Bravenboer, M., van Dam, A., Olmos, K., and Visser, E.
(2006b). Program transformation with scoped dynamic rewrite rules. Fundamenta
Informaticae, 69(1–2):123–178.

[Bravenboer and Visser 2004] Bravenboer, M. and Visser, E. (2004). Concrete syn-
tax for objects. In Proceedings of the 19th ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOPSLA 2004), pages
365–383, Vancouver, British Columbia, Canada. ACM Press. ACM SIGPLAN No-
tices, 39(11).

[Chiba and Nakagawa 2004] Chiba, S. and Nakagawa, K. (2004). Josh: An open
AspectJ-like language. In Lieberherr, K., editor, Proceedings of the 3rd ACM Inter-
national Conference on Aspect-Oriented Software Development (AOSD 2004), pages
102–111, Lancaster, UK. ACM Press.

[Elrad et al. 2001] Elrad, T., Filman, R. E., and Bader, A. (2001). Aspect-oriented
programming. Communications of the ACM, 44(10).

[Fabry and D’Hondt 2006] Fabry, J. and D’Hondt, T. (2006). KALA: Kernel aspect
language for advanced transactions. In Proceedings of the 2006 ACM Symposium on
Applied Computing, pages 1615–1620.

3532 Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

[Gybels and Brichau 2003] Gybels, K. and Brichau, J. (2003). Arranging language
features for more robust pattern-based crosscuts. In Akşit, M., editor, Proceedings
of the 2nd ACM International Conference on Aspect-Oriented Software Development
(AOSD 2003), pages 60–69, Boston, MA, USA. ACM Press.

[Harbulot and Gurd 2006] Harbulot, B. and Gurd, J. (2006). A join point for loops
in AspectJ. In Proceedings of the 5th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2006), pages 63–74, Bonn, Germany. ACM
Press.

[Löwe and Südholt 2006] Löwe, W. and Südholt, M., editors (2006). Proceedings of
the 5th International Symposium on Software Composition (SC 2006), volume 4089
of Lecture Notes in Computer Science, Vienna, Austria. Springer-Verlag.

[Ostermann et al. 2005] Ostermann, K., Mezini, M., and Bockisch, C. (2005). Expres-
sive pointcuts for increased modularity. In Black, A. P., editor, Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), volume 3586 of
LNCS, pages 214–240. Springer-Verlag.

[Rodŕıguez et al. 2004] Rodŕıguez, L., Tanter, É., and Noyé, J. (2004). Supporting dy-
namic crosscutting with partial behavioral reflection: a case study. In Proceedings of
the XXIV International Conference of the Chilean Computer Science Society (SCCC
2004), pages 48–58, Arica, Chile. IEEE Computer Society.

[Tanter 2006a] Tanter, É. (2006a). Aspects of composition in the Reflex AOP kernel.
In [Löwe and Südholt 2006], pages 98–113.

[Tanter 2006b] Tanter, É. (2006b). An extensible kernel language for AOP. In Proceed-
ings of AOSD Workshop on Open and Dynamic Aspect Languages, Bonn, Germany.

[Tanter et al. 2006] Tanter, É., Gybels, K., Denker, M., and Bergel, A. (2006).
Context-aware aspects. In [Löwe and Südholt 2006], pages 227–242.

[Tanter and Noyé 2005] Tanter, É. and Noyé, J. (2005). A versatile kernel for multi-
language AOP. In Glück, R. and Lowry, M., editors, Proceedings of the 4th ACM
SIGPLAN/SIGSOFT Conference on Generative Programming and Component En-
gineering (GPCE 2005), volume 3676 of Lecture Notes in Computer Science, pages
173–188, Tallinn, Estonia. Springer-Verlag.

[Visser 1997] Visser, E. (1997). Syntax Definition for Language Prototyping. PhD
thesis, University of Amsterdam.

[Visser 2004] Visser, E. (2004). Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In Domain-Specific Program Gen-
eration, volume 3016 of Lecture Notes in Computer Science, pages 216–238. Springer-
Verlag.

3533Toledo R., Tanter E.: A Lightweight and Extensible AspectJ ...

