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Abstract: Implementing binary methods in traditional object-oriented languages is
difficult. Numerous problems arise regarding the relationship between types and classes
in the context of inheritance, or the need for privileged access to the internal repre-
sentation of objects. Most of these problems occur in the context of statically typed
languages that lack multi-methods (polymorphism on multiple arguments). The pur-
pose of this paper is twofold: to show why some of these problems are either non-issues,
or easily solved in Common Lisp, and to demonstrate how the Common Lisp Object
System (Cros) allows us to simply define, implement and enforce type-safe binary
methods. These last considerations involve re-programming a binary method-specific
object system through the CLos Meta-Object Protocol (MoP).
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1 Introduction

Binary functions operate on two arguments of the same type. Common examples
include arithmetic functions (=, 4+, — etc.) and ordering relations (=, <, > etc.).
In the context of object-oriented programming, it is often desirable to implement
binary functions as methods applied on two objects of the same class, to benefit
from polymorphism. Such methods are hence called “binary methods”.

Implementing binary methods in many traditional object-oriented languages
is a difficult task. The relationship between types and classes in the context of
inheritance and the need for privileged access to the internal representation of
objects are the two most prominent problems. In this paper, we approach the
concept of binary method from the perspective of Common Lisp.

The paper is composed of two main parts. In section 2, we show how the two
problems mentioned above are either non-issues or easily solved. In section 3,
we go further and show how to support the concept of binary methods directly
in the language. Finally, we demonstrate how to ensure a correct usage and
implementation of it.

For the sake of conciseness and clarity, only simplified code excerpts are
presented throughout this paper. However, fully functional Common Lisp code
is available for download at the author’s website!.

! nttp://www.lrde.epita.fr/~didier/
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2 Binary methods non-issues

In this section, we describe the two major problems with binary methods in a
traditional object-oriented context, as pointed out by [Bruce et al., 1995|: mixing
types and classes within an inheritance scheme, and the need for privileged access
to the internal representation of objects. We show why the former is a non-issue
in Common Lisp, and how the latter can be solved. We take the same examples as
used by [Bruce et al., 1995], and provide excerpts from a sample implementation
in C++ [C++, 1998| for comparison.

Please note that C++ should by no means be considered as the official rep-
resentative of “traditional” object-oriented languages. There is actually no such
thing as a “traditional” object-oriented language, as each language has its own
specificities. Our point is not to provide a precise feature comparison between
Common Lisp and C++ (or any other language for that matter). With so dif-
ferent programming philosophies, we believe that would be pointless. Rather,
our point is to demonstrate the expressive power of CLOS. The C-++ examples
given here and there should only be taken as illustrations of difficulties that
might occur elsewhere.

2.1 Types, classes, inheritance

Consider a C-++ Point class representing 2D image points, equipped with an
equality operation. Consider further a C++ ColorPoint class representing a
Point associated with a color. A natural implementation would be to inherit
from the Point class, as shown in listing 1 (details omitted).

class Point class ColorPoint : public Point
int x, y; std::string color;
bool equal (Point& p) bool equal (ColorPoint& cp)
{ return x =— p.x & y =— p.y; }

H return color = cp.color

&& Point::equal (cp);
}
}s

Listing 1: The Point class hierarchy in C++

Note that instead of manually comparing point coordinates (hence duplicat-
ing code from the base class), the ColorPoint equality method explicitly calls
the one from the Point class through the Point: : qualifier.

This implementation does not behave as expected, however, because what
we have done in the ColorPoint class is simply overload the equal method. If
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one happens to manipulate objects of class ColorPoint through references to
Point (which is perfectly legal by definition of inheritance), only the definition
for equal from the base class will be seen, as demonstrated in listing 2.

bool foo (Point& pl, Point& p2) ColorPoint pl (1, 2, "red");
ColorPoint p2 (1, 2, "blue");
// Point::equal is called
return pl.equal (p2); foo (pl, p2); // => true. Wrong!

}

Listing 2: Method overloading

On the contrary, we would like to use the definition pertaining to the ezact (in
the C++ sense) class of the object. This is, in C++ jargon, exactly what virtual
methods are for. In a proper implementation, we should make the equal method
virtual, as shown in listing 3. Unfortunately, this implementation doesn’t behave
as expected either. C+-+ does not allow the arguments of a virtual method to
change type in this fashion. This example would not statically type check.

// In the Point class: // In the ColorPoint class:
virtual bool equal (Point& p) virtual bool equal (ColorPoint& cp)
return x — p.x & y = p.y; return color = cp.color

&& Point::equal (cp);
}

Listing 3: The equal virtual methods

2.1.1 The static type safety problem

Here we informally describe the problem that we face when typing binary
methods in the presence of inheritance. For a more theoretical description, see
[Bruce et al., 1995].

bool foo (Point& cp, Point& p) ColorPoint cp (1, 2, "red");
Point p (1, 2);
return cp.equal (p);
} foo (cp, p); // => 227

Listing 4: The static type safety problem



3392 Verna D.: Binary Methods Programming: the CLOS Per spective

By the definition of inheritance, a ColorPoint is a Point. So it should be
possible to use a ColorPoint where a Point is expected. Consider the situation
described in listing 4. The function foo expects two Point arguments, but actu-
ally gets a ColorPoint as the first one. Assuming that the equal method from
the exact class is called (hence ColorPoint::equal), we see that this method
attempts to access the color field in a Point, which does not exist. Therefore,
if we want to preserve static type safety, this code should not compile.

To prevent this situation from happening, we see that the
ColorPoint::equal method should not expect to receive anything more
specific than a Point object and, in particular, not a ColorPoint one — exactly
the opposite of what we are trying to achieve. More precisely, maintaining static
type safety in a context of inheritance implies that polymorphic methods must
follow a contravariance rule [Castagna, 1995] on their arguments: a derived
method in a subclass can be prototyped as accepting only arguments of the
same class or of a superclass of the original arguments.?

Note that C++ requires the arguments of a virtual method to be invariant
and not just contravariant. Things become even more confusing once you realize
that the sample implementation presented in listing 3 is actually valid C++ code.
The invariance constraint being unsatisfied, the behavior is that of overloading
(not polymorphism), regardless of the presence of the virtual keyword. One
simply ends up with two separate methods that can individually be virtual, so
the compiler doesn’t even issue a warning.

Other languages such as Oy [Bancilhon et al., 1992] and Eiffel [Meyer, 1992]
allow the arguments of a polymorphic method to behave in a covariant manner.
However, this leads to executable code that may trigger typing errors at run-time
as described above.

One final note on this problem. The fact that it is not straightforward to
implement binary methods while maintaining static type safety can arguably
be considered a lack in expressiveness. However, that does not make the con-
travariance rule a defect in the object model. In fact, as clearly pointed out by
[Castagna, 1995]:

— the contravariance rule is useful when you want to express subtyping (by
subclassing),

— the covariance one is appropriate when you want to express specialization.

These concepts are not antagonistic; they just express different things.
[Castagna, 1995] also demonstrates that the lack of support for the latter is
not due to the record-based object model [Cardelli, 1988] (where methods be-
long to classes), but rather to the failure of languages using it to capture the

2 Conversely, and for reasons not detailed here, the return type of a polymorphic
method must follow a covariance rule.
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notion of multiple dispatch, supported natively by Common Lisp, as described
in the next section.

2.1.2 A non-issue in Common Lisp

This crucial difference makes correct construction of binary methods in CLOS,
the Common Lisp Object System[Bobrow et al., 1988, Keene, 1989], free from
the previous problems.

In languages using the record-based model such as C++, methods belong to
classes and the polymorphic dispatch depends only on one parameter: the class
of the object through which the method is called (represented by the “hidden”
pointer this in C++; sometimes referred to as self in other languages). CLOS,
on the other hand, differs in two important ways.

1. Methods do not belong to classes (there is no privileged object receiving the
messages). A polymorphic call appears in the code like an ordinary function
call. Functions whose behavior is provided by such methods are called generic
functions.

2. More importantly, CLOS supports multi-methods, that is, polymorphic dis-
patch based on any number of arguments (not only the first one).

(defclass point () (defclass color—point (point)
((x :reader point—x) ((color :reader point—color)))
(y :reader point—y)))

(defgeneric point= (a b))

(defmethod point= (defmethod point=
((a point) (b point)) ((a color—point) (b color—point))
(and (= (point—x a) (point—x b)) (and (string= (point—color a)
(= (point—y a) (point—y b)))) (point—color b))

(call—next—method)))

Listing 5: The Point hierarchy in Common Lisp

To clarify this, listing 5 provides a sample implementation of the Point hi-
erarchy in Common Lisp (details omitted)® As you can see, a point class is
defined with only data members (called slots in the CLOS jargon) and names
for their accessors. The color-point class is then defined to inherit from point
and adds a color slot.

3 Note that point= is a perfectly valid name in Lisp, and is along the lines of standard
Common Lisp functions like string=.
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The remainder is more interesting. A generic function point= is defined by
a call to defgeneric. This call is actually optional, but you may provide a de-
fault behavior here. Two specializations of the generic function are subsequently
provided by calls to defmethod. As you can see, a syntax for the arguments
allows the specification of the expected class of each. We provide a method to
be used when both arguments are of class point, and one to be used when both
arguments are of class color-point.

For testing equality between two points, one simply calls the generic function
as an ordinary one:

(point= pl p2)

According to the exact classes of both arguments, the proper method is used. The
case where the generic function would be called with two arguments of different
classes (for example, point and color-point) will be addressed in section 3.2.

2.1.3 Aesthetic note

It should now be clear why the use of multi-methods makes the problem a non-
issue in Common Lisp. Binary methods can be defined just as easily as any other
kind of polymorphic function. There is also another, albeit marginal, advantage
which is still worth mentioning. With binary methods, objects are usually treated
equally, so there is no reason to privilege one of them.

For instance, in C++, one has to choose between pl.equal(p2) and
p2.equal(pl). This is unsatisfactory because the two points play a different
role here: one is a caller, the other is an argument, and there is no reason to
choose one form or the other. On the contrary, by using either (point= pl p2)
or (point= p2 pl), both points play the same role: they are both arguments
to a function call. This is more pleasant aesthetically, and more conformant to
the concept (just like in mathematics, where you could equally write a = b or
b=a).

There are cases, such as set.addElement(elt), where methods as class
members do not seem to be aesthetically disturbing. Even in those cases, it
is likely that lispers would rather stick to the ordinary function call syntax, such
as (add-element set elt). We won’t develop this discussion any further, as we
believe it is mainly a matter of personal taste. What is important is to remember
that the record based model does not prohibit the coexistence of subtyping and
specialization: only deficient implementations of it do.

2.2 Privileged access to objects internals

The second problem exposed by [Bruce et al., 1995] involves more complex situ-
ations where the need for accessing the objects internals (normally hidden from
public view) arises.
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Consider a type IntegerSet, representing sets of integers, with an interface
providing methods such as the following (their purpose should be obvious):

add (i: Integer): Void
member (i: Integer): Boolean

and also a binary method like the one below:
superSet (a: IntegerSet, b: IntegerSet): Boolean

Consider further that several implementations are available, perhaps storing
the set as a list or array of integers, a bitstring or whatever else. While the
implementations of add and member are not an issue, the binary method is
problematic. Indeed, this method needs to access the individual elements of
the sets. It is possible to enrich the above interface with a method returning
the sets elements in a single format (for instance, a list). However, the concern
expressed by [Bruce et al., 1995] is that it may be preferable to work directly on
the internal representation for efficiency reasons. The conclusion they draw from
this example is twofold:

1. a mechanism is needed to constrain both arguments of the binary method
to be not only of the same type, but also of the same implementation,

2. an additional mechanism is also needed to allow access to this internal rep-
resentation while keeping it hidden from general public view.

They also admit that this problem exists whether binary methods (in the record
based model) or traditional (external) procedures are used.

2.2.1 Types vs. implementation

It would be slightly misleading to state that the first problem above is a “non-
issue” in Common Lisp because the situation does not arise exactly in the same
terms. When considering constraining both type and implementation to be the
same, [Bruce et al., 1995 are silently assuming that there is (or should be) a
clear distinction between them. However, CLOS does not explicitly provide any
such distinction.

Note that even in the case of statically typed languages, support for this
paradigm is achieved with various degrees of success. Consider for instance the
notion of abstract class in C+-: a non-instantiable class but yet a class. Consider
also the notion of interface vs. implementation in Java [Gosling et al., 2005],
which goes one step further, but which you are not obliged to use, and which
also has its own limitations.

In dynamic languages such as Common Lisp however, we might think of
solutions in which this distinction is intentionally blurred. For instance, we can
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define a single integer-set class equipped with a set slot, and let different
instances of this class use different set types (lists, arrays, bitstrings etc.) at
run-time. In such a case, the super-set function need not be generic anymore
(since we only have one class to deal with), but will in turn involve a generic call
to effectively compare sets, once their actual type is known.

Also, note that the multiple dispatch offered by Common Lisp generic func-
tions will allow us to implement this comparison even for different kinds of sets,
something that [Bruce et al., 1995] give up when constraining both arguments
of the binary method to be not only of the same type, but also of the same
implementation.

2.2.2 Data encapsulation

The last problem we have to address is the need for accessing the internal rep-
resentation of objects while still following the general principle of information
hiding. The assumption is that, in the general case, only the type (or the inter-
face) of an object should be public; its implementation should not.

Information hiding or data encapsulation is a concern that predates object
orientation. Languages such as Modula-2 [Modula, 1996, King, 1988] and Ada
[Ada, 1995, Skansholm, 1996] draw a clear line between accessible interface and
hidden implementation. For some reason, traditional object-oriented languages
provide additional mechanisms for classes, again, with different levels of suc-
cess. For instance, C++ inherits the limited module support of the C language
(extern declarations in headers, static definitions in source files) and pro-
vides further access control to class members via the public, protected and
private keywords. Because of the inherent limitations to this mechanism (it
doesn’t handle access across different hierarchies), C++ also provides an addi-
tional machinery for letting “friends” functions or classes access the private part
of another class. A typical situation where this machinery is needed would be
our very example of integer sets.

We believe that information hiding and object orientation are two separate
issues that should remain orthogonal, and that the need for an object-oriented
specific information hiding machinery only demonstrates the lack of a more gen-
eral and expressive enough mechanism. Common Lisp seems to follow these
lines, as CLOS itself does not provide any functionality for data encapsulation.
However, Common Lisp packages can be used to this aim.

The Common Lisp package system may look familiar at a first glance, because
it lets you define packages, import and export things, a vocabulary that should
sound familiar for instance to people aware of Java packages, or, to some extend,
C++ namespaces. However, this system is very special in at least two ways.

1. Common Lisp packages are collections of symbols only (more precisely, a
bijective mapping between names and symbols). These symbols can in turn
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be used for storing functional definitions, classes, instances or any kind of
value, but it does not make any sense to say that a function belongs to a
package.

2. The package system operates at read-time, that is, the mapping from a name
to the corresponding symbol occurs when code is read. This can make the
behavior of Common Lisp somewhat tricky to understand, but is also quite
powerful.

Back to our original example (the point class), we will now roughly describe
how one would use the package system to perform implementation hiding. Many
important aspects of Common Lisp packages are omitted because our point is not
to describe them thoroughly. For more information on packages, see [Gat, 2003,
Seibel, 2005].

(defpackage :point (in—package :point)
(:use :cl)
(:export :point (defclass point ()
:point—x ((x :reader point—x)
:point—y)) (y :reader point—y)))

Listing 6: The point class package

The right side of listing 6 shows the definition for the point class, that would
typically go in its own file point.1lisp. Note that the class definition is exactly
the same as in listing 5; there is nothing in the class definition to separate
interface from implementation. Only the first line of code is new. It merely tells
Common Lisp that the current package should be a certain one named point.
Packages have their own namespace so there is no clash with the class name.
Names beginning with a colon refer to special symbols belonging to the keyword
package. When the reader encounters a name for a symbol which is not found,
it automatically creates the corresponding symbol and adds it to the current
package. In our case, the effect is to add 5 new symbols into the point package:
point, x, y, point-x and point-y. Again, remember that we are talking about
symbols. Associated variables or functions do not belong to packages.

In order to effectively declare what is “public” and “private” in a package,
one has to provide a package definition such as the one depicted on the left
side of listing 6. The :use clause specifies that while in the point package, all
public symbols from the cl package (the one that provides the Common Lisp
standard) are also directly accessible. Consider that if this clause had been miss-
ing, we could not have accessed the macro definition associated with the symbol
defclass directly. The :export clause specifies which symbols are public. As
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you can see, the class name and the accessors are made so, but the slot names
remain private.

(defmethod point= and ((a point:point)
(b point:point))
(and (= (point:point—x a) (point:point—x b))
(= (point:point—y a) (point:point—y b))))

Listing 7: Access to exported symbols

Now, to access the public (exported) symbols of the point package, one has
two options. The first one is to use symbol names qualified by the package name,
as shown in listing 7. A qualified name contains the package name, a colon and
the symbol name. The second option is to :use the package, in which case all
exported symbols become directly accessible, without qualification. Hence, the
point= method in listing 5 can be used as-is.

As for the question of accessing private information, that is where the sur-
prise is the most striking for people accustomed to other package systems or
information hiding mechanisms: any private (not exported) symbol from a pack-
age can be accessed with a double-colon qualified name from anywhere. Thus,
one could access the slot values in the point class at any place in the code using
the symbol names point: :x and point: :y.

Accessing a package’s private symbols should be considered bad programming
style, and used with caution because it effectively breaks modularity. But it is
nevertheless easy to do so, and although maybe surprising, is typical of the
Lisp philosophy: be very permissive in the language and put more trust on
the programmer’s skills. The advantage of this approach is that not only the
package system and the object-oriented layer are completely orthogonal, but no
additional mechanism (such as C++’s “friends”) is needed for privileged access
either. One simply uses an additional colon when one has to.

3 Binary methods enforcement

In the previous section, we have examined binary methods and some of their
notorious problems, and shown that, from the Common Lisp/CLOS perspective,
implementing them presents no particular difficulty. However, there is no explicit
support for binary methods in the language. In the remainder of this paper,
we go further and gradually add support for the concept itself, thanks to the
expressiveness of CLOS and the flexibility of the CLos Mop. From now on, we
will use the term “binary function” as a shorthand for “binary generic function”.
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3.1 Method combinations

In listing 5, the reader may have noticed an unexplained call to
call-next-method in the color-point specialization of the point= generic
function, and may have guessed that it is used to execute the previous one
(specialized on plain points), hence completing the equality test by comparing
point coordinates.

3.1.1 Applicable methods

In order to avoid code duplication in the C++ case (listing 1), we used a call
to Point: :equal for completing the equality test by calling the method from
the superclass. In CLOS, things happen somewhat differently. Given a generic
function call, more than one method might fit the classes of the arguments.
These methods are called the applicable methods. In our example, when calling
point= with two color-point objects, both our specializations are applicable,
because a color-point object can be seen as a point one.

When a generic function is called, CLOS computes the list of applicable
methods and sorts it from the most to the least specific one. We are not go-
ing to describe precisely what “specific’ means in this context. Suffice to say
that specificity is a measure of proximity between the classes on which a method
specializes and the actual classes of the arguments.

Within the body of a method, a call to call-next-method triggers the execu-
tion of the next most specific applicable method. In our example, the semantics
of this should now be clear. When calling point= with two color-point objects,
the most specific method is the second one, which specializes on the color-point
class, and call-next-method within it triggers the execution of the other, hence
completing the equality test.

3.1.2 Method combinations

An interesting feature of CLOS is that, contrary to other object-oriented lan-
guages where only one method is applied (this is also the default behavior in
CLOs), it is possible to use some or all of the applicable methods to form the
global execution of the generic function (resulting in what is called an effective
method). Note that CLOS knows the sorted list of all applicable methods anyway,
since this is required to implement call-next-method.

This concept is known as method combinations. A method combination is
a way to combine the results of some or all of the applicable methods to form
the result of the generic function call itself. CLOS provides several predefined
method combinations and supports the possibility of the programmer to define
his own.
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In our example, one particular (predefined) method combination is of in-
terest to us. Our equality concept is actually defined as the logical and of all
local equalities in each class. Indeed, two color-point objects are equal if their
color-point-specific parts are equal and if their point-specific parts are also
equal.

This can be directly implemented by using the and method combination, as
shown in listing 8.

(defgeneric point= (a b) (defmethod point= and
(: method—combination and)) ((a point) (b point))
(and (= (point—x a) (point—x b))
(= (point—y a) (point—y b))))

(defmethod point= and
((a color—point) (b color—point))
(string= (point—color a) (point—color b)))

Listing 8: The and method combination

As you can see, the call to defgeneric is modified to specify the method com-
bination we want to use, and both calls to defmethod are modified accordingly.
The advantage of this new scheme is that each method can now concentrate on
the local behavior only. Note that there is no call to call-next-method, as the
logical and combination is performed automatically. This also has the advantage
of preventing possible bugs resulting from an unintentional omission of this very
same call.

This point is arguably quite specific to the particular example of binary func-
tion we are using, but nevertheless, it illustrates an interesting feature of CLOS.
It is important to realize that what we have done is to actually modify the
semantics of the dynamic dispatch mechanism. While other object-oriented lan-
guages offer one single, hard-wired, dispatch procedure, CLOS lets you program
your own dispatch procedure to fit your needs.

3.2 Enforcing a correct usage of binary functions

In this section, we demonstrate explicit support for the concept of binary func-
tion itself by addressing another problem of our previous implementation. Our
equality concept requires that only two objects of the same class be compared.
However, nothing prevents one from using the point= binary function for com-
paring a color-point with a point. Our current implementation of point= is
unsafe because such a comparison is perfectly valid code and the error would go
unnoticed. Indeed, since a color-point is a point by definition of inheritance,
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the first specialization (the one on the point class) is an applicable method, so
the comparison will work, but only check for point coordinates.

3.2.1 Introspection in CLOS

We can solve this problem by using the introspection capabilities of CLOS. It
is possible to retrieve the class of a particular object at run-time (just as it is
possible to retrieve the type of any Lisp object). Consequently, it is also very
simple to check that two objects have the same exact class, and trigger an error
otherwise. In listing 9, we show a new implementation of point= making use of
the function class-of to retrieve the exact class of an object, to perform such
a check.

(defmethod point= and ((a point) (b point))
(assert (eq (class—of a) (class—of b)))
(and (= (point—x a) (point—x b))

(= (point—y a) (point—y b))))

Listing 9: Introspection example in CLOS

We chose to perform this check only in the least specific method in order to
avoid code duplication, because we know that this method will be used for all
point objects, including instances of subclasses. One drawback of this approach
is that since this method is always called last, it is a bit unsatisfactory to perform
the check as the last operation, after all more specific methods have been applied,
possibly for nothing.

There is something in the design of CLOS that can help us here: it is pos-
sible to create a specific method combination and have it execute the appli-
cable methods in reverse order (by using the :most-specific-last option to
define-method-combination). There is an even better way, however, as de-
scribed in the next section.

3.2.2 Before-methods

CLOs has a feature perfectly suited to (actually, even designed for) this kind
of problem. The methods we have seen so far are called primary methods. They
resemble methods from traditional object-oriented languages (with the exception
that they can be combined together, as we saw in section 3.1.2). CLOs also
provides other kinds of methods, such as before and after-methods. As there
name suggests, these methods are executed before or after the primary ones.
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It should be noted that even when before or after-methods exist, the global
return value from the generic call only depends on the primary methods in-
volved. Thus, before and after-methods are typically used for side-effects, such
as performing checks.

Unfortunately, before and after-methods cannot be used with the and method
combination described in section 3.1.2. Thus, assuming that we are back to the
initial implementation described in listing 5, listing 10 demonstrates how to
properly place the check for class equality. Note the presence of the :before
keyword in the method definition.

(defmethod point= :before ((a point) (b point))
(assert (eq (class—of a) (class—of b))))

Listing 10: Using before-methods

We want this check to be performed for all point objects, including instances
of subclasses, so this method is specialized only on point, and hence applica-
ble to the whole potential point hierarchy. But note that even when passing
color-point objects to point=, the before-method is executed before the pri-
mary ones, so an improper usage error is signaled as soon as possible. This
scheme effectively removes the need to perform the check in the first method
itself, which is much cleaner at the conceptual level.

3.2.3 A meta-class for binary functions

There is still something conceptually wrong with the solutions proposed in the
previous sections. The fact that it makes no sense to compare objects of differ-
ent classes belongs to the very concept of binary function, not to the point=
operation. In other words, if we ever add a new binary function to the point
hierarchy, we don’t want to duplicate the code from listing 9 or 10 yet again.
What we really need is to express the concept of binary function directly. A
binary function is a generic function with a special, constrained behavior (taking
only two arguments of the same class). In other words, it is a specialization
of the general concept of generic function. This strongly suggests an object-
oriented model, in which binary functions are subclasses of generic functions.
This conceptual model is accessible if we delve a bit more into the CLOS internals.
CrLos itself is written on top of a Meta Object Protocol, simply known as the
CLos Mor [Paepcke, 1993, Kiczales et al., 1991]. Although not part of the ANsI
specification, the CLOS MOP is a de facto standard well supported by many
Common Lisp implementations. Within the Mop, CLOS elements are them-
selves modeled in an object-oriented fashion (one begins to perceive here the
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reflexive nature of CLOS). For instance, classes (the result of calling defclass)
are CLOS meta-objects that are instances of other meta-classes. By default,
new classes are instances of the class standard-class. Similarly, a user-defined
generic function (the result of calling defgeneric) is a CLOS object of class
standard-generic-function. We are hence able to implement binary functions
by subclassing standard generic functions, as shown in listing 11.

(defclass binary—function
(standard —generic—function)

()

(:metaclass funcallable—standard—class))

(defmacro defbinary
(function—name lambda—list &rest options)
(when (assoc ’:generic—function—class options)
(error
":generic—function—class _option_prohibited"))
‘(defgeneric ,function—name ,lambda—list
(:generic—function—class binary—function)
,@Qoptions))

Listing 11: The binary function class

The binary-function class is defined as a subclass of
standard-generic-function, and does not provide any additional slots.
Since instances of this class are meant to be called as functions, it is also
required to specify that the binary function meta-class (the class of
the binary-function class meta-object) is a “funcallable” meta-object.
This is done through the :metaclass option, which is given the value of
funcallable-standard-class and not just standard-class.

Now that we have a proper meta-class for binary functions, we need to
make sure that our binary generic functions are instantiated from it. Nor-
mally, one specifies the class of newly created generic functions by pass-
ing a :generic-function-class argument to defgeneric. If this argu-
ment is omitted, generic functions meta-objects are instantiated from the
standard-generic-function class. With a few lines of macrology, we make
this process easier by providing a defbinary macro that is to be used instead of
defgeneric. This macro checks that the user did not provide an explicit generic
function class. defbinary is designed as a syntactic clone of defgeneric (so it
will look familiar to lispers), but we could also think of all sorts of modifications,
including enforcing the lambda-list (the generic call prototype) to be of exactly
two arguments, etc.

One note on implementation. Since the CLOS MoOP is a de facto standard only
(the reference document being [Kiczales et al., 1991]), some portability issues
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arise across implementations (missing or deficient features etc.). Even the imple-
mentation’s package name is not portable (SBCL [Newman, 2000] uses sb-mop
for instance). For simplicity, these problems are silently skipped in our examples.
Pascal Costanza’s “Closer to MOP” package [Closer, www| comes in handy for
harmonizing the behavior of the CLos MoP across Common Lisp implementa-
tions.

3.2.4 Back to introspection

Now that we have an explicit implementation of the binary function concept, let
us return to our original problem: how and when can we check that only points
of the same class are compared?

With some knowledge of the internal process involved in calling a
generic function, the answer becomes apparent. For each generic function
call, CLos must calculate the sorted list of applicable methods for this
particular call. In most cases, this can be figured out from the classes
of the arguments to the generic call (otherwise, the arguments them-
selves are involved). The CLOS MoOP handles these two situations by call-
ing compute-applicable-methods-using-classes (c-a-m-u-c for short), and
compute-applicable-methods (c-a-m for short) if that is not enough.

The one of particular interest to us is c-a-m-u-c. It is not an ordinary func-
tion, but a generic one, taking two arguments:

1. the generic function meta-object involved in the call (in our case, that would
be the point= one created by the call to defgeneric),

2. the list of the arguments classes involved in the generic call (in our case,
that would be a list of two element, either point or color-point class
meta-objects).

(defmethod c—a—m—u—c :before ((bf binary—function) classes)
(assert (= (length classes) 2))
(assert (apply #’eq classes)))

Listing 12: Back to introspection

This generic function is interesting to us because, conceptually speaking,
before even calculating the applicable methods given the arguments classes, we
should make sure that these two classes are the same. This strongly suggests
a specialization with a before-method (see section 3.2.2), as demonstrated in
listing 12. As you can see, this new method applies to binary functions only,
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thanks to the specialization of its first argument on the binary-function class
created earlier in listing 11. The advantage is that the check now belongs to the
binary function concept itself, and not anymore to each individual function one
might want to implement.

One note on implementation. In our example, the applicable methods can
always be deduced from the classes of the arguments, so c-a-m should not in-
tervene (only c-a-m-u-c is involved).* For the reader already familiar with the
Mop, we are assuming here that only class specializers are used with our binary
functions (no eql specializers), which justifies that c-a-m is unimportant. More
on this in sections 3.3.1 and 5.

3.3 Enforcing a correct implementation of binary functions

In the previous section, we have made sure that binary functions are used as
intended, and we have made that requirement part of their implementation. In
this section, we make sure that binary functions are implemented as intended,
and we also make this requirement part of their implementation.

3.3.1 Properly defined methods

Just as it makes no sense, in our particular context, to compare points of different
classes, it makes even less sense to implement methods to do so. The CLos Mop
is expressive enough to make it possible to implement this constraint directly.

When a call to defmethod is issued, CLOS must register this new method
into the concerned generic function. This is done in the MoP through a call
to add-method. It is not an ordinary function, but a generic one, taking two
arguments:

1. the generic function meta-object involved in the call (in our case, that would
be point=),

2. the newly created method meta-object.

This generic function is interesting to us because before registering the new
method, we should make sure that it specializes on two identical classes. This
strongly suggests a specialization with a before-method (see section 3.2.2), as
demonstrated in listing 13.

Again, this new method applies to binary functions only, thanks to the spe-
cialization of its first argument on the binary-function class created earlier in

* We have implemented these ideas for SBcL, which seems to suffer from a bug (or
at least an excessively rigid interpretation of the standard) that renders our spe-
cialization of c-a-m-u-c inoperative if there is not also one for c-a-m. We thus had
to define one explicitly so that it simply exists, although this method actually does
nothing.
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(defmethod add—method :before ((bf binary—function) method)
(assert (apply #’eq (method—specializers method))))

Listing 13: Binary method definition check

listing 11. As before, the advantage is that the check belongs directly to the bi-
nary function concept itself, and not to every individual function one might want
to implement. The function method-specializers returns the list of argument
specializations from the method’s prototype. In our examples, that would be
(point point) or (color-point color-point), so all we have to do is check
that the members of this list are actually the same.

Again, for the reader already familiar with the MoP, note that this implemen-
tation is actually simplified. To be absolutely correct and honor the assumption
made in section 3.2.4, we should also check that the specializers are class ones,
and not eql ones. More on eql specializers in section 5.

3.3.2 Binary completeness

One might realize that our point= concept is not yet completely enforced if, for
instance, the programmer forgets to implement the color-point specialization.
In this scenario, when comparing two points at the same coordinates but with
different colors, only the coordinates would be checked and the test would silently
yet mistakenly succeed. It would be an interesting safety measure to ensure
that for each defined subclass of the point class, there is also a corresponding
specialization of the point= function (we call that binary completeness), and it
should be no surprise that the CLOS MOP lets you do just that.

One of the attractive points of Lisp in a development cycle is its “fully dy-
namic” aspect. In CLOS, class definitions are allowed to change at run-time and
propagate their new definitions to already existing instances. Lisp dialects also
provide a “read-eval-print” loop (REPL for short) in which you have full control
over your lisp environment, including the ability run, compile, interpret or even
modify any part of your program interactively. This also means that it is possible
to run parts of an incomplete program, and explains why the notion of block
compilation is not as important in Lisp as it is in other languages.

To sacrifice to the “fully dynamic” tradition of Lisp, we want to perform the
check for binary completeness at the latest possible stage: obviously when the
binary function is called. We have seen how this works already: the function
c-a-m-u-c is used to sort out the list of applicable methods.

This is very interesting to us because the check for binary completeness
involves introspection on exactly this list (to see if some methods are missing).
What we can do is specialize on the primary method this time, retrieve the list
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in question simply by calling call-next-method, and then do our own work.
This is presented in listing 14.

(defmethod c—a—m—u—c ((bf binary—function) classes)
(multiple—value—bind (methods ok)
(call—next—method)
(when ok
Check for binary completeness

)

)
(values methods ok)))

Listing 14: Binary completeness skeleton

The built-in c-a-m-u-c returns two values: one (methods) is the sorted list of
applicable methods and the other (ok) indicates whether calling c-a-m is needed.
After we perform our check for completeness (and possibly trigger an error), we
simply return the values we got from the default method. Our check involves
two different things.

1. We have to assert that there exists a specialization for the exact class of
the objects we are comparing (otherwise, as previously mentioned, a missing
specialization for color-point would go unnoticed).

2. We have to check that the whole super-hierarchy has properly specialized
methods (that is, none were forgotten).

The test for an existing bottommost specialization is demonstrated in listing
15. The most specialized applicable method is the first one in the sorted list of
applicable methods (the methods variable). The classes on which it specializes
are retrieved by calling method-specializers (there should be two of them, and
we already know from listing 13 that both are identical). We then check that the
classes of the arguments involved in the generic call (the classes parameter)
match the most specific specialization.

(let* ((method (car methods))
(specializers (method—specializers method)))
(assert (= (length specializers) 2))
(assert (equal specializers classes))

E)

Listing 15: Binary completeness check n.1

The actual test for completeness of the whole super-hierarchy is demonstrated
in listing 16. The function find-method retrieves a method meta-object for a
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particular generic function satisfying a set of qualifiers and a set of specializers.
In our case, there is one qualifier: the and method combination type (that can
be retrieved by the function method-qualifiers), and the specializers are a 2-
element list containing the objects class twice. If such a method does not exist,
find-method triggers and error.

(loop :for class :in (class—precedence—list (car classes))
:until (eq class (find—class ’standard—object))
:do (find—method bf (method—qualifiers method)
(list class class)))

Listing 16: Binary completeness check n.2

What we have to do is thus simply call find-method on the whole hier-
archy we are checking. This is what the loop construct does. The function
class-precedence-list returns the sorted list of super-classes (with dupli-
cates removed, in case our hierarchy is a graph) for our bottommost class. We
check each of these classes, the topmost class (standard-object) excepted.

By hooking the code excerpts from listings 15 and 16 into the skeleton of
listing 14, we have completed our check for the “binary completeness” property.

One note on performance: CLOS implementations are explicitly allowed
([Kiczales et al., 1991], p.175) to optimize their computations by memoizing the
results of c-a-m-u-c instead of calling it under some precise invariance con-
ditions. As a result, our check for binary completeness does not induce any
performance loss in such implementations. More precisely, this check will be
performed only once, the first time a generic function is called, for a given set of
arguments’classes.

4 Conclusion

In this paper, we have described why binary methods are a problematic concept
in traditional object-oriented languages. The relationship between types and
classes in the context of inheritance, or the need for privileged access to the
internal representation of objects makes it difficult to implement.

From the CLOS perspective, we have demonstrated that implementing binary
methods is a straightforward process, for at least two reasons.

1. The covariance / contravariance problem does not exist, because CLOS generic
functions support multiple dispatch natively.
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2. When privileged access to internal information is needed, the dynamic na-
ture of Common Lisp provides solutions that are unavailable in statically
typed languages. Besides, the package system is completely orthogonal to
the object-oriented layer and is pretty liberal in what you can access and
how (admittedly, at the expense of breaking modularity just as in other
languages).

From the MOP perspective, it is also important to realize that we have not
just made the concept of binary methods accessible. We have implemented it
directly and explicitly. We have shown ways not only to implement it, but also
to enforce a correct usage of it, and even a correct implementation of it. To this
aim, we have actually programmed a new object system which behaves quite
differently from the default CLos. CLOS, along with its MoOP, is not only an
object system. It is an object system designed to let you program your own
object systems.

Starting at section 3.2.4, the author is well aware of the fact that the material
in this paper might be controversial for some lispers. Enforcing such or such
behavior rather goes against the usual liberal philosophy of Lisp in which the
programmer is allowed to do anything (including writing bugs). For instance,
just as we defined a defbinary macro, why not simply provide another one like
defbinmethod, that would perform all our checks instead of all this intricate
MoPr programming? Our answer to this is as follows.

— First, we never claimed that enforcing anything is necessarily a good thing.
However, one still might wish to do so in some circumstances.

Our point was rather to demonstrate that the freedom Lisp provides extends
to being able to implement a rigid or even dictatorial (but maybe safer)
concept if you wish to do so.

There is no incompatibility between providing a layer of macros and doc-
ument the fact that the user should use it, and implementing a concept
directly behind the scenes. You can do both. But note that with only a
macro layer, the concept is only expressed in the documentation.

While the Lisp tradition is to trust the skills of the programmer, the situation
might not be as ideal as wished for, typically when you write a library or
an interactive application to be used by non-experts or even not computer
scientists at all. In such situations, it is a good thing to provide safeguards
in the code, especially if it costs only a few lines of code and has a small
impact on performance. Only a direct implementation of the concept can
give you that.

— Finally, one advantage of using the Mop (for instance to check for binary
completeness) is that all sorts of things can be done as late as possible (for
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instance, when the generic call occurs), something much more difficult if at
all possible to do with macros. And this, for once, is along the lines of the
Lisp tradition.

5 Perspectives

The point= example was chosen on purpose because it allowed us to illustrate
many possible features of binary functions that a programmer would like to get
from a rich implementation (equality in itself is a rich and complicated concept
[Pitman, 1993]). Studying other examples of binary functions used in real-life
applications would probably lead to the discovery of other interesting features
one would like to have support for.

The implementation of the ideas presented in this paper require so few lines of
code that the usefulness of a properly packaged, general purpose implementation
remains arguable. However, it would be a good base for extending the concept,
as new scenarios are studied, including relaxation of strictness at runtime (for
instance, one could decide on the fly whether binary completeness is wanted or
not).

As stated earlier, the question of non-classic specialization remains to be
studied. Thanks to the eql specializer, CLOS allows methods to specialize on
something else than classes. Binary functions should have the right to do so, just
like ordinary generic functions. However, even in simple and academic examples
like ours, we can see that some problems arise. For instance, it could make sense
to specialize point= on a particular point, like

(point= pt *originx)

but then, it is redundant to execute both this specialization and the one for the
corresponding class. We then have to get rid of the and method combination type
again, or possibly try to write a dedicated one. The lack for explicit superclass ref-
erence in CLOS is known to have some limitations [Ducournau and Habib, 1987,
Ducournau et al., 1992]. Maybe this is one of them.
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