
Taxonomy for Integrating Models in the Development
of Interactive Groupware Systems

William J. Giraldo

(Systems and Computer Engineering, University of Quindío, Quindío, Colombia
wjgiraldo@uniquindio.edu.co)

Ana I. Molina

(Department of Information Technologies and Systems. Castilla – La Mancha University
Spain

AnaIsabel.Molina@uclm.es)

Cesar A. Collazos
(IDIS Research Group, University of Cauca, Popayán, Colombia

ccollazo@unicauca.edu.co)

Manuel Ortega, Miguel A. Redondo
(Department of Information Technologies and Systems. Castilla – La Mancha University

Spain
{Manuel.Ortega, Miguel.Redondo}@uclm.es)

Abstract: This paper describes the taxonomy for designing interactive groupware systems. The
taxonomy defines the objectives, methods and principles for classifying models and facilitates
their integration. In particular, we show the integration process of models in two notations such
as CIAN, which considers collaboration and human-computer interaction issues, and UML,
which allows specifying the functionality of groupware systems. The proposed integration
process is based on a software tool, called CIAT, developed to put our proposal into practice.

Keywords: model-based development, groupware, computer-human interaction, taxonomy,
methodological proposal
Categories: D.2.2, H.5.3, H.1.1

1 Introduction

In this paper we propose a taxonomical approach for Model Based User Interface
Development of Collaborative Applications. This proposal relates technologies such
as Enterprise Architecture, Model Driven Architecture (MDA), meta-modelling
approach, domain specific methodology (DSM), model transformation and
framework-based development, etc. It supports the interface design of groupware
applications, enabling integration with software development processes through UML
notation.

Multidisciplinary teams face the challenge of balancing multiple interdependent,
and sometimes conflicting, aspects in their designs. They require specifying different
views, abstractions, abstraction levels, granularity and levels of detail. Usually, there

Journal of Universal Computer Science, vol. 14, no. 19 (2008), 3142-3159
submitted: 23/7/08, accepted: 29/10/08, appeared: 1/11/08 © J.UCS

are different stakeholders sharing designs and models in various domains [Gutwin et
al. 1998; Molina et al. 2006]. They use the more appropriate language according to
their role. Each developer represents the system in a more effective manner by using
adequate, readable, comprehensible and expressive notations supporting their job. For
example: UML activity diagrams are adequate and provide good expressive power to
describe activities. However, task models are more adequate to design usable
interfaces [Paternò 2001]. Each specific language allows developers to perceive
themselves as working directly with domain concepts [Kelly et al. 2008].

Nowadays, there are proposals such as task modelling, sketches, graphical
templates, standard modelling languages, domain specific languages, etc.. All these
come from various disciplines such as Software Engineering (SE), CSCW (Computer
Supported Cooperative Work), and Usability Engineering (UE). However, there is
still a gap between the development process of the functionality of CSCW systems
and the development of their user interface , particularly, proposals that combine
group work applications and interactive aspects [Molina et al. 2007]. Our goal is to
reduce this gap. We propose to use CIAN1 [Molina et al. 2006] (a specific notation
for modelling interactive and group work issues) for developing the user interface of
groupware systems and the UML language to modelling system functionality.
Therefore, we need to integrate information that is specified in CIAN models with the
information gathered in UML models. Only part of the diagrams and part of the
information specified in them is useful for our integration purposes. This integration
proposal is done through an integration layer, which was subsequently generalised for
defining a more generic taxonomy. We implement a software tool based on the
eclipse framework and a case study.

This paper is organized in the following way: Section 2 introduces our
methodological approach for designing interactive groupware applications, presenting
a brief explanation of its stages and the aspects that can be specified in each one.
Also, some aspects of the CIAN notation are described in this section. Section 3
introduces our integration proposal, especially the integration layer that supports it.
This section presents an example in which a case study is used. Section 4 presents
some related works and introduces the main concepts and methods used to specify the
taxonomy. Also, the integration proposal is introduced. This section describes how
the integration proposal could be generalized to be used in a other contexts. Finally,
the conclusions and further work are presented.

2 CIAM: A Methodological Approach for User Interface
Development of Collaborative Applications

In this section we present the stages in our methodological approach. CIAM considers
interactive groupware modelling in two ways: group-centered modelling and process-
centered modelling. First, the social relations are studied and an organizational
scheme is specified. Next, the group work is modelled. The modelling becomes more
user-centered when we go deeper into the abstraction level in which interactive tasks
are modelled [Beyer et al. 1998]. In other words, a dialog arises between an individual

1 CIAN Notation is commented in the whole text.

3143Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

user and the application. In this way, collaborative aspects (groups, processes) and
interactive (individual) modelling problems are tackled jointly. CIAM guides
designers in creating conceptual specifications of the main aspects that define the
presentation layer in CSCW systems. The stages of this proposal (see Figure 1) and
their objectives are enumerated as follows and, in the next section, the proposed
conceptual framework is explained.

Sociogram Development. In this phase, the organization structure is modelled, as
well as the relationships between its members. Organization Members belong to these
categories: roles, actors and software agents, or in the aforementioned associations,
forming groups or work teams consisting of several roles. The elements in these
diagrams can be interconnected by means of three kinds of basic relationships
(inheritance, performance and association).

Figure 1: CIAM methodological proposal stages

Inter-Action Modelling. In this phase, the main tasks that define the group work
in the previously defined organization are described. For each process, the roles
involved, the data manipulated and the products generated are specified. Each task
must be classified in one of the following categories: group or individual tasks. Tasks
will be interconnected by means of several kinds of relationships that, in many cases,
can be interpreted as dependence.

Responsibilities Modelling. In this phase, the individual and shared
responsibilities are modelled. We can see that the specified information in this phase
is supplemented by that of the previous one. Both models must be consistent with
each other.

Group Tasks Modelling. In this stage the group tasks identified in the previous
stage are described in a more detailed way. There are two different kinds of tasks,
which must be modelled in differentiated ways: (a) Cooperative Tasks are specified
by means of the so-called responsibilities decomposition graph, in which subtasks
make up the group task, so that, at a lower abstraction level, only an individual task
must appear. (b) Collaborative Task modelling includes specification of the roles
involved, as well as the data model objects manipulated by the work team (that is, the
shared context specification). Shared context is defined as the set of objects that are
visible to the user set, as well as the actions that can be executed on them. Once the
objects that make up the shared context have been decided, it is necessary to fragment
this information into three different parts: the objects and/or attributes manipulated in
the collaborative visualization area, the ones which appear in the individual
visualization area and the ones that make up the exclusive edition segment (a subset
in the data model that is accessed in an exclusive way by only one application user at
a time).

3144 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

Interaction Modelling. In the last phase, interactive aspects of the application are
modelled. An interaction model for each individual task detected in the diverse phases
of the gradual refinement process is created. An interactive task decomposition tree in
CTT [Paternò et al. 1997] is developed. The interactive model is directly derived from
the shared context definition. Our methodological approach includes the way of
obtaining this model from the shared context modelling [Molina et al. 2007].

CIAM is an approach based on Model Driven Development (MDD), which
promotes the use of models to simplify the complexity of groupware design [Frankel
2004]. The different stakeholders can understand each model using their own point of
view without worrying about syntax or other platform-specific issues. CIAM is
supported by a notation called CIAN (Collaborative Interactive Applications
Notation). This notation is a simplification of another notation for workflow
modelling, called APM (Action Port Model), proposed by Carlsen [Carlsen 1998].
This notation has been enriched to support differentiated modelling of cooperative
and collaborative tasks, although it has been simplified in some aspects (to
characterize a task, only the task identification, the roles involved and the objects
manipulated are included).

3 The integration proposal

There are proposal to integrate the user interface design with UML. Paternó [Paternò
2001] integrates the CTT diagrams and use cases. Trætteberg [Trætteberg 2002]
proposes a framework for classifying user interface design representations, presents
languages for modelling domain, task and dialog, and he suggests how these
modelling languages may be integrated with UML. But these proposals are limited by
the existence of semantic correspondences between their own notations and UML,
both at the conceptual and structure levels. They are exploiting UML extensibility
mechanisms to support their solutions. Instead, our integration proposal of models in
UML and CIAN is done through an integration layer. First, the CIAN diagrams are
done in order to specify the collaborative interface. This model specifies the
collaboration, the work of users, the objects, the passage of information, the
coordination of activities, the relationship between interfaces and tasks, etc. This
information populates the integration layer. Then, some modelling elements in UML
are generated by mean of model transformations. Subsequently, the design is
continued in UML in order to specify the functionality. The Review Conference
System was used as a case study. This example has been chosen because it is
referenced in literature and it is used in several approaches, it is extracted from
[Schwabe et al. 2001].

3145Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

Figure 2: Sociogram metamodel.

A model transformations specification requires that the languages to be used in the
transformation process are normalized. Therefore, our integration process begins with
a Normalization of the languages: MOF and the EMF Plug-in were used to
normalize the CIAN metamodel. Only the abstract syntax is modified. The concrete
initial syntax is preserved. Figure 2 shows the Sociogram metamodel. In this case, the
specific domain is the modelling of the organization structure. The domain concepts
are {actor, role, software Agent, group, work Team} (Figure 2). We have specified
the same modelling concepts in the metamodel. In this same sense, we have also
specified the necessary relationships. The Sociogram is intended to be used to model
collaboration, cooperation and interactive aspects. This differs from UML business
actor and system actor models because the Sociogram provides semantic to specify
the dynamics of the organization. However, if we model structural aspects of the
organization, we can find some relationships and interchange points between them.
The semantic of the Sociogram is expressed directly with abstract syntax and OCL
sentences. By means of this metamodel, we have developed the modelling tool for
this diagram by using GEF. In this example, we have the following roles: PC-Chair,
PC-Member, Reviewer, Author and Co-Author. Figure 3(left) shows the structure of
the organization. A PC-Member can be considered a specialization of a Reviewer,
since he/she carries out the same work (revising), but specialized in carrying out
another, wider, group of tasks or responsibilities. In addition, we can see that the PC-
Chair and PC-Members’ roles are associated. This indicates that there are tasks in
which both, with their respective responsibilities, take part.

The integration layer structure which we propose is based on the Zachman
Framework [Zachman 1987]. This Framework proposes a systematic taxonomy which
allows us to associate concepts which describe the real world (domain concepts) with
those which describe their information system (modelling concepts) and its
subsequent implementation [Sowa et al. 1992]. This taxonomy is defined in two
dimensions organized in perspectives and views. We use only the business model,
system model and technology model perspectives and the data, function, network and
people views. The intersection of views and perspectives leads to 12 modelling cells,
(Figure 3(right)). Each cell provides a container for models that address a particular
perspective and view. The Framework provides a representation from different points
of view, different levels of granularity, generality and abstraction.

3146 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

Figure 3: Sociogram model of case of study (left). Integration layer(right).

Description
1 The mapping between the use cases and the task models can be based on the

following basic transformations [Lu et al. 1999]: (a) The use cases represent the
highest levels of abstraction in the hierarchical task models. (b) The “uses”
relations can be interpreted as temporal order expressions (in particular a
sequence connection). (c) The “extends” relations indicate optional behaviours.
This situation can also be specified in a task model. (d) Temporal dependencies
are related to post conditions and preconditions in activities diagram.

2 Business entities provide domain information for activities. An Inter_Action
model consists of a set of tasks carried out in a certain order and considering
certain data or temporal restrictions among them. For each task, the roles
involved, the data manipulated, and the product obtained as a result of the task
are specified. For the data specified in the context of a task we can specify the
access modifiers to the objects, which can be reading, writing or creation

3 The tasks in the model are interconnected by means of several kinds of
relationships that can be interpreted as dependencies: temporal dependencies
(order relationship), data dependencies (when tasks need data manipulated by
previous tasks) and notification dependencies (when it is necessary for a certain
event to occur so that the work flow continues). The dependencies act like
preconditions and post conditions into activities diagram. It allows designers to
define task attributes such as the category, the type, the objects manipulated,
frequency, and time requested for performance. Inter-Action Model is more
expressive than Activity diagrams and use cases in order to design logistic
models

4 In the Business Object Model is defined the interaction between actors and
domain objects. UML do not provide semantic for storing object access
information. In CIAN, activities are enriched with information about access
modifiers of objects, which is stored later into responsibilities table.

Table 1: Interchange Points for integrating CIAM and UML Models.

Finding interchange points: The interchange points are pieces of information from
each language which provide structural or syntactical correspondence between them.
We found some interchange points between UML and CIAM. In the next table, we
present a summary of these interchange points. As a result, we define the following

3147Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

modelling concepts: Data view {Entity, Relation}, Function view {Process,
Input_Output}, People view {Person, Association}, and Time view {Event, Cycle}.
These concepts are to store information from CIAN model into the integration layer.
Concepts and their relationships are depicted in Figure 4. Besides, they are related to
each other to integrate information from the models. For example, the variable event
is linked to the variable cycle, person and entity.

Figure 4: Integration layer base metamodel

Defining the base metamodel: The information into cells of integration layer must
be related to each other in two directions, views and perspectives. Therefore, a base
metamodel should be specified. A reduced version of the integration layer metamodel
is presented in Figure 4. Each column of the integration layer defines a set of
concepts to store information used in the integration. This metamodel supports the
information of the interchange points. For example, the variable event is related with
the variables Cycle, Person, and Entity. These relationships are specified in order to
establish a link between temporal dependencies into the Inter_Action diagram in
CIAN and preconditions and postconditions into activities diagram in UML, like it is
explained within the interchange points one and three.

3148 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

Figure 5: Transformation process by using CIAT.

Define transformations: The ATLAS Transformation Language (ATL) is used to
implement transformations between models. The ATL plug-in is used to transform
CIAM diagrams into a set of model elements in the integration layer. Figure 5
illustrates the integration between the CIAN models and UML models by using the
CIAT tool. The information about roles and relationships in the Sociogram is
extracted through the transformation, which is used in the “Business Model” and
“System Model” perspectives and the “People” view, mainly; see Figure 5(c). There
is no direct translation of the acting and association relationships of CIAN into UML.
However, this information should be stored in order to generate other artefacts. The
Inter_Action diagram (see Figure 5(a)) illustrates the macro-activities of the system
and their interdependencies. This model is essential, because certain temporary
information (precedence and coordination information) is represented. This

3149Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

information can be enriched by using information related to the domain (which is
extracted from the models of the ES process). This diagram provides information
about the pre-conditions, post-conditions, messages and data required or generated by
the activities. UML lacks a diagram of this type. The process of transformation and
integration is controlled through the integration layer metamodel. The first
transformation uses the CIAN metamodel as the input metamodel and the taxonomy
metamodel as the output metamodel. The second transformation uses the taxonomy
metamodel as the input metamodel and the UML metamodel as the output
metamodel. CIAT recognizes these three metamodels and it is possible to edit models
using editors for each one. The validation of this proposal is carried out by developing
a series of tools that allow the development of models of an interactive groupware
system. The purpose of this validation is to verify compliance with the goals outlined
in this paper. The development of modelling tools and the transformations were done
in the Eclipse environment. This validation is supported by a tool, called CIAT
(Collaborative Interactive Applications Tool). CIAT [Giraldo et al. 2008] is an
Eclipse-based tool to support designers and engineers by creating models based on
CIAN notation. This software tool supports the interface design of groupware
applications, enabling integration with software processes through UML notation.
Eclipse Framework provides tools for guiding the software modelling by using
metamodel concepts [Moore et al. 2004]. By using the EMF (Eclipse Modelling
Framework) and GMF (Graphical Editing Framework), we design the CIAT tool as
an Eclipse Plug-in.

4 Taxonomy for interactive groupware systems

CSCW finds its bases on the concepts of collaboration, communication, cooperation
and coordination, among others. These concepts have been related to the space and
time, which has led to different classifications of CSCW tools. One of the first
classifications was proposed by Johansen [Johansen 1988]. From here, other
proposals adding new categories, which interrelate the aforementioned basic concepts
of CSCW and the space and time, arise. However, it is not always possible to locate
simple tools, and even less complex systems, into those categories. Penichet [Penichet
et al. 2007] presents a taxonomy in which it is possible to classify a function, a tool or
a system2 regarding the spatial-temporal characteristics and the characteristic of
CSCW systems such as collaboration, communication and coordination, Figure 6(a).
Its proposal, up to a point, removes some of the discrepancies presented in the
previous classifications, and allows separating into independent categories not only
the aspects of collaboration, communication and coordination, but also the time and
placing where these aspects are developed. All these classifications, or taxonomies,
have been used to classify functions or subsystems that provide support to
collaborative work, however, have not been used to classify models and modelling
concepts of this kind of systems. We propose to create the taxonomy for this purpose
[Giraldo et al. 2008]. Our taxonomy differs from the rest in the fact that it provides a

2 This distinction is necessary because some of the services needed in CSCW can stand as

functionality, as an embedded software component or as a system or software application by
itself. A chat is an example.

3150 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

framework for the classification of groupware systems based on diverse aspects or
facets that are considered during its modelling. In addition, it promotes the
appropriate integration between information expressed in different models.

Figure 6: Classification of the qualities of an interactive groupware system.

The classification method is based on the assumption that an interactive groupware
system can be classified and, therefore, modelled through one or more abstraction
layers representing either several families or sets of specifications. This idea,
expressed graphically in Figure 6 (d), leads to the definition of our proposal.
Modelling concepts can be shared by different layers, since each one is simply a
realization3 (delimitation, or abstraction) of one or more qualities4. Therefore, layers
can be aligned so that when combined give a more complete view of the same
modelling concept. In Figure 6 (c) there is a layer –Others- that aims to integrate all
models related to the “usability” of the system. Instead, the “cooperation” is
supported by the UML and CIAN layers. In this example, each layer, CIAN and
UML, contains the whole of all their respective models; however, a layer could
contain diagrams that are supporting “cooperation” either in a specific language or in
different languages. In systems with only one layer, this necessarily represents all
their qualities, Figure 6 (b). So each layer could be a stand alone software component.
This hypothesis suggests that a CSCW system can be replaced by a set of software
components in order to support one or more of their qualities.

Our taxonomy includes not only the taxonomic organization of the information of
models but the methods, rules, and principles for classifying, organizing, and
integrating the modelling concepts used in the specification of a groupware system. In
that way, our proposal is similar to a methodology specifying not only the “what”
(Taxonomic organization) but the “how” (methods) classifying the information in
groupware systems.

3 Realization is a mechanism used in the RUP to delimit or demarcate the set of modeling

concepts that implement a specification. This mechanism is used mainly in use cases. A
realization, therefore, is a view of all classes that implement functionality. A class can
participate in various realizations

4 Property, attribute, character, trait, characteristic, or aspects that make the specification of a
system be fleshed.

3151Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

4.1 Main concepts: Taxonomic Organization.

The taxonomy uses diverse concepts or categories in order to classify the information
into an interactive groupware system. The main concepts are listed in the next table.

Concept Description

Layer A layer is a set of diagrams organized according to a particular criterion,
for example: diagrams modelled with the same notation, diagrams
representing a particular abstraction, diagrams representing a quality
indicator, etc.

Perspective A perspective is an architectural representation at a specific abstraction
level and represents a set of logical or physical constraints that may affect
the development of a system at that level. A key issue in software
architectures is the support to handle different levels of abstraction.
Perspective and viewpoint from MDA is the same.

View The concept of view, or abstraction, is a mechanism used by designers to
understand a specific system aspect. The abstraction is the tool that enables
software developers to manage the complexity of their developments. That
is why we focus, first, on abstractions, and later on implementations that
are derived from these abstractions [Kaisler 2005]. For example, the data
view provides information about models of the domain system to be
developed. On the other hand, the function view includes models which
represent the processes and functions of the system. To capture all the
requirements of a software system is necessary to provide multiple views.

Cell A cell is a container for models that address a particular perspective and
view. Models in each cell are specified by a domain specific language.
Cells contain variables associated a concrete domain objects. These
variables are completely independent from variables in other cells.

Table 2: Taxonomic organization.

4.2 Classification method

We propose a method for classifying, organizing, and integrating the modelling
concepts used in the specification of a groupware system. Initially, our interest
focuses on the integration of some models in UML and CIAN; however, the method
can be applied to a large number of notations, each one is suited to specify various
aspects of the system.

The integration or separation is carried out by using one or more integration layers,
whose purpose is to store the useful and relevant information in each notation used for
these purposes. A way to combine information directly from UML and CIAN models
by using a layer of integration is showed in Figure 7 (a). The common information of
model elements on both modelling notations is classified and organized in this layer
in different perspectives and views.

This integration process could be accomplished in different ways. Some of the
possible integration scenarios are :(1) first, diagrams in CIAN are done in order to
specify the collaborative interface. This model specifies collaboration, work of users,
objects, passage of information, coordination of activities, relationship between
interfaces and tasks, etc. Subsequently, the design is continued in UML in order to
specify the functionality. Figure 7 (a) illustrates this process. (2) It began its design in

3152 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

UML so as to specify the functionality. Subsequently, it continues the design in CIAN
with the aim of specifying the collaborative interface. Figure 7(b) illustrates this
process. (3) It combines the two previous stages. Some transformations in the
integration layer are necessary to synchronize the models, which are developed in
parallel, Figure 7 (c).

Figure 7: Integration scenarios of CIAN and UML.

The classification method establishes the principles, rules and steps in order to
formalize the organization of the layers, languages and the information into the
interactive groupware system. In this sense, we suggest the use of metamodelling to
specify both abstract and concrete syntax for each language. The abstract syntax
denotes the structure and grammatical rules of a language. The concrete deals with
notational symbols and the representational form used by the language [Kelly et al.
2008]. There are layers which aim to store information related to a particular aspect.
These layers are often populated with information specified in multiple languages or
these are storing complementary information of modelling objects. These layers have
only abstract syntax, because the stored information does not necessarily have a visual
sense and it is only for purposes of integration. However, other layers have both
concrete and abstract syntax.

The taxonomy defines a series of steps both for classification and for integration of
information. The following is a brief description of these steps:

1) Normalization of the languages: In order to provide a workspace, the sharing
models, the model integration, etc., each language must be defined formally. This
normalization is done by means of metamodels. These metamodels should be
formalized keeping only one domain in mind. Our proposal allows developers to work
in their usual languages; however, it is possible that there is a need to make changes
for each language. We propose to fit only the abstract syntax respecting the concrete
syntax.

2) Formalization of the integration layer: A layer can be specified to store the
information that a notation exposes to the other layers for integration purposes. An
integration layer can be seen as a mapping that provides specifications for
transformation of a language into other language. An integration layer must support
the specification of different views, abstractions, abstraction levels, granularity and
levels of detail. The formalization of the integration layer requires a similar process to
that one conducted by the domain specific languages. The main steps are:

3153Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

(2a) Defining the integration layer structure: The integration layer is defined as is
aforementioned. Each cell contains information that belongs exclusively to that cell
and that is different from other cell.

(2b) Defining the focus of architecture: This classification uses perspectives
enabling designers to establish independence between different levels of abstraction,
however, it is necessary to have a solid architecture that allows its subsequent
integration. MDA (Model Driven Architecture) [Miller et al. 2003] is an architecture
that promotes design guided by models and, as can be seen in Figure 8 (c), there is a
relationship between the perspectives and levels of MDA. Frankel et al [Frankel et al.
2003] describe the mapping between Zachman Framework and MDA.

(2c) Defining the rules: To obtain integrity, uniqueness, consistency and recursion
of the information specified, taxonomy defines a series of rules. Thus, the seven rules
of the Zachman Framework have been adopted and refined [Sowa et al. 1992].
Examples of these rules are: (R2) all of the cells in each column-view- are guided by a
single metamodel. (R5) The composition or integration of all models of the cells in a
row is a complete model from this perspective. (R7) The logic is recursive

(2d) Defining the variables of integration layer: The variables are a set of
classifiers associate to modelling concepts that belong to each language. These
variables should be classified according to a perspective and a view associated with a
specific cell. Variables in a cell are completely independent of variables in other cells.
These variables generalize the modelling concepts in order to provide a matching
between information from different languages. In other words, the interchange points
are pieces of information from each language which provide structural or syntactical
correspondence between them; while, the variables are modelling concepts for
modelling these correspondences.

(2e) Defining the base metamodel: The information into cells of integration layer
must be related to each other in two directions, views and perspectives. Therefore, a
base metamodel should be specified (Figure 8(a)). This metamodel control the
models cells consistency into the same view -rule 2- and it is necessary for the
integration or composition of the models into cells of the same row -rule 5-
performing an integration role at perspective level. Each column –view- has a simple,
basic metamodel which represents an abstraction from the real-world for convenience
of the design [Sowa et al. 1992]. Although, the concepts in a view are representing
different things in each perspective, they are related each other in the same manner.
Because they belong to the same abstraction. (i.e. Business objects, analysis classes
and design classes belong to different viewpoint however they have the same
metamodel). It is possible to specify a different base metamodel for each integration
layer, which depends on the nature of the family of languages (DSL) which is
specifying. For example, by integrating UML and CIAN it could provide a single
integration layer to store common information useful for integration. However, it
could have an integration layer for each notation, providing an additional benefit
because each notation may expose the information provided to the other one and not
just to one in particular. Multiple integration layers can coexist in a system. -See
Figure 8 (e)-. An integration layer can be associated directly to a layer -see Figure 6-,
a notation or a one o various qualities. This represents a new dimension, which is
defined by grouping integration layers needed in an interactive groupware system.
Each level in this dimension represents a group or family of specific domain

3154 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

languages used to modelling one or more qualities of the system. Figure 8(e). The
Figure 8(c) illustrates the rule two and five, these rules are necessary in order to
define model consistency in each view and perspective.

Figure 8: Base metamodel definition. Multiple integration layers.

(f) Defining the metamodels of the cells: The integration layer should, at least,
consist of modelling elements representing quality-specific concepts at various levels
of abstractions. These modelling elements are modelled with domain-specific
languages (DSL). A challenge is the need to integrate cells to obtain a holistic view of
a design. One way to integrate these cells is to define a base metamodel that describes
the relationships among concepts defined in the different cells. In this same manner,
the abstract syntax of each cell is defined by a specific metamodel. This set of
metamodels is restricted by the base metamodel –see rule 2-. Each integration layer
metamodel has an extended abstract syntax based on the shared modelling concepts
from the languages. i.e. CIAN and UML. However, a concrete syntax is not always
necessary in each cell. MDA provides the conceptual structure for specifying the
notations or domain specific languages (DSL) used in every cell in the integration
layer. Additionally, it allows to implement this notation by means of software tools by
using specific applications within an architectural approach [Frankel 2004].
Therefore, each one of these models of the cells is related to their respective
metamodel (DSL).

(g) Defining transformations: All models into MDA are related as they are based
on a more abstract metamodel called MOF (Meta Object Facility) [Miller et al. 2003].
MOF facilitates the definition of the necessary transformations to integrate models.
We define transformations both model to model (M2M) and Model to Text (M2T).
These can be made between two different layers, in a single layer, horizontally - same
perspective- or vertical-same view. The integration between UML and CIAN layers is
possible because these are consistent with the MDA levels.

3155Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

Figure 9: Integration between CIAM and UML

MDD proposes model transformations to reduce the complexity of software design
[Frankel 2004; Jouault et al. 2006]. The integration of models in UML and CIAN is
done through an integration layer; see Figure 9. The integration layer is populated by
using transformations applied to CIAN models; see Figure 9(a). The structure of
notations is represented by some boxes containing metamodels at M2 and M3 levels.
Figure 9. The cell that contains the CIAN diagram -Sociogram- lies in the level M1
(Model); in addition, the notation CIAN which is defined as a UML Profile lies in the
level M2 (metamodel). The transformations have as input metamodel CIAN and as
output metamodel DSL defined for these cells. In the Figure 9(b) the process to
transform models from the integration layer to generate UML diagrams is shown.
UML diagrams fully specified not always are possible; therefore, the generated
information serves as a starting point for the subsequent modelling in UML.

5 Conclusions

The development of systems to support group work is a complex task, among other
reasons, because of the nature of the groups involved in this process, whose members
are often from different areas of knowledge. They have different needs depending on
their perspective and understand the artefacts manipulated from a specific point of
view. Similarly, when they develop the software system, there are different aspects or
qualities (usability, support to collaboration, functionality, etc.) to be enhanced.
Moreover, the possibility of working with different abstractions (views) facilitates the
management of complexity of the development of this kind of systems.

Contemplating all these possibilities has led to a proposal based on the definition
of a three-dimensional taxonomy (perspective-view-layer) that facilitates the
integration of the notations used by various members of the development team, by
supporting various modelling aspects and qualities, as well as the definition of
transformations between them. From another point of view, this taxonomy can also be
used as an evaluation framework for classifying notations. It would possible, in this
case, to define metrics, indicators, or indexes of coverage for each notation. in this
manner a developer can evaluate if each notation provides modelling elements in the
required qualities, perspectives and/or views.

In particular, this paper has shown a proposal for integrating modelling information
from two notations such as UML, which provide a suitable support for the modelling

3156 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

of system functionality and CIAN, which focuses on modelling collaboration and
interaction with the user. By extrapolating the results of integration of both proposals
to other notations in the literature, we could conclude that the taxonomy proposed
makes it possible the connection between the proposals from the field of Software
Engineering and the Human computer interaction.

It has been developed a software tool known as CIAT, which implements the ideas
presented here. This tool not only allows the editing of models in CIAN notation, but
also performs integration and transformation of the standard UML models, using the
taxonomy proposal as an intermediary artefact.

Acknowledgments

This work has been supported by Universidad del Quindío, Castilla – La Mancha
University and the Junta de Comunidades de Castilla – La Mancha in the projects
AULA-T (PBI08-0069), M-CUIDE (TC20080552) and mGUIDE (PBC08-0006-512).
Also, by the project CICYT TIN2008-06596-C02-2.

References

[Beyer et al. 1998] Beyer, H. and K. Holtzblatt: Contextual Design: Defining
Customer-Centered Systems. 1998. Morgan Kaufmann Publishers Inc.

[Carlsen 1998] Carlsen, S.: Action Port Model: A Mixed Paradigm Conceptual
Workflow Modeling Language. Proceedings of the 3rd IFCIS International
Conference on Cooperative Information Systems. 1998.

[Frankel 2004] Frankel, D. S.: An MDA Manifesto. MDA Journal. 2004.
www.bptrends.com/publicationfiles/05-04%20COL%20IBM%20Manifesto%20-
%20Frankel%20-3.pdf.

[Frankel et al. 2003] Frankel, D. S., P. Harmon, J. Mukerji, J. Odell, M. Owen, P.
Rivitt, M. Rosen and R. M. Soley: The Zachman Framework and the OMG's Model
Driven Architecture. MDA Journal. 2003.
http://www.bptrends.com/publicationfiles/09%2D03%20WP%20Mapping%20MDA
%20to%20Zachman%20Framework%2Epdf.

[Giraldo et al. 2008] Giraldo, W. J., A. I. Molina, C. A. Collazos, M. Ortega and M.
A. Redondo: CIAT, A Model-Based Tool for designing Groupware User Interfaces
using CIAM. Computer-Aided Design of User Interfaces VI, CADUI 2008. 2008.
Albacete España. Springer Verlag.

[Giraldo et al. 2008] Giraldo, W. J., A. I. Molina, M. Ortega and C. A. Collazos: Una
propuesta metodológica basada en taxonomías para el desarrollo de sistemas
groupware interactivos. IX Congreso Internacional de Interacción Persona-Ordenador
(INTERACCIÓN’2008). 2008. Albacete (España).

[Gutwin et al. 1998] Gutwin, C. and S. Greenberg: Design for Individuals, Design for
Groups: Tradeoffs between power and workspace awareness. ACM CSCW’98. 1998.
Seattle. ACM Press.

3157Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

[Johansen 1988] Johansen, R.: Groupware: Computer support for business teams.
1988. New York: The Free Press.

[Jouault et al. 2006] Jouault, F. and I. Kurtev: On the architectural alignment of ATL
and QVT. Proceedings of the 2006 ACM symposium on Applied computing. 2006.
Dijon, France. ACM.

[Kaisler 2005] Kaisler, S. H.: Software Paradigms. 2005. John Wiley & Sons, Inc.

[Kelly et al. 2008] Kelly, S. and J.-P. Tolvanen: Domain-Specific Modeling Enabling
Full Code Generation. 2008. New Jersey. John Wiley & Sons.

[Lu et al. 1999] Lu, S., C. Paris and K. Vander Linden: Towards the automatic
generation of task models from object oriented diagrams. In Engineering for Human-
Computer Interaction. 1999. Boston. Kluwer academic publishers.

[Miller et al. 2003] Miller, J. and J. Mukerji.: MDA Guide Version 1.0.1. Retrieve:
08-07-2007, from: http://www.omg.org/docs/omg/03-06-01.pdf.

[Molina et al. 2007] Molina, A. I., W. J. Giraldo, M. A. Redondo and M. Ortega: A
proposal of integration of the GUI development of groupware applications into the
Software Development Process. 13th International Workshop on Groupware
(CRIWG'2007). 2007. Bariloche (Argentina). Lecture Notes in Computer Science.
Springer-Verlag.

[Molina et al. 2006] Molina, A. I., M. A. Redondo and M. Ortega: A conceptual and
methodological framework for modeling interactive groupware applications. 12th
International Workshop on Groupware (CRIWG 2006). 2006. Valladolid. Spain.
Springer-Verlag (LNCS).

[Molina et al. 2007] Molina, A. I., M. A. Redondo, M. Ortega and U. Hope: CIAM: A
methodology for the development of groupware user interfaces. Journal of Universal
Computer Science(JUCS). 2007. Designing the Human-Computer Interaction: Trends
and Challenges.

[Moore et al. 2004] Moore, B., D. Dean, A. Gerber, G. Wagenknecht and P.
Vanderheyden: Eclipse Development using the Graphical Editing Framework and the
Eclipse Modeling Framework. 2004. ibm.com/redbooks.

[Paternò 2001] Paternò, F.: Towards a UML for Interactive Systems. 8th International
Conference on Engineering for Human-Computer Interaction. 2001.

[Paternò 2004] Paternò, F.: ConcurTaskTrees: An Engineered Notation for Task
Models. The Handbook Of Task Analysis For HCI. 2004.

[Paternò et al. 1997] Paternò, F., C. Mancini and Meniconi.: ConcurTaskTree: A
diagrammatic notation for specifying task models. IFIP TC 13 International
Conference on Human-Computer Interaction Interact'97. 1997. Sydney. Kluwer
Academic Publishers.

[Penichet et al. 2007] Penichet, V. M. R., I. Marin, J. A. Gallud, M. D. Lozano and R.
Tesoriero: A Classification Method for CSCW Systems. Electronic Notes in
Theoretical Computer Science. 2007. Elsevier Science Publishers B.

3158 Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

[Schwabe et al. 2001] Schwabe, D. and G. Rossi: Conference Review System in
OOHDM. International Workshop on Web Oriented Software Technology. 2001.

[Sowa et al. 1992] Sowa, J. F. and J. A. Zachman: Extending and formalizing the
framework for information systems architecture. IBM Syst. J. 1992.

[Trætteberg 2002] Trætteberg, H.: Using User Interface Models in Design. Computer-
Aided Design of User Interfaces III, CADUI 2002. 2002. Valenciennes, France.
Kluwer.

[Welie et al. 2003] Welie, M. v. and G. v. d. Veer: Groupware Task Analysis.
Handbook Of Cognitive Task Design. 2003.

[Zachman 1987] Zachman, J. A.: A Framework For Information Systems
Architecture. IBM Ssystems Journal. 1987.

3159Giraldo W.J., Molina A.I., Collazos C.A., Ortega M., Redondo M.A.: Taxonomy ...

