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Abstract: In this paper, we present the Timed Abstract State Machine (TASM) lan-
guage, which is a language for the specification of embedded real-time systems. In the
engineering of embedded real-time systems, the correctness of the system is defined
in terms of three aspects - function, time, and resource consumption. The goal of the
TASM language and its associated toolset is to provide a basis for specification-based
real-time system engineering where these three aspects can be specified and analyzed.
The TASM language is built on top of Abstract State Machines (ASM) by including
facilities for compact and legible specification of non-functional behavior, namely time
and resource consumption. The TASM language provides a notation which is well-suited
to the specification needs of embedded real-time systems. We begin the presentation of
the language with a historical survey on the use of ASM in specifying real-time systems.
The core difference between the TASM language and ASM is that steps are inherently
durative instead of being instantaneous and steps consume resources. These concepts
capture the reality of physical systems in a flexible abstract model. We present the
syntax and semantics of the language and illustrate the concepts using an extended
version of the production cell case study.
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1 Introduction

Specification-based engineering, also called model-based engineering, is an ap-
proach to the engineering of hardware and software systems where engineering
is conducted with the help of models. Models represent high-level abstractions
that are used to represent and analyze system designs throughout the engineer-
ing lifecycle of the system. Some of the benefits of using models include the
ability to analyze system designs during the early stages of the lifecycle, before
the system is implemented. The philosophy of specification-based engineering re-
lies on the economics of software engineering where uncovering and fixing defects
during the early phases of the engineering lifecycle realizes significant savings in
terms of time and cost [Boehm 1981]. If the language used to represent mod-
els has formal underpinnings, the use of models can be leveraged through tool
support to automate analysis and engineering activities. For example, consis-
tency and completeness were identified as useful properties of specifications that
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can be verified automatically, as shown in [Heimdahl and Leveson 1996] and in
[Ouimet and Lundqvist 2007(c)]. Furthermore, the use of a formal modeling lan-
guage can automate engineering activities such as test case generation and code
generation [Gargantini and Riccobene 2001].

Reactive systems are a special class of systems that typically do not termi-
nate and are in constant interaction with the environment. The correctness of a
reactive system is defined as the system exuding correct behavior in its contin-
ued interaction with the environment. Furthermore, a reactive system can also
be a real-time system if the system’s reaction needs to occur within an accept-
ably bounded amount of time. Vehicle controllers, such as avionics systems, are
examples of reactive real-time systems. Such controllers are also typically embed-
ded, meaning that they are integrated as part of a larger system. An embedded
system differs from standalone computer systems since embedded systems can-
not be directly manipulated or controlled by the operator. Because embedded
systems share functionality with other components, these types of systems are
typically limited in the amounts of resources that they can utilize. For example,
embedded controllers in the avionics sector are limited in terms of memory and
communication bandwidth. The correctness of an embedded reactive real-time
system depends on three key factors - functional correctness, adequately bounded
response times, and adequately bounded resource utilization. Such systems are
also typically of the safety-critical nature, meaning that incorrect behavior could
result in a serious hazard. For such systems, specification-based engineering can
provide desired benefits in terms of predictability of implementation and au-
tomation of engineering activities.

Abstract State Machines (ASM) have been used to specify, analyze and verify
hardware and software systems at different levels of abstraction [Börger 1995].
Abstract State Machines have also been used to automate engineering activities,
including verification using model checkers [Winter 1997] and test case genera-
tion [Grieskamp et al. 2002]. The Timed Abstract State Machine (TASM) lan-
guage [Ouimet et al. 2007] is built on top of ASMs, by presenting a compact syn-
tax that includes facilities for specifying non-functional properties, namely time
and resource consumption. The TASM language and its associated toolset, the
TASM toolset [Ouimet and Lundqvist 2007(d)], have been used to model and
simulate embedded real-time systems in [Ouimet and Lundqvist 2006] and in
[Ouimet et al. 2006]. The goal of the TASM language is to provide a specification-
based approach to engineer embedded real-time systems, where the three key
aspects of system behavior can be specified, analyzed, tested, and traced bi-
directionally, from the initial design stages through system maintenance. Fur-
thermore, the ability to evaluate the performance of system designs provides
a valuable means to explore design alternatives. In this article, we present the
TASM language in the context of past approaches to specify real-time systems
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using ASMs. The TASM language includes the ability to express resource con-
sumption, an area that has yet to be addressed using ASMs. Furthermore, the
TASM language provides a unified formalism that can capture synchronous and
asynchronous concurrent systems without modifying the underlying concurrency
model. We review past approaches and situate the TASM language as an im-
proved language to specify embedded reactive real-time systems. The use of
the language is illustrated through the modeling of an extended version of the
production cell case study [Lewerentz and Lindner 1995].

This paper is divided into 5 sections in addition to this Introduction. Sec-
tion 2 gives related work in the ASM community. Section 3 presents the syntax
and semantics of the language. Section 4 describes a mapping between TASM
and Timed ASM. Section 5 describes the production cell model in the TASM
language. Finally, section 6 recapitulates the contribution of the paper and ad-
dresses issues to be covered in future work.

2 Related Work

The approach to incorporate time in the Abstract State Machine (ASM) for-
malism in the present work incorporates concepts from a variety of previous ap-
proaches from the ASM community. In the ASM community, related work has re-
volved around two main paradigms: instantaneous actions with time constraints,
also called timed constrained ASMs [Gurevich and Huggins 1996], and durative
actions. In time constrained ASMs, all actions are instantaneous but rule guards
can contain predicates over an external function called currtime, which denotes
a wall clock. The currtime function is a monotone function which takes no ar-
gument and returns a value from the Real domain. This approach has been
used to specify and analyze real-time concurrent algorithms such as the Gener-
alized Railroad Crossing Problem [Beauquier et al. 2000], [Beauquier 2002] and
the Kermit protocol. The approach presented in this work also contains the
currtime function, renamed now.

In contrast, the TASM language provides facilities to specify the duration
of actions performed by the specified system. A similar approach using durative
actions has been used in [Börger et al. 1995] to analyze Lamport’s bakery algo-
rithm. In this approach, an untimed version of the algorithm is presented and
is refined with durative actions. The refinement is shown to preserve the cor-
rectness of the untimed version. The approach is based on asynchronous ASM
and the notion of partially ordered runs [Gurevich and Rosenzweig 2000]. The
durative moves are specified to occur during an open real interval (a, b) where a
and b are time values on the global time axis. Using the time specification, the
moves of agents are ordered linearly and the requirements of partially ordered
runs are extended to include conditions for overlapping moves. In this approach,
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there is no structured syntax to capture the duration of actions and the analysis
of the specification relies on creative proof methods. Furthermore, the moves of
agents are specified on the global time axis.

In contrast, the approach adopted in the TASM language follows a durative
action paradigm but specifies moves of agents in terms of relative durations of
moves. The duration of a run is thus related to the summation of the moves of
agents. Furthermore, the concurrency semantics in the TASM approach is related
to synchronous multi-agent ASMs since the moves of agents are synchronized us-
ing a global system clock. In the TASM language, there are no external functions
that are not controlled by an agent of the specification. External functions are
included into the behavior of agents that represent the environment. While the
lack of external functions might seem counterintuitive to model embedded con-
trollers, the external functions have been replaced by functions controlled by
agents representing the environment. In this way, the system can be simulated
completely without the need to hardcode the values of external functions since
the values in the environment can depend on the behavior of the system. The
TASM approach resembles the real-time controller ASM where runs are extended
with state changes that are occur at computationally significant real-time mo-
ments [Cohen and Slissenko 2000]. However, the computation of the significant
real-time moments is a result of the actions of agents and is not determined a
priori.

The production cell case study [Lewerentz and Lindner 1995] is a popular
case study to evaluate formal methods. The case study is used in Section 5
as an illustrative example for a specification expressed in the TASM language.
The system has previously been modeled and analyzed in details using ASMs
in [Börger and Mearelli 1997]. The purpose of the model in this article is to
demonstrate how non-functional properties can be included into the produc-
tion cell model using the TASM language. In our model and analysis, we pur-
posefully shy away from analyzing functional correctness (safety and liveness),
since those properties have been heavily studied in [Lewerentz and Lindner 1995]
and in [Börger and Mearelli 1997]. By including timing concepts and power con-
sumption in the production cell model the system design can be analyzed for
worst-case and best-case behavior, such as Worst-Case Execution Time (WCET)
[Englomb et al. 2003]. The ability to analyze performance properties provides
the ability to evaluate design alternatives alongside functional correctness.

3 The Timed Abstract State Machine Language

The key difference between the Timed Abstract State Machine (TASM) lan-
guage and ASM is that steps are durative in TASM. In ASM, machine steps
are instantaneous. Furthermore, in TASM, durative steps can consume a finite
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amount of resources. In the case of single agent specifications, the durative steps
of the agent dictate the progression of time in the specification. In the case of
multi-agent specifications, the durative steps are used to synchronize agents with
respect to one another. In TASM, a step is the execution of a rule, which pro-
duces an update set. The update set is applied atomically to global state. For the
single agent case, the duration of the step, reflected in the update set obtained
through a rule execution dictates the progression of time. At the completion of
a step, the environment is updated by applying the update set once the step
duration has elapsed.

The concept of step is fundamental in the definition of ASM and in compu-
tation theory in general since a step defines the atomic unit of progression of an
abstract machine. In TASM, the concept of step is augmented with a duration
and a set of resources consumed during the step execution to capture the physical
reality of embedded real-time systems. This abstract model adequately captures
the physical reality of computer systems where steps are never instantaneous.
The durations and resource consumptions can be easily modified to capture be-
havior at different levels of abstraction, to document system assumptions, and
to relate models at different levels of abstraction, including non-atomic refine-
ment. In concrete computer systems, the notion of step varies depending on the
level of abstraction. For example, a step could be considered a clock cycle, a ma-
chine operation, or a statement execution in a high level programming language.
Throughout this article, the terms step, rule execution, move of an agent, and
action of an agent are used interchangeably.

3.1 Target Systems

The target systems that are targeted by the TASM language are embedded
real-time systems. These systems include embedded controllers that monitor the
environment periodically, through sensors, and take action on the environment
through actuators. The important characteristics of such systems is that the val-
ues of sensors as read by the system are directly related to the actions taken by
the system. Consequently, the behavior of the environment, typically represented
as external functions in previous ASM approaches [Cohen and Slissenko 2000],
cannot be hardcoded a priori since they depend on the actions of the controller.
Furthermore, in these target systems, the behavior of the system must pro-
duce a correct action in an adequately bounded amount of time. The end-to-end
latency of the controller is of special interest in avionics systems. End-to-end
latency refers to the maximum time that it takes for the controller to produce a
corrective action in response to a certain environmental change. In an embedded
controller, the end-to-end latency depends on the frequency of sensor readings,
the execution time of the control software, and the dynamics of the actuators.
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Verifying the end-to-end latency of controllers during the design stages can pro-
vide valuable insight into a system designs [Ouimet and Lundqvist 2007(b)].

3.2 Preliminaries

The subset of ASM included in the TASM language is the same as explained
in [Winter 1997], which includes conditional statements and assignments, but
excludes the forall construct and the choose construct. The forall statement
is excluded because the duration of this construct depends on dynamic con-
ditions and cannot be statically assigned. The choose construct is omitted for
similar reasons because it is counterintuitive to assign a static duration to non-
deterministic choice. The TASM language also excludes the import construct
because safety-critical real-time systems discourage dynamic allocation. The
omission of these three constructs is not too restrictive since many ASM spec-
ifications have not used these constructs, e.g., the production cell system in
[Börger and Mearelli 1997]. The syntactic structure of a machine in the TASM
language is an ASM in block form [Grieskamp et al. 2002]. In this form, a ma-
chine is structured into a finite set of rules, written in precondition-effect style.
Conceptually, block form is convenient for structuring specifications and anal-
ysis but it is not necessary since any ASM can be converted to block from by
introducing a program counter variable. For a TASM that contains n rules, a
block machine has the following structure:

R1 ≡ if cond1 then effect1

R2 ≡ if cond2 then effect2 (1)
...

Rn ≡ if condn then effectn

The guard condi is the condition that needs to be enabled for the effect of
the rule, effecti, to be applied to the environment. The effect of the rule is
grouped into an update set, which is applied atomically to the environment at
each computation step of the machine.

3.3 Syntax

The syntax of the TASM language includes the syntax of ASM, including arith-
metic and the now external function. The TASM language extends the block
form of equation 1 to include time and resource consumption. The specifica-
tion of time and resource consumption is achieved through annotations of indi-
vidual rules. The concrete syntax of TASM resembles the syntax presented in
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[Gargantini and Riccobene 2001], with extensions for time and resource annota-
tions. A sample rule of a block TASM is shown in Listing 1, expressed in the
concrete syntax of the TASM language. The rule describes the behavior of the
feed belt from the production cell case study [Lewerentz and Lindner 1995]. For
a description of the production cell system and a graphical representation of its
layout, the reader is referred to Section 5. The feed belt carries blocks from the
loader to the robot. According to the description of the system from Section 5,
moving a block from the loader to the robot takes 5 time units and consumes
500 units of power.

Listing 1 Rule 1 of Main Machine Feed
R1: Block goes to end of belt
{

t := 5;
power := 500;

if feed_belt = loaded and feed_begin = True and
motor_feed = on and motor_feed_p = positive then
feed_begin := False;
feed_end := True;

}

3.3.1 Time

The TASM approach to time specification is to specify the duration of a rule exe-
cution. In the TASM world, this means that each step will last a finite amount of
time before an update set is applied atomically to the environment. Syntactically,
time gets specified for each rule in the form of an annotation. The annotation is
specified as an interval [tmin, tmax]. The lack of a time annotation for a rule is
assumed to mean t = 0, an instantaneous rule execution. Semantically, a time
annotation is interpreted as a closed interval over R≥0. For a given run, a rule
execution will last an amount ti where ti is taken non-deterministically from the
interval [tmin, tmax]. The approach uses relative time between steps since each
step will have a finite duration. The total time for a run of a given machine is
simply the summation of the individual step times over the run. A special time
annotations, denoted “t := next”, is used to denote that a given machine will
not produce update sets until another agent executes a move. This construct is
a way to ensure that a machine does not terminate, even if none of its rules are
enabled.

3.3.2 Resources

The specification of non-functional properties includes timing characteristics as
well as resource consumption properties. A resource is defined as a global quan-
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tity that has a finite size. Power, memory, and communication bandwidth are
examples of resources. Resources are used by the machine when the machine
executes rules. Similarly to time specification, syntactically, each rule specifies
how much of a given resource it consumes as an annotation. The annotation
is specified as an interval [rrmin, rrmax]. The omission of a resource consump-
tion annotation is assumed to mean zero resource consumption. Semantically,
a resource annotation is interpreted as a closed interval over R≥0. For a run,
for each resource, a rule execution will consume an amount rri where rri is
taken non-deterministically from the interval [rrmin, rrmax]. The semantics of
resource usage are assumed to be volatile, that is, usage lasts only through the
step duration. For example, if a rule consumes 128 kiloBytes of memory, the
total memory usage will be increased by 128 kiloBytes during the step duration
and will be decreased by 128 kiloBytes after the update set has been applied
to the environment. Time elapses and resources are consumed only when a rule
is executed. Determining whether a given rule is activated is instantaneous and
consumes no resources.

3.3.3 Abstract Syntax

In the abstract syntax of the TASM language, a specification ASMSPEC is a
pair:

ASMSPEC = 〈E, ASM〉
Where:

– E is the environment, which is a triple:

E = 〈EV, TU, ER〉

Where:

• EV denotes the Environment Variables, a set of global typed variables

• TU is the Type Universe, a set of types that includes:

∗ Reals: RV U = R

∗ Integers: NV U = {. . ., −1, 0, 1, . . .}
∗ Boolean constants: BV U = {True, False}
∗ User-defined types: UDV U

• ER is the set of named resources:
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∗ ER = {(rn, rs) | rn is the resource name, and rs is the resource
size, a value ∈ R≥0}

– ASM is the machine, which is a triple:

ASM = 〈MV, CV, R〉

Where:

• MV is the set of Monitored Variables = {mv | mv ∈ EV and mv is
read-only in R} [Börger and Stärk 2003]

• CV is the set of Controlled Variables = {cv | cv ∈ EV and cv is read-write
in R} [Börger and Stärk 2003]

• R is the set of Rules = 〈 n, t, RR, r 〉 Where:

∗ n is the name of the rule

∗ t is the duration of the rule execution, a closed interval over R≥0

∗ RR is the set of resources used by the rule where each element is of
the form (rr, ra) where rr ∈ ER is the resource name and ra is the
resource amount consumed, specified as a closed interval on R≥0

∗ r is a rule of the form if C then A where C is an expression that
evaluates to an element in BV U and A is an action}

An action A is a sequence of one or more updates to environment variables,
also called an effect expression, of the form v := vu where v ∈ CV and vu is an
expression that evaluates to an element in the type of v.

3.3.4 Hierarchical Composition

In complex systems, structuring mechanisms are required to partition large spec-
ifications into smaller ones. The partitioning enables bottom-up or top-down
construction of specifications and creates opportunities for reuse. The compo-
sition mechanisms included in the TASM language are based on the XASM
language [Anlauff 2000]. In the XASM language, an ASM can use other ASMs
in rule effects in two different ways - as a sub ASM or as a function ASM.
A sub ASM is a machine that is used to structure specifications hierarchically,
similar to a Turbo ASM [Börger et al. 2001]. A function ASM is a machine that
takes a set of inputs and returns a single value as output, similarly to a function
in programming languages, and similar to an ASM macro [Börger et al. 2001].
These two concepts enable abstraction of specifications by hiding details inside
of auxiliary machines.
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The definition of a sub ASM is similar to the previous definition of machine
ASM :

SASM = 〈n, MV, CV, R〉
Where n is the machine name, unique in the specification, and other tuple

members have the same definition as mentioned in previous sections. The execu-
tion and termination semantics of a sub ASM are different than those of a main
ASM. When a sub ASM is invoked, one of its enabled rules is selected, it yields
an update set, and it terminates.

The definition of a function ASM is slightly different. Instead of specifying
monitored and controlled variables, a function ASM specifies the number and
types of the inputs and the type of the output:

FASM = 〈n, IV, OV, R〉
Where:

– n is the machine name, unique in the specification

– IV is a set of named inputs (ivn, it) where ivn is the input name, unique in
IV , and it ∈ TU is its type.

– OV is a pair (ovn, ot) specifying the output where ovn is the name of the
output and ot ∈ TU is its type

– R is the set of rules with the same definition as previously stated, but with
the restriction that it only operates on variables in IV and OV.

A function ASM cannot modify the environment and must derive its output
solely from its inputs. The only side-effect of a function ASM is time and resource
consumption.

A specification, ASMSPEC, is extended to include the auxiliary ASMs:

ASMSPEC = 〈E, AASM, ASM〉
Where:

– E is the environment

– AASM is a set of auxiliary ASMs (both sub ASMs and function ASMs)

– ASM is the main machine
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3.3.5 Parallel Composition

To enable specification of multiple parallel activities in a system, the TASM
language allows parallel composition of multiple abstract state machines. Paral-
lel composition is enabled through the definition of multiple top-level machines,
called main machines, analogous to multiple agents [Börger et al. 2001]. For-
mally, the specification ASMSPEC is extended to include a set of main ma-
chines MASM as opposed to the single main machine ASM for basic ASM
specifications:

ASMSPEC = 〈E, AASM, MASM〉
Where:

– E is the environment

– AASM is a set of auxiliary ASMs (both sub ASMs and function ASMs)

– MASM is a set of main machines ASM that execute in parallel

The definition of a main machine ASM is the same as from previous sections.
Other definitions also remain unchanged.

3.4 Semantics

The semantics of the TASM language extend the update set concept with time
and resource consumption. Updates to environment variables are organized in
steps, where each step corresponds to a rule execution. In the rest of this paper,
the terms step execution and rule execution are used interchangeably. The state
is defined at all time instants. A rule is enabled if its guarding condition, C,
evaluates to the boolean value True. The update set for the ith step, denoted
Ui, is defined as the collection of all updates to controlled variables for the step.
An update set Ui will contain 0 or more pairs (cv, v) of assignments of values to
controlled variables. A run of a basic ASM is defined by a sequence of update
sets.

3.4.1 Update Set

In TASM, when a machine executes a step, the update set that is produced
contains the duration of the step, as well as the amounts of resources that are
consumed during the step execution. We use the special symbol ⊥ to denote the
absence of an annotation, for either a time annotation or a resource annotation.
Update sets are extended to include the duration of the step, t ∈ R≥0 ∪ {⊥}
and a set of resource usage pairs rc = (rr, rac) ∈ RC where rr is the resource
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name and rac ∈ R≥0 ∪ {⊥} is a single value denoting the amount of resource
usage for the step. If a resource is specified as an interval, rac is a value selected
non-deterministically from the interval.

The symbol TRUi is used to denote the timed update set, with resource
usages, of the ith step of a machine, where ti is the step duration, RCi is the set
of consumed resources, and Ui is the set of updates to variables:

TRUi = (ti, RCi, Ui)

For the remainder of this article, the term update set refers to an update set
of the TRUi form.

3.4.2 Hierarchical Composition

Semantically, hierarchical composition is achieved through the composition of
update sets. A rule execution can utilize sub machines and function machines in
its effect expression. Each effect expression produces an update set, and those
update sets are composed together to yield a cumulative update set to be applied
to the environment. To define the semantics of hierarchical composition, we
utilize the semantic domain R≥0 ∪ {⊥}. The special value ⊥ is used to denote the
absence of an annotation, for either a time annotation or a resource annotation.

We define two composition operators, ⊗ and ⊕, to achieve hierarchical com-
position. The ⊗ operator is used to perform the composition of update sets
produced by effect expressions within the same rule:

TRU1 ⊗ TRU2 = (t1, RC1, U1) ⊗ (t2, RC2, U2)

= (t1 ⊗ t2, RC1 ⊗ RC2, U1 ∪ U2)

The ⊗ operator is commutative and associative. The semantics of effect ex-
pressions within the same rule are that they happen in parallel. This means
that the time annotations will be composed to reflect the duration of the longest
update set:

t1 ⊗ t2 =

⎧⎪⎪⎨
⎪⎪⎩

t1 if t2 = ⊥
t2 if t1 = ⊥
max(t1, t2) otherwise

The composition of resources also follows the semantics of parallel execution
of effect expressions within the same rule. The ⊗ operator is distributed over
the set of resources:
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RC1 ⊗ RC2 = (rc11, . . . , rc1n) ⊗ (rc21, . . . , rc2n)

= (rc11 ⊗ rc21, . . . , rc1n ⊗ rc2n)

= ((rr11, rac11) ⊗ (rr21, rac21), . . . ,

(rr1n, rac1n) ⊗ (rr2n, rac2n))

= ((rr11, rac11 ⊗ rac21), ...

((rr1n, rac1n ⊗ rac2n))

In the TASM language, resources are assumed to be additive, that is, parallel
consumption of amounts r1 and r2 of the same resource yields a total consump-
tion r1 + r2:

rac1 ⊗ rac2 =

⎧⎪⎪⎨
⎪⎪⎩

rac1 if rac2 = ⊥
rac2 if rac1 = ⊥
rac1 + rac2 otherwise

Intuitively, the cumulative duration of a rule effect will be the longest time
of an individual effect, the resource consumption will be the summation of the
consumptions from individual effects, and the cumulative updates to variables
will be the union of the updates from individual effects.

The ⊕ operator is used to perform composition of update sets between a
parent machine and a child machine. A parent machine is defined as a machine
that uses an auxiliary machine in at least one of its rules’ effect expression. A
child machine is defined as an auxiliary machine that is being used by another
machine. For composition that involves a hierarchy of multiple levels, a machine
can play both the role of parent and the role of child. To define the operator, we
use the subscript p to denote the update set generated by the parent machine,
and the subscript c to denote the update set generated by the child machine:

TRUp ⊕ TRUc = (tp, RCp, Up) ⊕ (tc, RCc, Uc)

= (tp ⊕ tc, RCp ⊕ RCc, Up ∪ Uc)

The ⊕ operator is not commutative, but it is associative. The duration of
the rule execution will be determined by the parent, if a time annotation exists
in the parent. Otherwise, it will be determined by the child:

tp ⊕ tc =

{
tc if tp = ⊥
tp otherwise

2019Ouimet M., Lundqvist K.: The Timed Abstract State Machine ...



The distribution of the ⊕ operator over the set of consumed resources is the
same as for the ⊗ operator:

RCp ⊕ RCc = (rcp1, . . . , rcpn) ⊕ (rcc1, . . . , rccn)

= (rcp1 ⊕ rcc1, . . . , rcpn ⊕ rccn)

= ((rrp1, racp1) ⊕ (rrc1, racc1), . . . ,

(rrpn, racpn) ⊕ (rrcn, raccn))

= ((rrp1, racp1 ⊕ racc1), ...

((rrpn, racpn ⊕ raccn))

The resources consumed by the rule execution will be determined by the par-
ent, if a resource annotation exists in the parent. Otherwise, it will be determined
by the child:

racp ⊕ racc =

{
racc if racp = ⊥
racp otherwise

Intuitively, the composition between parent update sets and child update
sets is such that the parent machine overrides the child machine. If the parent
machine has annotations, those annotations override the annotations from child
machines. If a parent machine doesn’t have an annotation, then its behavior is
defined by the annotations of the auxiliary machines it uses. These semantics
enables the abstraction of timing analysis common in the real-time community
[Englomb et al. 2003] where program units, such as function calls, are annotated
with timing bounds that override child units, without analyzing the underlying
behavior of the units. Furthermore, these semantics enable bottom up construc-
tion of specifications where the timing behavior can be defined by as the sum
of the parts. The hierarchical composition semantics maintain the semantics of
ASM where everything that occurs within a step happens in parallel. As in the
case of ASM, conflicting updates to variables yield update set inconsistency.

Figure 1 shows a hierarchy of machines for a sample rule execution. Each
numbered square represents a machine. Machine ”1” represents the rule of the
main machine being executed; all other squares represent either sub machines or
function machines used to derive the update set produced by the main machine.
Machine ”3” is an example of a machine that plays the role of parent (of machine
”7”) and child (of machine ”1”).

Each machine generates an update set TRUi, where i is the machine number.
The derivation of the produced update set is done in a bottom-up fashion, where
TRUret is the update set returned by the main machine:

TRUret = TRU1 ⊕ ( (TRU2 ⊕ (TRU5 ⊗ TRU6))⊗
(TRU3 ⊕ TRU7)⊗
TRU4)
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Figure 1: Hierarchical composition

3.4.3 Parallel Composition

The semantics of parallel composition regards the synchronization of the main
machines with respect to the global progression of time. We define tb, the global
time of a run, as a monotonically increasing function over R≥0. Machines execute
steps that last a finite amount of time, expressed through the duration ti of
the produced update set. The time of generation, tgi, of an update set is the
value of tb when the update set is generated. The time of application, tai, of
an update set for a given machine is defined as tgi + ti, that is, the value of tb

when the update set will be applied. A machine whose update set, generated at
global time tgp, lasts tp will be busy until tb = tgp + tp. While it is busy, the
machine cannot perform other steps. In the meantime, other machines who are
not busy are free to perform steps. This informal definition gives rise to update
sets no longer constrained by step number, but constrained by time. Parallel
composition, combined with time annotations, enables the specification of both
synchronous and asynchronous systems.

We define the operator � for parallel composition of update sets. For a set of
update sets TRUi generated during the same step by i different main machines:

TRU1 � TRU2 = (t1, RC1, U1) � (t2, RC2, U2)

=

⎧⎪⎪⎨
⎪⎪⎩

(t1, RC1 � RC2, U1) if t1 < t2

(t2, RC1 � RC2, U2) if t1 > t2

(t1, RC1 � RC2, U1 ∪ U2) if t1 = t2

The operator � is both commutative and associative. The parallel composi-
tion of resources is assumed to be additive, as in the case of hierarchical compo-
sition using the ⊗ operator:
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RC1 � RC2 = (rc11, . . . , rc1n) � (rc21, . . . , rc2n)

= (rc11 � rc21, . . . , rc1n � rc2n)

= ((rr11, rac11) � (rr21, rac21), . . . ,

(rr1n, rac1n) � (rr2n, rac2n))

= ((rr11, rac11 � rac21), ...

((rr1n, rac1n � rac2n))

The parallel composition of resources is assumed to be additive, as in the
case of hierarchical composition using the ⊗ operator:

rac1 � rac2 =

⎧⎪⎪⎨
⎪⎪⎩

rac1 if rac2 = ⊥
rac2 if rac1 = ⊥
rac1 + rac2 otherwise

At each global step of the simulation, a list of pending update sets are kept
in an ordered list, sorted by time of application. At each global step of the
simulation, the update set at the front of the list is composed in parallel with
other update sets, using the � operator and the resulting update set is applied
to the environment. Once an update set is applied to the environment, the step
is completed and the global time of the simulation progresses according to the
duration of the applied update set.

The concurrency semantics of the TASM language reduce to the concurrency
semantics of synchronous and asynchronous multi-agent ASMs. For a TASM
specification where all machine steps have the same duration dt �= 0, the spec-
ification is essentially a synchronous multi-agent ASM specification with linear
time progression. For a TASM specification where all machine steps have the
same duration dt = 0, the specification is essentially an asynchronous multi-
agent ASM specification. In TASM, time plays the role of delaying moves of a
machine until the delay of the rule execution has elapsed and acts as a synchro-
nization mechanism.

3.5 Non-Determinism

While the TASM language does not include the choose construct from ASM, non-
determinism is intrinsic to the TASM language. For example, time and resource
annotations can vary non-deterministically. Input/Ouput non-determinism, in
terms of assignments to variables, can occur in TASM if one or more rules
are enabled for a given step of a given machine. In this case, a rule is chosen
non-deterministically from the enabled rules and it is executed. This type of
non-determinism differs from ASM where multiple enabled rules are executed
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within the same step and the update sets are combined. In the TASM language,
such semantics would be confusing since durations would have to be added.
Furthermore, the ability to non-deterministically chose an enabled rule is conve-
nient when modeling the environment to capture different simulation scenarios.
The environment is inherently non-deterministic [Parnas and Madey 1995] and
modeling this behavior is paramount to achieve realistic simulation scenarios.

4 Relation to Timed ASM

In [Gurevich and Huggins 1996], the authors present a specification and verifi-
cation of the railroad crossing problem using a combination of ASM and the
currtime external function (most recently called now). The algebra presented
in [Gurevich and Huggins 1996] provides a general approach to timed system
modeling. In order to demonstrate that TASM provides a more concise nota-
tion, the semantics of the TASM language are expressed using Timed ASM. In
order to map a TASM specification into the Timed ASM language, we introduce
two domains, namely DTASM and DASM to denote the domains of specifica-
tions expressed in the TASM language and the ASM language respectively. We
also introduce a function Desug that maps a TASM specification into an ASM
specification. The “desugaring” function is defined for all individual elements of
the TASM language (specifications, variables, types, rules, etc.) and maps the
TASM elements into elements of the ASM language.

Desug : DTASM → DASM

Each resource definition, Rdef , in the environment is desugared into a global
shared dynamic function:

Desug[[ Rdef ]] = shared Rdef

Type definitions, Tdef get desugared into static finite domains:

Desug[[ Tdef ]] = static domain Tdef

Controlled and monitored variables inside of machines get desugared into
nullary controlled and dynamic functions, respectively.

The desugaring of the rules is the most complex desugaring in the TASM
language, because this is where time and resource utilization play a role. To
illustrate the desugaring of rules, we define abstract syntax for a rule definition:

– Rules = (R+
i )
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– Ri = (ti r∗i if condi then effecti)

In the TASM, the set of rules for a given machine is implicitly mutually
exclusive. In the ASM language, the mutual exclusion is explicit. The desugaring
introduces two variables, one to keep the time when the rule application will
finish executing and one to denote that the machine is “busy” doing work. We
denote these two variables by tcompfresh and mbusyfresh. The fresh underscore
is used to indicate that the variable name is introduced by the desugaring and
enforces that it does not clash with existing names. Both of these variables also
desugar into controlled dynamic functions:

Desug[[ tcompfresh ]] = controlled tcomp initially -1

Desug[[ mbusyfresh ]] = controlled mbusy initially False

Conceptually, once a rule is triggered, a machine sets the mbusy variable to
True and will not do anything until the rule duration has elapsed. Once the
rule duration has elapsed, the machine will generate the appropriate update set
atomically and will be free to execute another rule. The desugaring of a rule is
expressed as:

Desug[[ Rule ]] = Desug[[ (ti r∗i if condi then effecti) ]]

= if/else if condi ∧ ¬mbusyfresh then

mbusyfresh := True;

tcompfresh := now + getDuration(ti);

rifresh
:= getResourceConsumption(ri);

else if now = tcompfresh ∧ mbusyfresh then

effecti;

mbusyfresh := False;

tcompfresh := − 1;

rifresh
:= 0;

. . .

The function getDuration is a macro that is created using the condition and
the time annotation of the rule. It returns the duration of the rule by selecting a
duration non-deterministically from the rule annotation. The introduction of the
two auxiliary variables and the time conditions will guarantee that the machine
will not produce any update sets and that no other rules will be enabled while
the machine is executing a rule. This behavior is exactly the desired behavior to
simulate “durative” actions. Function machines are desugared as macros and sub
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machines are desugared just like main machines and they are “inlined” inside the
rule where they are invoked. The desugaring of the “t := next” construct is fairly
straightforward albeit tedious. It involves caching the state at the beginning of
the rule execution and creating an extra rule which compares the cached state
to the current state. If there is a mismatch, the machine immediately resumes
executing rules. If there is no mismatch, the machine simply waits until there is
a mismatch.

The one area that remains to be formally specified is the execution semantics
of resources. For each resource that is defined in the environment, an agent is
created that is used to sum up all of the resources used by other agents. These
new agents, symbolically depicted in Listing 2, are used to ensure that resource
usage falls within the specified bounds.

Listing 2 Machine to compute resources
Agent RESOURCEi

controlled lastfresh initially 0
controlled totalresourceifresh

initially 0

if now = lastfresh + dt then
totalresourceifresh

:= sum(ri)
else
if totalresourceifresh

> resourceimax then
RESOURCE EXHAUSTED

The role of the sum macro is to sum up all of the resource annotations
from executing agents. The RESOURCE EXHAUSTED macro simply halts
execution to note that a given resource has been exhausted.

5 Example

The production cell system is an industrial case study that has been used to
evaluate formal methods [Lewerentz and Lindner 1995]. The system is based
on an industrial metal processing plant near Karlsruhe in Germany. The pro-
duction cell consists of a series of components that need to be coordinated
to achieve a common goal of stamping metal blocks. Blocks come into the
system as “raw” and must leave the system as “stamped”. Some simplifica-
tions and extensions have been made to the original problem definition from
[Lewerentz and Lindner 1995]. For example, the elevating rotatory table has
been omitted. The traveling crane has been replaced by a loader, which is a
component that simply puts blocks on the feed belt. The schematic view of the
production cell system is shown in Figure 2.
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Blocks are introduced into the system via the loader, which puts blocks on
the feed belt. The feed belt carries blocks from one end of the belt to the other.
Once a block reaches the end of the feed belt, the robot can pick up the block
and insert it into the press, where the block is stamped. Once a block has been
stamped, the robot can pick up the block from the press and unload it on the
deposit belt, at which point the stamped block is carried out of the system.

Loader Feed Belt

Press

Robot

Arm A

Arm B

Deposit Belt

Figure 2: Top view of the production cell

The original example has been extended to reflect the reality that certain
actions are durative, that is, they take a finite amount of time to complete.
For example, the time that it takes for the press to stamp a block could be 11
time units. The example has also been extended to include a resource, power
consumption. For example, turning on the press motor consumes 1500 units of
power per time unit while the press stamps a block. Resources are consumed
through the duration of a step and are given back after the step. The list of
durative actions, with their power consumptions, are shown in Table 1.

All other actions are assumed to be instantaneous and are assumed to con-
sume no power. The controller actions are assumed to be instantaneous. While
this assumption does not reflect reality, it is nevertheless reasonable because the
timing of the software is fast enough in relation to the timing of other compo-
nents. The software operates on the order of micro seconds while the hardware
components operate on the order of tenths of a second. This simplification is
part of the original case study definition in [Lewerentz and Lindner 1995] and
has been formulated as a set of assumptions in [Börger and Mearelli 1997].

The TASM model of the production cell includes a model of the controller
and a model of each hardware component. Depending on where the system
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Component Action Duration Power

Loader Put a block on the belt 2 200
Feed Move block 5 500
Deposit Move block 7 500
Robot Rotate 30o 2 1000
Robot Extend arm 3 1200
Robot Retract arm 2 1100
Robot Drop a block 2 800
Robot Pickup a block 3 1000
Press Stamp a block 11 1500

Table 1: Durative actions

boundary is drawn, the hardware components could be considered part of the
environment. For the sake of the analysis, the behavior of the hardware compo-
nents are paramount to the performance of the system and hence are included
in the model. The TASM model ensures that the controller can interact with
the environment solely through sensors and actuators. The controller reads the
state of the various components through a set of sensors and commands the var-
ious components through actuators. The state can only be read by the controller
through sensors only and actuators can be commanded only by the controller.
This convention is congruent with the controller-environment separation princi-
ple [Parnas and Madey 1995].

The rules of the loader for the production cell is shown in Listing 3. The
loader component is used to “drive” the system by putting blocks on the feed
belt when it is empty, up to a pre-determined number of blocks. According to
the action description of Table 1, the loader takes 2 time units to load a block
into the system and consumes 200 units of power to achieve its task. Once the
rule execution completes, the feed begin sensor is set to true. The loader keeps
track of how many blocks have been loaded into the system and stops after all
blocks have been loaded.

Rule R1 is used to put the blocks on the feed belt. Rule R2, is used to wait
and elapse time until the next state change. The “t := next” construct is used
to keep the machine alive until the next state change. Once all blocks have been
loaded in the system, no rule will be enabled for the Loader machine and the
machine will stop. The semantics of the “t := next” construct is such that the
machine will wait until another agent makes a move. This construct is necessary
to prevent the machine from stopping because no rule is enabled.

The Robot main machine is used to describe the rotation of the base of
the robot. The machine, whose rules are shown in Listing 4, uses the robot wait
variable to give a chance for the controller to stop the motor before rotation
resumes. This behavior could also have been enforced by the use of a communi-
cation channel. The Robot main machine differs from other machines described
so far because it uses a sub machine called ROBOT MOTION. As a refresher, a
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Listing 3 Rules of the Loader main machine
R1: The feed belt is empty, put a block on it
{

t := 2;
power := 200;

if loaded_blocks < number and feed_belt = empty then
feed_belt := loaded;
loaded_blocks := loaded_blocks + 1;
feed_begin := True;

}

R2: The feed belt is loaded, do nothing {
t := next;

if feed_belt = loaded and loaded_blocks < number then
skip;

}

sub machine is a unit of hierarchical composition. The behavior of the main ma-
chine is defined in terms of the main machine by merging the update set yielded
by the sub machine with update sets yielded by other sub machines, if appli-
cable. For rule R1, the updates to variables yielded by the ROBOT MOTION
sub machine will be merged with the update to the robot wait variable. Since
rule R1 does not have a time or resource annotation, the duration and resource
consumption of the rule execution are defined by the sub machine annotations,
if any.

Listing 4 Rules of the Robot main machine
R1: do
{

if robot_wait = False then
ROBOT_MOTION();
robot_wait := True;

}

R2: wait
{

t := next;

if robot_wait = True then
robot_wait := False;

}

The use of a sub machine can be viewed as a nested if statement. Sub ma-
chines are nothing more than syntactic sugar to help structure specifications.
Nevertheless, they are helpful because they can be reused and they can be an-
alyzed in isolation [Ouimet and Lundqvist 2007(c)]. The rules of sub machine
ROBOT MOTION are shown in Listing 5.

In Listing 5, rules R1 and R2 are used to rotate the robot clockwise and
counter clockwise depending on the polarity of the motor. Per the data in Ta-
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Listing 5 Sample rule of the ROBOT MOTION sub machine
R1: rotate clockwise
{

t := 2;
power := 1000;

if motor_robot = on and motor_robot_p = negative then
robot_angle := rotateClockwise();
armapos := armPosition(ARM_A_FEED_ANGLE, ARM_A_DEPOSIT_ANGLE,

ARM_A_PRESS_ANGLE, rotateClockwise());
armbpos := armPosition(ARM_B_FEED_ANGLE, ARM_B_DEPOSIT_ANGLE,

ARM_B_PRESS_ANGLE, rotateClockwise());

}

ble 1, a rotation of 30 degrees takes 2 units of time to complete and consumes
1000 units of power. Rule R1 of the sub machine uses two function machines,
rotateClockwise and armPosition.

The Controller main machine is the most complex machine of the model.
In a similar fashion as the Robot main machine, the Controller machine uses
a variable wait to wait for a change in the environment before performing an
action. For the controller, this waiting is necessary for the controller to give the
environment a chance to make progress. Otherwise, since all controller actions
are instantaneous, the controller could perform an infinite number of steps before
any environment changes happen. In real-time system terms, the Controller main
machine can be viewed as a sporadic task which gets released whenever a sensor
value changes. The rules of the Controller main machine, shown in Listing 6,
make heavy use of sub machines. The semantics of sub machines and hierarchical
composition are such that all sub machines operate in parallel and the resulting
update sets of each machine are composed with one another. The commanding
of all of the actuators are performed independently in parallel.

The rules of the OPERATE DEPOSIT sub machine are shown in Listing 7.
The listing shows how the contoller uses sensor values and the actuators to
control the system.

The complete production cell model consists of 9 main machines, 3 function
machines, and 16 sub machines. Simulation scenarios were designed to process
5 blocks.

5.1 Sample Run

We use Listing 1, Listing 3, and Listing 5 to illustrate the semantics of paral-
lel composition. For the sample run, we do not show the moves of the con-
troller to make the run easier to understand. The run begins in a initial envi-
ronment partially defined by ((feed belt, empty), (number, 5), (loaded blocks,
0), (robot angle, 60)). For a sample run using the aforementioned listings, the
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Listing 6 Rules of the Controller main machine
R1: Issue Commands
{

if wait = False then
OPERATE_FEED();
OPERATE_DEPOSIT();
OPERATE_ROBOT();
OPERATE_ARM_A();
OPERATE_ARM_B();
OPERATE_PRESS();
wait := True;

}

R2: Wait for a step
{

t := next;

else then
wait := False;

}

Listing 7 Rules of the OPERATE DEPOSIT sub machine
R1: turn on motor
{

if motor_deposit = off and deposit_begin = True then
motor_deposit_p := negative;
motor_deposit := on;

}

R2: turn off motor
{

if motor_deposit = on and deposit_end = True then
motor_deposit := off;

}

R3: nothing to do
{

else then
skip;

}

following update sets (simplified) are generated by the three main machines,
ordered by the global time at which they are generated tg:

tg = 0 : TRULoader,1 = (2, ((power, 200)), ((feed belt, loaded),

(feed begin, True), (loaded blocks, 1)))

tg = 0 : TRURobot,1 = (2, ((power, 1000)), ((robot angle, 30)))

tg = 2 : TRURobot,2 = (2, ((power, 1000)), ((robot angle, 0)))

tg = 2 : TRUFeed,1 = (5, ((power, 500)),((feed begin, False),

(feed end, True)))

The update sets are generated according to the rules of the different machines.
At the beginning of the simulation, the loader will load a block into on the feed
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belt. At the same time, because the robot is not in a position to pick up a block
from the feed belt (robot angle = 0), the controller will rotate the robot toward
the feed belt. Once the feed belt is loaded, the belt is turned on to carry the
block to the robot.

The parallel composition of these update sets yields the environment de-
scribed below. For brevity, only the environment variables whose values are
changed are shown. The variables changed by the controller to command the
actuators are also omitted. The time tg denotes the global simulation time:

tg < 2 :(((power, 1200)), ∅)
tg = 2 :(((power, 1200)), ((feed begin, True), (robot angle, 30),

(feed belt, loaded), (loaded blocks, 1)))

2 < tg < 4 :(((power, 1500)), ∅)
tg = 4 :(((power, 1500)), ((robot angle, 0)))

4 < tg < 5 :(((power, 500)), ∅)
tg = 5 :(((power, 500)),((feed begin, False), (feed end, True)))

For the first time interval, the power consumption is the summation of
TRULoader,1 and TRURobot,1 update sets. The effect of both update sets oc-
cur at tg = 2. In the time interval 2 < tg < 4, the power consumption is the
summation of TRURobot,2 and TRUFeed,1. At tg = 4, the effect of TRURobot,2

occurs. AT tg = 5, the effect of the TRUFeed,1 update set occurs.

6 Conclusion and Future Work

In this article, we have presented the Timed Abstract State Machine (TASM)
language, which is an extension of Abstract State Machines (ASM). The TASM
language extends ASM with durative steps and resource consumption during
steps. The TASM language is used to specify the behavior of embedded real-
time systems where time and resource consumption are an integral part of the
system’s correctness. The TASM language also contains facilities for hierarchical
composition and for parallel composition. The TASM language provides an intu-
itive and well-structured language to capture the three key aspects of embedded
real-time systems – function, time, and resources. The language improves on
previous attempts to apply ASM to real-time systems since it provides a con-
currency model that can express both synchronous and asynchronous behavior.
Furthermore, using the duration paradigm, the timing properties of system mod-
els can be expressed naturally. The structure of the language eases tool support
and provides a basis for formal analysis of models for performance properties
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such as worst-case execution time, a property of systems critical in the real-time
domain [Englomb et al. 2003].

The TASM language has been introduced to the real-time community in
[Ouimet et al. 2007] and has been used to model flagship examples from the
embedded domain [Ouimet et al. 2006].

6.1 Future Work

The TASM language is being implemented into a toolset, called the TASM
toolset, used for the specification, verification, and validation of real-time sys-
tems [Ouimet and Lundqvist 2007(d)]. Future work will utilize the UPPAAL
tool suite [Larsen et al. 1997] to verify execution time of TASM models for prop-
erties such as end-to-end latency, using a restricted subset of TASM that can be
translated to timed automata. Furthermore, TASM models have also been an-
alyzed for completeness and consistency [Ouimet and Lundqvist 2007(c)]. The
TASM language and toolset will serve as a tool-supported formal basis for real-
time system engineering, as part of a framework that will include formal verifi-
cation, simulation, and test case generation [Ouimet and Lundqvist 2006].
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