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Abstract: We give a survey on work we did in the past where we have successfully
applied the ASM methodology to provide abstract models for a number of problem
areas that are commonly found in Service Oriented Architectures (SOA). In particular,
we summarize our work on (1) service behavior mediation, (2) service discovery, and
(3) service composition, showing that the corresponding solutions can be described as
variations of a fundamental abstract processing model—the Virtual Provider.
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1 Introduction

The term Service Oriented Architecture (SOA) has gained an increasing pop-
ularity as an architectural blueprint for designing flexible information systems.
SOAs are built from autonomous functional entities, services, which inter-operate
through well-defined, message-based interfaces that abstract from both program-
ming languages and implementation platforms.

The most prominent incarnation of this architectural blueprint is based on the
technical specification set defined by the World Wide Web Consortium (W3C)
where services expose their functionality as so-called Web1 services. The cor-
responding W3C technical report on the Web Services Architecture [see W3C
2004] describes a basic engagement model that identifies, among others, the fol-
lowing three fundamental entities: the service requester invoking functionality
from a service provider through message exchanges. The definition of these mes-
sage exchanges has been published and thus can be retrieved through a public
service discovery service.

Although the underlying principles are not radically new, the SOA style has
given raise to a lot of research in the recent years which tries to address the
following problems:

Service Mediation.
What if requester and provider do not perfectly agree on the interaction
protocol? Is there a way to mediate [see Wiederhold 1997] in heterogeneous
scenarios where mismatches may occur both on the message content and the
message flow level?

1 The technical specifications in this area make heavily use of other specifications
issued by the W3C that are related to the World Wide Web, e.g. using HTTP as one
possible transport protocol for Web service messages, hence the name Web services.
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Service Discovery.
Given a number of advertised service descriptions, which one fits best the
requesters’ needs, both in functional and non-functional terms?
Service Composition.
How can new service functionality be exposed by composing it from available
services?

For these problems, we developed formal ASM [see Börger and Stärk 2003]
models that have been described individually in detail in other publications [see
Altenhofen et al. 2005, Friesen and Börger 2006, Lemcke and Friesen 2007]. In
this paper, we give a survey of these solutions while emphasizing their strong rela-
tionship through one fundamental abstract model, the so-called Virtual Provider.
In [Section 2] we introduce the Virtual Provider model, which allows the con-
struction of mediators, especially for protocol mismatches. This VP model has
also formed the basis for our semantic service discovery specification which be
described in [Section 3]. In [Section 4], we then report on our achievements
concerning automatic service composition. Finally, we relate our work to other
approaches found in the literature in [Section 5] before we conclude in [Section 6].

2 Service Mediation through Virtual Providers

2.1 Informal Model of Virtual Providers

The general architecture of the Virtual Provider (VP) component is based on the
assumption that we mostly deal with two-way conversations using the Request-
Reply pattern [see Hohpe and Woolf 2003]: The service requester sends a message
(request) to the provider, which, in turn, returns a message (an answer or reply)
to the requester. These two-way messages are exchanged via appropriate message
channels. The Virtual Provider can now be seen as an intermediary component
(or proxy) in the communication model that intercepts the message flow between
the parties involved, thus being able to compensate mismatches in the interaction
protocols that these different parties expect. From the requester’s point of view
it acts like a provider, hence the name Virtual Provider. This core functionality
of the VP leads to the architecture in [Fig. 1], where we abstract from scheduling
and message-passing functionality.

For the overall execution model we follow the SOA assumption that the mes-
sage exchange between the service requester and the service provider carries all
information to establish and maintain context and state, i. e., there is no out-
of-band communication between the interacting parties. Processing an incoming
request can only be done through one control structure, namely a finite sequence
of subrequests, but with a significant modification: Each sequential subrequest
can itself be further decomposed into an arbitrary large set of parallel outgoing
requests which can be forwarded independently of each other. With this, we
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Figure 1: Virtual Provider Architecture.

end up with a simple hierarchical processing structure of so-called seq/par trees,
that allows us to describe rich interaction schemes in a modular fashion. More
sophisticated control flows can be achieved via VP composition as we will see in
[Section 2.3]. Note that this way of structuring the control flow may lead to a dif-
ferent decomposition of the message exchange with requesters and providers than
using the various control structures that are available in standard orchestration
languages, such as BPEL4WS [see Andrews et al. 2003]: The overall processing
sequence can be derived from the dependencies between subsequent messages
(later requests may require parts from replies to former requests), but within a
sequencing step i we group the outgoing requests that independently contribute
to the result of i . With the expressive power of control structures in BPEL4WS,
process designers are free to choose among a set of alternative approaches will
eventually make it harder to identify these dependencies and, thus, to detect
inconsistencies or errors.

2.2 Formal Model of Virtual Providers

Based on the architecture outlined in [Fig. 1], we have defined the VP as a
modular abstract machine [see Altenhofen et al. 2005]:

MODULE VirtualProvider =
choose M ∈ {ReceiveReq,SendAnsw, Process,SendReq,ReceiveAnsw}

M

The first machine ReceiveReq is used to receive service request messages
(elements of a set InReqMssg of legal incoming request messages) from requesters.
Once a new incoming message has been fully received, a new internal request
object is created which is appropriately initialized with an internal representa-
tion of the relevant data extracted from the request message. This particularly
includes status information which is used to trigger further request processing:
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ReceiveReq(inReqMsg) =
if ReceivedReq(inReqMsg) then

if NewRequest(inReqMsg) then
CreateNewReqObj(inReqMsg ,ReqObj )

else
let r = prevReqObj (inReqMsg) in

RefreshReqObj(r , inReqMsg)

Request processing is handled in the Process submachine, which builds
up and processes the seq/par tree for the current request object currReqObj . It
uses the SubProcessIterator submachine to iterate over the sequence in that
tree, forwarding the parallel subrequests for each sequential step and ultimately
collecting the answers from all subrequests. If all outstanding answers have been
received, the answer to the overall request will be compiled and returned to the
service requester:

Process(currReqObj ) =
if status(currReqObj ) = started then

SubProcessIterator(currReqObj )
if status(currReqObj ) = compileAnswer then

CompileOutAnswMsg for currReqObj
status(currReqObj ) := deliver

where
CompileOutAnswMsg for o =

if AnswToBeSent(o) then
SentAnswToMailer(outAnsw2Msg(outAnswer(o))) := true

compileAnswer = yes(FinishedSubReqProcessg)

In a SubProcessIterator step, the immediate subrequests of currReqObj
will be processed in order, as defined by an iterator over that finite set of se-
quential subrequests SeqSubReq(currReqObj ).

SubProcessIterator(currReqObj ) =
InitializeIterator(currReqObj ) seq
IterateSubReqProcessg(currReqObj )

until FinishedSubReqProcessg
where

yes(FinishedSubReqProcessg) = compileAnswer
no(FinishedSubReqProcessg) = initStatus(IterateSubReqProcessg)

The processing of a single (sequential) subrequest seqSubReq is de-
fined as follows: For each element s of the set of parallel subsubrequest
ParSubReq(seqSubReq) of seqSubReq, it starts to FeedSendReq with a request
message for s , namely by setting SentReqToMailer(outReq2Msg(s)) to true. Here,
outReq2Msg(s) transforms the outgoing request into the format for an outgo-
ing request message, which has to be an element of OutReqMssg. Since these
request messages are processed independently of each other, FeedSendReq

elaborates simultaneously for each s an outReqMsg(s). Simultaneously, the ma-
chine also Initializes the to be computed AnswerSet(seqSubReq) before assum-
ing status value waitingForAnswers , where it remains until AllAnswersReceived .
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When AllAnswersReceived , a submachine ConcludeStep lets the iterative sub-
process ProceedToNextSubReq.

While waitingForAnswers ,i. e. the predicate AllAnswersReceived is not yet
true, ReceiveAnsw inserts for every ReceivedAnsw(inAnswMsg) the retrieved
internal answer(inAnswMsg) representation into AnswerSet(seqSubReq) of the
current sequential subrequest seqSubReq, which is supposed to be retrievable as
requester of the incoming answer message.

IterateSubReqProcessg =
if status(currReqObj ) = initStatus(IterateSubReqProcessg) then

FeedSendReq with ParSubReq(seqSubReq(currReqObj ))

Initialize(AnswerSet(seqSubReq(currReqObj )))
status(currReqObj ) := waitingForAnswers

if status(currReqObj ) = waitingForAnswers then
ConcludeStep

where
FeedSendReq with ParSubReq(seqSubReq) =

forall s ∈ ParSubReq(seqSubReq)

SentReqToMailer(outReq2Msg(s)) := true
ConcludeStep =

if AllAnswersReceived then
ProceedToNextSubReq

status(currReqObj ) := Nxt(status(currReqObj ))

Nxt(waitingForAnswers) = testStatus(FinishedSubReqProcessg)

For the definition of ReceiveAnsw we use as parameter the AnswerSet func-
tion. It provides for every requester r , which may have triggered sending some
subrequests to subproviders, the AnswerSet(r), where to insert (the internal
representation of) each answer contained in the incoming answer message:

ReceiveAnsw(inAnswMsg ,AnswerSet)1 =
if ReceivedAnsw(inAnswMsg) then

insert answer(inAnswMsg) into AnswerSet(requester(inAnswMsg))

Finally, the two machines that forward requests to provides and return com-
piled answers back to the service requester are defined symmetrically:

SendAnsw(outAnswMsg , SentAnswToMailer) =

if SentAnswToMailer(outAnswMsg) then
Send(outAnswMsg)

SendReq(outReqMsg , SentReqToMailer) =
if SentReqToMailer(outReqMsg) then

Send(outReqMsg)

1 Without loss of generality we assume this machine to be preemptive (i. e.
ReceivedAnsw(inAnswMsg) gets false by firing ReceiveAnsw for inAnswMsg).
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2.3 Complex VP Models

In those situations where the simple execution model of a single VP turns out to
be insufficient, one way to construct more complex control structures is through
cascading VP instances via composition: This is achieved by connecting the
sending and receiving communication interfaces in an appropriate fashion:

SendReq of VPi with the ReceiveReq of VPi+1, which implies that in
the message passing environment, the types of the sets OutReqMssg of VPi

and InReqMssg of VPi+1 match (via some data mediation).
SendAnsw of VPi+1 with the ReceiveAnsw of VPi , which implies that
in the message passing environment, the types of the sets OutAnswMssg of
VPi+1 and InAnswMssg of VPi match (via some data mediation).

Figure 2: A Complicated Control Flow Example.

For example, the control flow of [Fig. 2] can be realized by a composition
of three VPs as indicated in [Fig. 3]: Upon the InitialRequest, VP1 sends a
first subrequest for A, followed by sending two parallel requests to subproviders
VP2 and VP3 respectively, whose answers in turn trigger VP1 to send the final
subrequest for F before eventually providing its FinalAnswer. VP2 and VP3
themselves can be structured sequentially, VP2 handling the request sequence B
and C, and VP3 handling the sequence D and E, respectively. Note that these
two sequences (and in particular their termination behavior) are independent of
each other. Without the possibility to compose our VPs, the only way to realize
such a structured control flow would be via programming the corresponding
internal VP behavior.

Furthermore, one could extend the VP model by replacing the simple com-
munication patterns with more complex ones. ReceiveReq and SendAnsw

are identified in [Barros and Börger 2005] as basic bilateral service interac-
tion patterns, namely as mono-agent ASM modules Receive and Send. The
FeedSendReq submachine together with SendReq in Process realise an in-
stance of the basic multilateral mono-agent service interaction pattern called
OneToManySend in [Barros and Börger 2005], whereas the execution of
ReceiveAnsw in IterateSubReqProcessg until AllAnswersReceived is an
instance of the basic multilateral mono-agent OneFromManyReceive pattern
from [Barros and Börger 2005]. One can refine VP to concrete business process
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Figure 3: Virtual Provider Composition.

applications by enriching the communication flow structure built from basic ser-
vice interaction patterns as analyzed in [Barros and Börger 2005].

3 Service Discovery

It actually turned out that the underlying abstract processing model of the VP
could be easily extended to serve different application scenarios. For instance, in
the context of the DIP project we had the task to provide a specification for a
distributed semantic web service (SWS) discovery framework for Web services
modeled in Web Service Modeling Ontology (WSMO). The term semantic is used
here to indicate that the service discovery should not be based on syntactical,
e. g., keyword based search, but rather on matching semantically described goals
(e. g., WSMO goals) with semantic annotations of web services (e. g., WSMO
capability descriptions). The overall solution is specified as a distributed archi-
tecture, where a service discovery provider will either distribute goal queries to
peer entities or will forward a query to a local discovery engine. For both enti-
ties in this architecture, the specifications could be directly derived from the VP
model by fairly simple refinements. The main reason for distributing semantic
discovery services is the computationally very expensive semantic matchmaking
procedure of discovery goals and web service capability descriptions.

Notational changes: Since the SWS discovery framework deals with dis-
covery goals instead of requests, all artifacts in the VP model that relate to
requests have been renamed appropriately; e. g. ReceiveReq has been turned
into ReceiveGoal , SendAnsw turned into SendSetOfWS , Process turned into
ProcessGoal , currReqObj turned into currReqGoal , etc. Hence, at the highest
level of abstraction the SWS Discovery Service Provider has been derived from
the original VP by applying a simple renaming procedure:

MODULE DiscoveryServiceProvider =
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choose M ∈ {ReceiveGoal,SendSetOfWS,ProcessGoal,SendGoal} ∪
{ReceiveSetOfWS}

M

In our SWS discovery framework the same goal query is distributed with-
out any changes to different locations (service discovery providers). The service
discovery providers reply with sets of discovered web service descriptions which
only need to be subsequently aggregated into a global set of discovered web ser-
vice descriptions representing the total answer to the original discovery query.
This leads to a simplified control sequence, i. e., discovery goal queries are simply
forwarded to peer entities. Thus, the sequential part of the seq/par tree is always
of length 1, making the subprocess iteration step simpler, see the upper part of
[Fig. 4]. Finally, query forwarding requires some refinements of the VP model in
order to deal with exceptions (most notably loop detections and time outs), see
the gray shaded part of [Fig. 4].

Figure 4: Refinement of Process(Goal) ASM.

In detail, the definition in [Fig. 4] expresses that each call of ProcessGoal

for a started goal object currGoalObj triggers to FeedSendGoal with a
goal query to be sent out for every relevant discovery location l of the cur-
rent currGoalObj. Those immediate goal queries, elements of a set ParGoal-
Query(currGoalObj), are assumed to be processable by other discovery ser-
vice providers independently of each other, FeedSendGoal elaborates si-
multaneously for each l an outGoalMsg(l). Simultaneously, ProcessGoal up-
dates the status of currGoalObj to status(currGoalObj) := waitingForAnswers,
where currGoalObj remains until AllAnswersReceived or BreakCondition be-
comes true. ProcessGoal call for a loopDetected updates the status of cur-
rGoalObj to status(currGoalObj) := compileAnswer. As long as during wait-
ingForAnswers, AllAnswersReceived(currGoalObj) is not yet true and Break-
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Condition(currGoalObj) is false, ReceiveSetOfWS inserts for every Received-
SetOfWS(inSetOfWSMsg) the retrieved internal setOfWS(inSetOfWSMsg) rep-
resentation into SetOfWS(currGoalObj) of the currently processed goal cur-
rGoalObj, which is supposed to be retrievable as goal of the incoming an-
swer message. Once ProcessGoal finds BreakCondition(currGoalObj) or Al-
lAnswersReceived(currGoalObj) becomes true then currGoalObj assumes sta-
tus value compileAnswer. Once, ProcessGoal finds status(currGoalObj) has
value compileAnswer it compiles from currGoalObj (which allows to access
SetOfWS(currGoalObj)) an answer of the current discovery location and up-
dates the status of currGoalObj to status(currGoalObj) := deliver. For the sake
of comparison with the original version of the Process machine we also provide
here the textual definition of the ProcessGoal.

ProcessGoal(currGoalObj ) =
if status(currGoalObj ) = started then

FeedSendGoal with ParGoalQuery(currGoalObj )
status(currGoalObj ) := waitingForAnswers

if status(currGoalObj ) = loopDetected then
status(currGoalObj ) := compileAnswer

if status(currGoalObj ) = waitingForAnswers then
if BreakCondition(currGoalObj ) then

GenerateException(currGoalObj )
status(currGoalObj ) := compileAnswer

else
if AllAnswersReceived(currReqObj ) then

status(currGoalObj ) := compileAnswer
if status(currGoalObj ) = compileAnswer then

CompileOutSetOfWSMsg from currGoalObj
status(currGoalObj ) := deliver

Exhaustive motivation for the proposed distributed semantic service discov-
ery framework and full treatment of the model refinements is described in [Al-
tenhofen et al. 2006].

4 Service Composition

Our work on protocol mediation with the VP has eventually led to a new ap-
proach for service composition. We interpret multi-party communications as an
orchestration problem, i. e., finding a mediator that could steer the interactions
among those parties, where one party is considered the initiator of the conversa-
tion defining the required interface. For this, we have developed a mathematical
model of (Web) services based on ASMs and a composition algorithm that is able
to construct an transactional execution plan that guarantees that any possible
execution trace in that plan will reach an expected end state for all parties, i. e.,
either a success or recovery state [see Lemcke and Friesen 2007]. Since all arti-
facts in that model are specified as ASMs, we can actually simulate the execution
plan in the CoreASM execution engine [see Farahbod et al. 2005].
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4.1 Enriched VP Model

In order to create the implementation of a VP ensuring transactional behav-
ior, we need to use a more detailed representation of requester, providers and
orchestration which we give in this section. In addition, we line out how the ex-
tended definitions correlate with the original VP ASMs defined in [Section 2.2].
Corresponding ASMs carry the same name as the original with an asterisk at-
tached (∗).

4.1.1 Handling of Requester and Providers

For the sake of generating the VP implementation, we treat the required interface
defined by the initiator of a conversation as a special Web service interface among
the interfaces of all provider Web services. This fact is represented in [Fig. 5] by
just referring to participant of the orchestration as Web services rather than
requester and providers.

It is important to differentiate two possible views on the required interface.

1. The outside world later invoking the VP sees the requester like a regular,
passive Web service that can be triggered by sending an initial message. Thus,
its first action from the outside point of view must involve some receiving
activity.

2. The providers see the requester as the only proactive Web service among
themselves that later on triggers the execution of the VP. Thus, its first
action from the inside point of view must involve some sending activity.

In all diagrams showing the participants of an orchestration, and for generating
the implementation of the VP, we use the inside view. Between both the inside
and the outside view can easily be converted by swapping the direction of all
communications.1

4.1.2 Web Services

For us, a Web service is defined via a set of possible input and output messages,
referred to as input and output variables (IN and OUT), a set of states (S),
and a state transition function (ST). Please note that the Web service definition
includes business process information by the state transition function. We cur-
rently restrict ST to a bipartite, directed tree. Bipartite means that input and
output transitions alternate. Multiple input transitions leaving the same state
model a user-determined decision. Multiple output transitions model service be-
havior out of the user’s sphere of influence. We refer to this as non-deterministic
behavior. [Fig. 6] shows four exemplary Web services.

1 That means, outputs become inputs, and inputs become outputs.
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Figure 5: Two views on the interaction model.

WebService := 〈IN, OUT, S, sinit, ST〉
IN, OUT, S . . . sets of input and output variables and states

sinit ∈ S

ST = STin ∪ STout

STin : S × (2IN \ { ∅ }) → S

STout : S × (2OUT \ { ∅ }) → S

We refuse business logic encoded into Web service behavior. Messages whose
content influences subsequent Web service behavior must be classified into dif-
ferent variables. We are hence only interested in a variable’s status rather than
its value and introduce the varState function.

varState : { (wsId , v) �→ status : wsId ∈ ID, v ∈ (INwsId ∪ OUTwsId),

status ∈ {undef, initialized, processed } }

We now define the execution of Web services. As denoted in [Fig. 5], a Web
service interface is abstracted by the ASMs SendReq

∗ and ReceiveAnsw
∗.

The ASMs Send
∗ and Receive

∗ contained are hooks to access the underlying
Web service implementation.

SendReq
∗(wsId) ≡

do forall { (I , spost) : (spre, I , spost) ∈ STwsId
in }

if wsState(wsId) = spost

and varState(wsId , i1) = initialized and . . .
and varState(wsId , i| I |) = initialized then

Send
∗(wsId , I )

forall i ∈ I do varState(wsId , i) := processed
where

ix ∈ I , x = 1 .. | I |
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Figure 6: Example repository. The whole picture represents one Web service
repository. Underlined text denotes the ID of a Web service. Each graph describes
a Web service’s behavior as a finite state machine. Thereby, ellipses denote states,
arrows between states denote state transitions, and arrows leaving or arriving
at state transitions denote output or input messages. Text at messages starting
with a capital letter denotes a variable name. The “tau”-transitions are virtual
transitions (“syntactic sugar”). They translate as follows. The pre-state is a final,
unsuccessful state. The transition and its posterior state do not exist.

SendReq
∗ differs from SendReq in that it potentially sends multiple vari-

ables that belong to the same message, and it checks for the correct current
state of the corresponding Web service before sending the message. The check
SentAnswToMailer is implemented by requiring every variable’s state to be
initialized.

ReceiveAnsw
∗(wsId) ≡

do forall { (spre,O) : (spre, O , spost) ∈ STwsId
out }

if wsState(wsid) = spre and Receive
∗(wsId ,O) then

forall o ∈ O do varState(wsId , o) := initialized
where

ox ∈ O , x = 1 .. |O |
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ReceiveAnsw
∗ again differs from ReceiveAnsw in that it checks for the

correct Web service state and maintains individual variable states. The corre-
sponding concept to the notion of the AnswerSet used in [Section 2.2] is the
state space of Web services and variables that is maintained and accessed from
all Web service models in the scope of one orchestration. This can also be seen
in the UpdateBelief ASM which defines the actual behavior of a Web service
based on its state transitions.

UpdateBelief(wsId) ≡ do forall (spre, V , spost) ∈ STwsId

if wsState(wsid) = spre

and varState(wsId , v1) = initialized and . . .
and varState(wsId , v|V |) = initialized then

wsState(wsId) := spost

where
vx ∈ V , x = 1 .. |V |

The UpdateBelief machine does not have a direct equivalent in the origi-
nal VP ASMs, because the original definition did not talk about states of Web
services. Since we have to update the VP’s belief of the progress of the Web
services in the system, the UpdateBelief machine has to be invoked at appro-
priate times during the execution of the Process machine.

4.1.3 Communication

In the previous section, we have introduced a mathematical definition of Web
services. In this section, we show how we represent communication between
different Web services. Since we now have to refer to Web services and their
variables in a global manner, we need to add a unique identification to each
such statement. We thus introduce two sets that uniquely identify states and
variables of specific Web services.

WSState := {wsId �→ wsState : wsId ∈ ID,wsState ∈ SwsId }
Variable := { (wsId , v) : wsId ∈ ID, v ∈ (INwsId ∪ OUTwsId) }

Correspondingly, we define a possible communication as a tuple of a globally
unique output variable of one Web service and a globally unique input variable
of another Web service.

VarAss := { ((wsId1, o), (wsId2, i)) : wsId1,wsId2 ∈ ID,

wsId1 
= wsId2, o ∈ OUTwsId1 , i ∈ INwsId2 }

Based on the Web service state and variable assignment definitions, we
now define a concrete communication as a copy rule: CopyRule := 〈S ,A〉 , S ⊆
WSState, A ⊆ VarAss. The following is an example for a copy rule stating to copy
the value of CustomerID from the User to the Head Quarter Web service when
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all Web services are in their initial state and the User Web service has started,
see [Fig. 6].

cps10 = ( { (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H,CustID)) })

As denoted, the execution of a copy rule corresponds to changing the states
of the variables involved. Since a copy rule contains multiple assignments of vari-
ables, it may triggers the further sending of multiple messages via the respective
SendReq

∗ ASMs. The effect of this behavior strongly corresponds with the
functioning of the SubProcessIterator machine defined in [Section 2.2].

SubProcessIterator
∗(rules ⊆ CopyRule) ≡ do forall (states, varAss) ∈ rules

if wsState(wsId1) = s1 and . . .
and wsState(wsId| states |) = s| states |
and varState(wsIdout1 , o1) = initialized and . . .
and varState(wsIdout| varAss | , o| varAss |) = initialized

and varState(wsIdin1 , i1) = undef and . . .
and varState(wsIdin| varAss | , i| varAss |) = undef then

do forall ((wsIdout, o), (wsIdin, i)) ∈ varAss
varState(wsIdin, i) := initialized

where
(wsIdk , sk ) ∈ states, k = 1 .. | states |
((wsIdoutn , on), (wsIdinn , in)), n = 1 .. | varAss |

4.1.4 Orchestration

In the former sections, we have presented mathematical models for Web ser-
vices and their communication. The alternating triggering of the SendReq

∗

and ReceiveAnsw
∗ abstract state machines is the orchestration of the respec-

tive set of Web services and thus the implementation of the Virtual Provider.
This functionality corresponds to the Process machine of [Section 2.2].

Process
∗(cg ∈ CompGoal,A ⊆ VarAss) ≡

choose {M : M ≡ UpdateBelief(wsId) ∨
M ≡ SubProcessIterator

∗(rules), wsId ∈ ids(cg),
rules = ReachCompGoal(cg ,A) }

M

Through the way we defined the copy rules and their execution, we ensure
that the behavior of Process

∗ resembles the processing of the seq/par-structure
introduced in [Section 2.2]. Firstly, a copy rule contains a set of variable as-
signments that may trigger multiple Web services. Thus, copy rules implement
parallel invocation of Web services. Secondly, only after all Web services have
responded, the next copy rule may fire. This is ensured via belief over the states
of the variables and Web services. Thus, copy rules implement sequencing of
the parallel Web service invocations. The only missing piece in the definition
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above is the actual creation of the copy rules. This will be done by the machine
ReachCompGoal which will be explained in the following section.

For completeness, we reformulate the VP module using the enriched
VP ASMs from this section. Please note that the ASMs ReceiveReq and
SendAnsw are missing in the new module definition below. The reason is that
we handle requestors the same way as providers. Thus, the functionalities of
ReceiveReq and SendAnsw are covered by ReceiveAnsw

∗ and SendReq
∗,

respectively.

MODULE VirtualProvider
∗(cg ∈ CompGoal,A ⊆ VarAss) ≡

choose {M : M ≡ Process
∗(cg ,A) ∨

M ≡ SendReq
∗(wsId) ∨ M ≡ ReceiveAnsw

∗(wsId),wsId ∈ ids(cg) }
M

4.2 VP Generator

[Fig. 7] shows the architecture of the VP generator. In the environment of a
service-oriented architecture, the inputs to the VP generator would be WSDL
files, an annotation of their states as well as the allowed variable assignments.
The transform blocks in the picture convert the inputs to the internal represen-
tations described in the former section. We do not detail the real-world repre-
sentation of variable assignments, because there is no standard for this to our
knowledge. In the following, we walk through the remaining components of our
composition system.

Figure 7: VP Generator Architecture.
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4.2.1 Repository

The central element of our algorithm is a repository to store the set of Web
services to be composed. The repository assigns a unique ID to each Web ser-
vice contained: Repository := 2ID×WebService. A repository should only include a
single requester. A requester is a Web service whose first action is sending an
output message. [Fig. 6] shows a set of Web services that make up an exemplary
repository. The User Web service acts as requester.

4.2.2 Define Composition Goal

The correctness of a composition can be defined based on the states that all
participating Web services can potentially reach in the end of the execution of
the orchestration. Such a set of states is called Goal. We differentiate between
primary goals (PrimGoal) and recovery goals (RecGoal). Both types of goals are
used to describe the requirements of a correct orchestration (CompGoal). We
define an orchestration to be correct if and only if it has the following properties.

Each execution results in a system state that is part of the composition goal.
There must be a theoretic execution the leads to a system state defined as
one of the primary goals.

By this definition, we ensure transactionality of the Web services. One thus
has the possibility to specify that either all Web services have to reach a suc-
cessful state or no Web service must reach a successful state. For our student
transfer example it would be bad if the Old School successfully unregistered a
student, but the New School failed in registering the student.

CompGoal := 〈PrimGoal, RecGoal〉
PrimGoal ⊆ Goal . . . set of primary goals

RecGoal ⊆ Goal . . . set of recovery goals

Goal := 2{wsId �→wsState: wsId∈ID,wsState∈SwsId }

We illustrate the goal definition by giving possible primary and recovery goals
for the Web services of our example repository in [Tab. 1].

4.2.3 Composer

This section describes the composition algorithm in detail by a set of ASMs.
Each ASM represents a module of the algorithm. The interaction of all modules
is depicted in [Fig. 8]. The following sections concentrate on the dividing part,
the correctness part, and the main module of the core composition part of [Fig. 8].
[Section 4.2.3.1] reduces the problem of composing complex Web services to the
composition of smaller units. [Section 4.2.3.2] explains how our algorithm ensures
a correct composition by properly ordering the composition of the smaller units.
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ID User OldSchool HeadQuarter NewSchool

pg1 done done done done

rg8 failed init failed init
rg10 failed failed failed init
rg12 failed cancelled failed init
rg16 failed failed cancelled init
rg26 failed init failed failed
rg28 failed failed failed failed
rg30 failed cancelled failed failed
rg34 failed failed cancelled failed
rg36 failed cancelled cancelled failed

Table 1: Exemplary goals.

The smaller units are then composed by the core of our composition algorithm.
[Section 4.2.3.3] gives a high-level overview of the core composition algorithm.

Figure 8: ASM Modules of the composer.

4.2.3.1 Dividing the composition problem.

In this section, we show how to break down the composition problem into smaller
pieces. The definition of these pieces bases on the different potential execution
paths through the state transitions of the single Web services in reaching their
final states. We call the set consisting of exactly one potential execution path of
each participating Web service a Variant := 2{wsId �→Transs: wsId∈ID,Transs⊆STwsId }.
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The ASM starting the composition is called ReachCompGoal. The purpose
of the ReachCompGoal machine is to initialize our composition algorithm.
First, is identifies possible Web service executions (CalcVariants) and hands
them over to ReachGoal. Second, it defines that the composition can only
be successful if at least one primary goal can be achieved by providing the
primary goals to ReachGoal. It also ensures that every possible execution of
the resulting copy rules ends in one of the composition goals (CompGoal). If it
is not possible to generate a correct orchestration for any of the primary goals,
the result is the empty set. Third, since ReachGoal is invoked recursively
for some kind of simulation that is introduced later on, we need to keep track
of the current state of the simulation and thus introduce a simulation state:
SimState := 2WSState. The computation is started by calling ReachGoal with
the initial states of all Web services as a starting point (initialSs).

4.2.3.2 Computing correct orchestrations.

For one variant, the creation of copy rules can be achieved by our core compo-
sition algorithm (ReachVariant) which is explained in the following section.
The copy rules created by ReachVariant ensure that the given goal can be
reached in this variant. Due to potential non-deterministic behavior of the par-
ticipating Web services, it may happen that the execution of the orchestration
leaves one of the Web services’ path along the variant, or even leave the path
to its final state that is part of the defined goal. The result of our composition
has to ensure that in such a case an alternative path is taken that leads to any
other desired final state. This is ensured by Verifying. With this high-level
understanding, we first go in detail through the implementation of ReachGoal.
Second, we explain Verifying and third, we detail the simulation of the created
copy rules that is part of Verifying.

Reach goal. The aim of ReachGoal is to return copy rules ensuring a cor-
rect orchestration for at least one of the given goals only considering the given
variants (vnts). For this, it first identifies all variants (goalVnt) that lead to
the goals (CalcVariants). Second, it tries to compose each of the variants
(ReachVariant). This results in some copy rules (regCopyRules). Third, the
algorithm creates copy rules (altCopyRules) for each non-deterministic branch in
the theoretic execution of regCopyRules (Verifying). The created copy rules ei-
ther provide a correct orchestration of that branch, or Verifying fails (altFail).
If a correct orchestration could be generated for at least one variant in the end,
the corresponding copy rules (oneVariantCopyRules) are finally returned.

Verifying. Through ReachVariant in ReachGoal, we ensure that a com-
position can be generated that steers the execution along the specific variant.
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However, this path of execution may depend on the non-deterministic behav-
ior of other Web services that cause a deviation from this path. For this case,
Verifying ensures that there exists a successful composition for each non-
deterministically deviating path. The result of Verifying is either the set of
copy rules that ensure the successful composition, or a notification of failure if
no successful composition exists for all non-deterministic deviations.

4.2.3.3 Core composition algorithm overview.

In this section, we give a high-level explanation of our core composition algo-
rithm. Our core composition algorithm works iteratively from the final states
of each Web service to their initial states. Therefore, we need to keep track
of the current state of the backchaining and thus introduce a planning state:
PlState := 2WSState×{ IN ,OUT }. The composition algorithm takes the following in-
puts.

A variant of the possible Web service executions, i. e., a specific execution
path for each participating Web service.
An initial planning state, derived from the given goal.
A set of possible variable assignments.

The general idea of the composition is to create copy rules for matching
outputs and inputs of different Web services in the current planning state (ps)
and to add them to the set copyRules (CreateCopyRule). After this has been
done, the planning state will proceed toward the initial states of the Web services
(CreateNewPlanningState) and the algorithm reiterates. The composition
of a variant is aborted if no valid composition could be achieved (fail), the
planning state consists of only initial states (done) or the composition came to
a dead end, i. e., the planning state remained the same for two iterations. The
latter case may occur if not all output variables of a service are consumed by
other services. During composition, such a Web service’s planning state will not
proceed any further toward its initial state.

Further detail can be found in [Lemcke and Friesen 2007]. We rather stick
with this high-level description and provide an example in the next section.

4.2.4 Example

The first call of ReachVariant is triggered by ReachCompGoal. The result
is a set of copy rules that may lead the orchestration of the exemplary Web
services to the primary goal pg1 as defined above.

cpg1 = ( { (U, requesting), (O, found), (H, found), (N, done) },
{ ((N, UpdRegInfo), (U, UpdRegInfo)), ((H, Customer), (O, StudID)),

((H,Customer), (O, SchoolID)), ((N,NewStudID), (H, NewStudID)),

((U,NewSchoolID), (H, NewSchoolID)) });
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cps8 = ( { (U, requesting), (O, found), (H, found), (N, init) },
{ ((O, StudRegInfo), (N,StudRegInfo)),

((U, NewSchoolID), (N,NewSchoolID)) });
cps9 = ( { (U, requesting), (O, init), (H, found), (N, init) },

{ ((H,Customer), (O, StudID)), ((H, Customer), (O, SchoolID)) });
cps10 = ( { (U, requesting), (O, init), (H, init), (N, init) },

{ ((U,CustID), (H, CustID)) })
Now, we simulate the execution of the copy rules above. We find out that

the first non-determinism occurs in Web service H after executing copyRuleps10 .
The option is { (U, requesting), (O, init), (H, failed), (N, init) }. Subsequently, the
reachable, allowed goals are rg8, rg10, rg12, rg26, rg28 and rg30.

allowedGoal1 = rg8 = { (U, failed), (O, init), (H, failed), (N, init) }
allowedGoal2 = rg10 = { (U, failed), (O, failed), (H, failed), (N, init) }
allowedGoal3 = rg12 = { (U, failed), (O, cancelled), (H, failed), (N, init) }
allowedGoal4 = rg26 = { (U, failed), (O, init), (H, failed), (N, failed) }
allowedGoal5 = rg28 = { (U, failed), (O, failed), (H, failed), (N, failed) }
allowedGoal6 = rg30 = { (U, failed), (O, cancelled), (H, failed), (N, failed) }

For a successful composition, it is required that at least one variant for each
of the options can be successfully composed. Since the behavior of each Web
service is represented as a tree in our example, the number of goals directly
determines the number of variants. For our case, this means that at least one of
the allowed goals must be successfully composable. Our algorithm finds out that
composition might be possible only for rg8. We list the copy rules below.

crg8 = ( { (U, requesting), (O, init), (H, failed), (N, init) },
{ ((H, Fail), (U,Fail)) });

cps12 = ( { (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H, CustID)) })

The simulation of the copy rules above reveals no more non-determinism.
Thus, we can continue our simulation of the original copy rules. The next non-
deterministic option we find is { (U, requesting), (O, failed), (H, found), (N, init) }.
The allowed, reachable goals are rg16 and rg34.

allowedGoal7 = rg16 = { (U, failed), (O, failed), (H, cancelled), (N, init) }
allowedGoal8 = rg34 = { (U, failed), (O, failed), (H, cancelled), (N, failed) }

From the goals, only rg16 can be reached. We give the copy rules below.

crg16 = ( { (U, requesting), (O, failed), (H, found), (N, init) },
{ ((O, Fail), (U,Fail)) });

cps14 = ( { (U, requesting), (O, init), (H, found), (N, init) },
{ ((H, Customer), (O,SchoolID)), ((H, Customer), (O,StudID)) });
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cps15 = ( { (U, requesting), (O, init), (H, init), (N, init) },
{ ((U, CustID), (H,CustID)) })

Simulating the copy rules above yields no more non-determinism. Thus,
we continue the simulation of the original copy rules and find the last non-
deterministic option ({ (U, requesting), (O, found), (H, found), (N, failed) }). The
only reachable, allowed goal is rg36. We give the copy rules resulting from its
composition below. The copy rules for this option do not contain any new non-
determinism.

allowedGoal9 = rg36 = { (U, failed), (O, cancelled), (H, cancelled), (N, failed) }

crg36 = ( { (U, requesting), (O, found), (H, found), (N, failed) },
{ ((N,Fail), (U, Fail)) });

cps17 = ( { (U, requesting), (O, found), (H, found), (N, init) },
{ ((O, StudRegInfo), (N,StudRegInfo)),

((U, NewSchoolID), (N,NewSchoolID)) });
cps18 = ( { (U, requesting), (O, init), (H, found), (N, init) },

{ ((H,Customer), (O, SchoolID)), ((H,Customer), (O, StudID)) });
cps19 = ( { (U, requesting), (O, init), (H, init), (N, init) },

{ ((U,CustID), (H, CustID)) })

At this stage, our algorithm has ensured that the primary goal for the ex-
ample (pg1) could be reached and there exist deterministic resolutions for each
non-deterministic deviation from the intended execution path to an allowed re-
covery goal. Therefore we can claim that the example is successfully composable.
The copy rules our algorithm returns contain the copy rules for reaching the
primary goal and all non-deterministic deviations from the intended path, i. e.,
all copy rules shown in this section.

5 Related Work

The innovation of our approach lies in providing a coherent framework to specify
service mediation, service discovery, and service composition. The idea to use the
ASM modeling framework for providing a high-level specification of service medi-
ators has been stimulated by work carried out in the EU-funded research project
DIP.1 There, ASMs had been used to describe both WSMO choreographies and
WSMO orchestrations, but the technical report [Scicluna et al. 2006] actually
did not specify how such a choreography would be linked up to a corresponding
orchestration other than by sharing some states. Although perfectly legal from

1 See http://dip.semanticweb.org
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a conceptual point of view, we felt that this coupling was actually too loose and
that a more rigid model would be needed, especially when it comes to (formally)
proving system properties. Further investigation of the problem revealed that we
were actually looking for a model that could be used to describe service behavior
mediators, i. e., mediation on the message flow level.

Regarding the distributed model for semantic service discovery, we can now
find publications that describe a similar architectural approach [see Arabshian
and Schulzrinne 2006, Bianchini et al. 2008], although none of them provides a
formal execution model.

It turns out that service mediation and service composition can be seen as
two perspectives on the same task. The task to map a requested interface with
multiple provided interfaces is called service mediation. The task to compile an
orchestration of a set of provided interfaces with certain properties that represent
the added value of the generated application is called service composition. In our
case, following a specific requested interface is one of those properties.

In this respect, approaches to service mediation and service composition are
related to our service mediation formalization and VP generator. The type of
service mediation and composition we pursue most appropriately falls under the
category of workflow composition as we observe complex behavioral requirements
of the provided and requested interfaces. Related approaches include work per-
formed using pi-calculus, e.g. [Puhlmann 2006], others use merged finite state
machines [see Küster et al. 2007] or similar representations. These approaches
on the one hand concentrate on merging workflows but have on the other hand
no facility for exception management or complex goal definition. Consequently,
our approach is most related to [Pistore et al. 2005] which uses model checking
on a finite state representation of joined abstract BPEL models. The drawback
of this solution is that its computation is in the range of seconds to minutes due
to the use of general purpose tools. Our approach in contrast does not compute
a joined finite state machine, but operates on the ASM specification directly.
Thus, we can reach better performance in the range of fractions or a few seconds
by avoiding the state space explosion.

We would like to note that process composition as performed utilizing AI
planning mostly assumes atomic services—i. e. without complex behavioral re-
quirement [see Rao and Su 2004]. The work carried out in schema matching [see
Shvaiko and Euzenat 2005] is somewhat orthogonal, yet complementary, to our
approach as it is concerned with relating data formats of every two participants
to each other. We abstract from this in two ways. (1) When presenting our for-
mal model of service mediation, the VPs’ implementation may indeed contain
some code mapping data structures to one another. Our formalization rather fo-
cuses on the sec/par structure of the communication protocol. (2) When talking
about service composition, we have to assign matching input to output variables
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as one of the prerequisites to start the automatic composer. This however is not
concerned with the actual data structure or values, but rather concentrates on
the fact that data from some variable A has to be assigned to some variable B
on the conceptual level. The actual copying of the run-time values from A to B
on the technical level may indeed include a complex value mapping which is out
of scope of our work, but addressed, e. g., in [Drumm et al. 2007].

6 Conclusion

In this paper, we have presented our work on formal models for protocol me-
diation, service discovery, and service composition generating a transactional
execution plan.

Each of our technologies individually extends the original service-oriented
architecture with features important to real-world applications. (a) Our formal
model for mediation allows to theoretically prove that a requested interface can
be implemented by the provided interfaces [see Altenhofen et al. 2006]. (b) Our
approach for service discovery allows to distribute the discovery transparently to
the traditional discovery request and provisioning interfaces. This is done by im-
plementing the traditional discovery request interface via a VP that distributes
the request to multiple instances of the traditional discovery provisioning inter-
face. We thus seamlessly integrate with existing discovery infrastructure. (c) Our
VP generator is capable of creating an orchestration that links requested and
provided interfaces based on user-defined transactional requirements.

The combination of our technologies has the potential to implement compli-
cated, desirable features of service-oriented architectures. (a) With the subse-
quent invocation of discovery and composition, we can prove whether there is an
orchestration for a requested interface based on the discovered services. For this,
we would have to automate the goal definition by upfront naming successful and
unsuccessful states in our Web service specifications that then would be used to
generate potential primary and recovery goals. (b) If we interlink the compo-
sition with discovery the other way around, we are able to implement dynamic
discovery of provider services at the runtime of our VP, as this is proposed in
some semantic Web use cases.

In addition to the integration of our techniques as described, future work on
the individual components may include the following. (a) Our VP generator
allows to define variable assignments that involve complex message transforma-
tions to be considered during the composition process. In a real implementation
of our approach, generic mediators performing those transformations should be
known upfront and incorporated into the seq/par-structure the VP generator
creates. This allows for an extreme flexibility in the services that can be or-
chestrated to fulfill a requested interface. (b) In the case that no orchestration
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could be generated out of the given provided interfaces for the given requested
interface, we could extend the VP generator to propose missing mediator inter-
faces necessary to complete the composition. The mediation interfaces would in
a second step have to be implemented by a human programmer.
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