
A Metamodel-based Language and a Simulation Engine

for Abstract State Machines

Angelo Gargantini
(Dip. di Ing. Informatica e Metodi Matematici - Università di Bergamo, Italy

angelo.gargantini@unibg.it)

Elvinia Riccobene and Patrizia Scandurra
(Dip. di Tecnologie dell’Informazione - Università di Milano, Italy

{riccobene, scandurra}@dti.unimi.it)

Abstract : In this paper, we present a concrete textual notation, called AsmetaL,
and a general-purpose simulation engine, called AsmetaS, for Abstract State Machine
(ASM) specifications. They have been developed as part of the ASMETA (ASMs
mETAmodelling) toolset, which is a set of tools for ASMs based on the metamod-
elling approach of the Model-driven Engineering. We briefly present the ASMETA
framework, and we discuss how the language and the simulator have been developed
exploiting the advantages offered by the metamodelling approach. We introduce the
language AsmetaL used to write ASM specifications, and we provide the AsmetaL
encoding of ASM specifications of increasing complexity. We explain the AsmetaS ar-
chitecture, its kernel engine, and how the simulator works within the ASMETA tool
set. We discuss the features currently supported by the simulator and how it has been
validated.

Key Words: Abstract State Machines, ASM language, ASM simulator, Model-driven
Engineering, Metamodelling.

Category: D.2.1, D.2.6, F.3.1, B.2

1 Introduction

Abstract State Machines (ASMs) [Börger and Stärk, 2003] are nowadays known
as a formal method successfully employed as system engineering method that
guides the development of complex systems seamlessly from requirements cap-
ture to their implementation. The increasing application of the ASM formal
method in academic and industrial projects has caused a rapid development
of tools around ASMs of various complexity and goals: tools for mechanically
verifying properties using theorem provers or model checkers [Winter, 1997,
Schellhorn and Ahrendt, 1997, Gargantini and Riccobene, 2000], and execution
engines for simulation and testing purposes [ASML, 2001, Gargantini et al., 2003,
Schmid, 2001, Ouimet and Lundqvist, 2007, Castillo, 2001, CoreAsm, 2008].

Since each tool usually covers well only one aspect of the whole system de-
velopment process, at different steps developers would like to switch tools while
reusing information already entered about their models. However, each tool in-
troduces a different syntax strictly depending on the implementation environ-

Journal of Universal Computer Science, vol. 14, no. 12 (2008), 1949-1983
submitted: 1/9/07, accepted: 1/6/08, appeared: 28/6/08 © J.UCS

ment, adopts its own internal representation of ASM models, and provides pro-
prietary constructs which extend the basic ASM mathematical concepts. ASM
tools are therefore loosely coupled and their interoperability is hard to accom-
plish, so preventing ASMs from being used in an efficient and tool supported
manner during the system development life-cycle. Furthermore, there is no agree-
ment around a common standard and open ASM language, and most ASM re-
searchers still use their own ASM notation, normally not defined by a grammar
but in terms of mathematical concepts. Moreover, due to the lack of abstractness
of the tool languages, the process of encoding ASM models is also not always
straightforward and natural, and one needs to map mathematical concepts into
types and structures provided by the target language.

To achieve the goals of developing a unified abstract notation for ASMs, a
notation independent from any specific implementation syntax and allowing a
more direct encoding of the ASM mathematical concepts and constructs, and
developing a general framework for a wide interoperability and integration of tools
around ASMs, we exploited the metamodelling approach suggested by the Model-
Driven Engineering (MDE) [Bézivin, 2004, Kent, 2002, Nytun et al., 2006].

Initially [Riccobene and Scandurra, 2004], we aimed only at defining a stan-
dard interchange format for a systematic integration of a number of loosely-
coupled ASM tools by taking advantage of the metamodelling approach, which
provides standard XML-based interchange formats – like the Object Manage-
ment Group [OMG, 2008] standard XML Metadata Interchange (XMI) – for
metamodel-based languages. We therefore defined the Abstract State Machine
Metamodel (AsmM) as abstract syntax description of a language for ASMs, using
the OMG metamodelling framework. From the AsmM metamodel, we obtained
in a generative manner (i.e. automatically) several artifacts (an interchange for-
mat, APIs, etc..) for the creation, storage, interchange, access and manipulation
of ASM models. The AsmM and the combination of these language artifacts lead
to an instantiation of the OMG metamodelling framework for the ASM appli-
cation domain, the ASM mETAmodelling framework (ASMETA) that provides
a global infrastructure for the interoperability of ASM tools (new and existing
ones). Then, we realized that a developer who is interested in developing a new
tool for ASMs can completely base, with minimal effort, the tool development
on the ASMETA framework and exploit all technologies provided by ASMETA
in terms of specification language, abstract storage (i.e. the model repository),
standard model access and manipulation APIs, interchange format, etc.

In this paper, we present a concrete textual notation, called AsmetaL, and
a general-purpose simulation engine, called AsmetaS, for ASM specifications.
Both are based on the ASMETA framework. This paper is an extended version
of the work presented in [Gargantini et al., 2007a]. We here emphasize the de-
scription of the AsmetaL language, and, through examples of ASM specifications

1950 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

of increasing complexity, we show the leanness of the language and the simplic-
ity of encoding mathematical ASM models in AsmetaL. We then introduce the
architecture of AsmetaS, which has been developed as a simulator of AsmetaL
programs. We describe the execution engine of the simulator, how AsmetaS
works within the ASMETA tool set, and how the simulator has been validated.
With respect to the previous work in [Gargantini et al., 2007a], we here discuss
in much more detail the features supported by the simulator, how they allow
a simulator customization, how they can be exploited to speed-up the model
execution, and, by concrete examples, we also discuss how they can be used for
model validation. For validation purposes, we also consider the clustering algo-
rithm as described in terms of ASMs in [Jensen et al., 2007]. This algorithm was
taken by the authors in [Jensen et al., 2007] as case study to compare different
ASM specifications in AsmL, CoreASM and Java.

The paper is organized as follows. Sect. 2 presents the overall development
process of the ASMETA framework and the ASMETA tool set. Sect. 3 provides a
brief description of the AsmM metamodel. Sect. 4 presents the AsmetaL language
and reports some examples of ASM models in AsmetaL. Sect. 5 describes the
simulator and its features. Related and future work are given in sections 6 and
7, respectively.

2 The ASMETA framework

ASMETA is an instantiation of the OMG metamodelling framework for the
ASM application domain. It has been obtained by applying to the AsmM meta-
model standard or proprietary bridges (or projections) towards other technical
spaces [Kurtev et al., 2002], namely working contexts with a set of associated
concepts, knowledge, tools, skills, and possibilities.

In the context of (software) language engineering, metamodelling is to be in-
tended as a way to define the abstract syntax of a language or formalism in terms
of a (usually object-oriented) model, called metamodel. A metamodel-based ab-
stract syntax definition has the great advantage of being suitable to derive from
the same metamodel in a generative manner (through standard mappings or pro-
jections) different alternative concrete notations, textual or graphical or both,
for various scopes like graphical rendering, model interchange, standard encod-
ing in programming languages, and so on. Therefore, a metamodel could serve
as standard interlingua for a specific domain of interest and it allows settling
a flexible object-oriented infrastructure on which tools development and their
interoperability should be based.

Furthermore, metamodelling allows settling a “global framework” to enable
otherwise dissimilar languages of possibly different domains to be used and coor-
dinated in an interoperable manner in various technical spaces. Indeed, it allows

1951Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

the establishment of precise bridges among the metamodels of these different
domain-specific languages to automatically execute model transformations.

In the remainder of this section, we explain the process of developing the
ASMETA framework and then we briefly present a set of tools – the ASMETA
toolset – around ASMs developed and/or integrated by exploiting the ASMETA
facilities (in terms of derivatives, libraries, interchange format, APIs, etc.).

2.1 The ASMETA development process

The overall process of developing a tool set around the ASM formal method
exploiting the metamodelling approach consisted of the following steps:

1. Choice of a metamodelling framework and supporting technologies;
2. Definition of the metamodel, AsmM, for ASM concepts;
3. Metamodel derivatives development as additional facilities to handle ASM

models:
(a) an XMI-based interchange syntax for serializing ASM models;
(b) APIs (like the Sun Java Metadata Interface (JMI) technology [JMI, 2002])

to access and manipulate ASM models in a model repository;
(c) one or more ASM concrete syntaxes (textual, graphical, or mixed) for

human-use with their associated parsers for the conformance-checking of
ASM models against the AsmM metamodel;

4. Development of tools based on the chosen metamodelling framework and of
software artifacts to integrate existing ASM tools with the metamodelling
framework;

5. Validation of the AsmM metamodel and its derivatives.

Step 1. – We first chose the OMG metamodelling platform even though many
other implementations of the MDE principles exist, like the AMMA metamod-
elling platform [AMMA, 2005], the Xactium XMF Mosaic [XMF Mosaic, 2007]
initiative, the Microsoft Software Factories [Microsoft DSL Tools, 2005], the Mo-
del integrated Computing (MIC) [Sztipanovits and Karsai, 1997] and the Generic
Modeling Environment [GME, 2006] for domain-specific modelling, etc. We use
the OMG’s Meta Object Facility (MOF) as meta-language, i.e. as language to
define metamodels. In particular, we adopt the MOF 1.4 MDR (Model Driven
Repository) of NetBeans [MDR, 2003] as model repository, the Poseidon UML
tool as metamodel editor, the XMI 1.2 format and JMIs as generated by the
MDR framework, and the OCL support provided by the OCLE [OCLE, 2005]1

to define and validate the OCL constraints defined over the metamodel.
1 Note that we had to use two different tools (one for the metamodel and one for the

OCL constraints) because current UML tools present several limitations regarding
the OCL support [Cabot and Teniente, 2006].

1952 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

It should be noted that thanks to well-mastered model transformations, like
the ATL-KM3 plugin [Jouault et al., 2006] which allows to move forward and
backward in the EMF and MOF modelling spaces, the choice of a specific meta-
modelling framework does not prevent the use of models in other different mod-
elling spaces.

Step 2. and step 3. lead to the instantiation of the OMG metamodelling
framework for the ASM domain, ASMETA. We started by defining the AsmM
metamodel (see Sect. 3), and then we automatically derived from the meta-
model some additional facilities to handle models: an XMI (XML Metadata
Interchange) [OMG, 2008] interchange format for ASM models; JMI (Java Meta-
data Interfaces) APIs for the creation, storage, access and manipulation of ASM
models in a MOF-based model repository; a concrete textual notation, called
AsmetaL (ASMETA Language) (see Sect. 4), and its parser to effectively edit
ASM models conforming to the AsmM metamodel.

Details on the development of the AsmM metamodel and its derivatives using
the OMG framework can be found in [Gargantini et al., 2006b, AsmM, 2006].
AsmM and ASMETA are also available in the meta-environments AMMA/KM3
[Jouault and Bézivin, 2006] and in EMF/Ecore [EMF, 2008]. This allows us to
look at the ASMETA framework as a family of metamodels.

Step 4. resulted in the ASMETA toolset (see Sect. 2.2) and software artifacts
to integrate external and existing tools [Gargantini et al., 2007b].

Step 5. – The validation process applied both to the metamodel and to its
derivatives. Since the metamodel represents the abstract notation of a specifi-
cation language, one may validate the metamodel by validating the expressive
power of languages derived from the metamodel. We validated the AsmM meta-
model and the AsmetaL notation to asses their usability and capability to encode
ASM models, namely to test if AsmetaL is suitable to encode non trivial ASM
specifications and if the encoding process of mathematical models is natural and
straightforward. To this purpose, we have asked a non ASM expert for porting
some specifications from [Börger and Stärk, 2003] and other ASM case studies
to AsmetaL. The task was completed within three man-months, by encoding
almost all ASM specifications provided in [Börger and Stärk, 2003]. The encod-
ing of ASM models was really straightforward, since the AsmM metamodel and,
therefore, the AsmetaL language, have been designed to represent ASM concepts
and constructs as described in [Börger and Stärk, 2003] balancing expressiveness
and simplicity. Up to now we have about 150 AsmetaL specifications (including
those for testing purposes) available at the ASMETA website [AsmM, 2006].

The validation of the metamodel derivatives consisted of the evaluation of
their capability to provide the desired global infrastructure for the development
of new tools, the integration of existing tools, and the tool interoperability in
general. The development of the simulator was a case study toward the validation

1953Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

of the metamodel derivatives. In [Gargantini et al., 2006b] details can be found
on how the ASM tools interoperability is achieved by the ASMETA.

The overall process turned out to be iterative: often we had to come back to
previous steps and make corrections.

2.2 The ASMETA tool set

Figure 1: The ASMETA tool set

Fig. 1 shows our plan of the ASMETA tool set which: (a) provides an in-
tuitive modelling notation having rigourous syntax and semantics, and provides
a graphical view of the model; (b) allows modelling techniques which facilitate
the use of the ASMs in many stages of the development process and which in-
tegrates dynamic (operational) and static (declarative) descriptions; (c) enables
analysis techniques that combine validation (by simulation and testing) and ver-
ification (by model checking or theorem proving) methods at any desired level
of detail; and (d) supports an open and flexible architecture to make easier the
development of new tools and the integration with other existing tools.

The ASMETA tool set consists of the following components (those visualized
in gray are still under development).

– The AsmM metamodel, the abstract syntax, is a complete meta-level
representation of ASMs concepts based on the OMG’s MOF 1.4 [MOF, 2002]
as supported by the MDR environment. Currently, AsmM is also publicly avail-
able – see [AsmM, 2006] – as expressed in the meta-languages AMMA/KM3
[Jouault and Bézivin, 2006] and in EMF/Ecore [EMF, 2008].Further technical
details on AsmM are provided in Sect. 3.

– The AsmM OCL checker, used to check if a given model is well-formed
or not with respect to the OCL constraints defined over the AsmM metamodel.

1954 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

– The AsmM Java Metadata Interfaces (JMIs) to manage the creation,
storage, access, discovery, and exchange of ASM models (either at design time
or at runtime) in terms of Java objects. They have been generated automat-
ically from the AsmM metamodel by using the NetBeans MDR framework
[MDR, 2003].

– The AsmM XMI format which is XMI 1.2 compliant and is provided
in terms of an XML Document Type Definition (DTD) automatically generated
from the AsmM by using MDR, for the interchange of ASM models among tools
by XML serialization.

– The AsmetaL (ASMETA Language) textual notation for the AsmM, pro-
vided in terms of an EBNF (extended Backus-Naur Form) grammar generated
from the AsmM (the abstract syntax) as a concrete syntax to be used by mod-
elers to effectively write ASM models in a textual form.

– A text-to-model compiler, AsmetaLc, to parse ASM models written in
the AsmetaL notation, check for their consistency with respect to the OCL
constraints of the metamodel, and translate information about concrete models
into AsmM instances in a MOF-based repository by using the AsmM JMIs.

– A standard library, namely a declarative collection of predefined ASM
domains (basic domains for primitive data values like Boolean, Natural, Integer,
Real, etc., and structured domains over other domains like finite sets, sequences,
bags, maps and cartesian products) and functions implementing a set of canon-
ical operations on domains.

– A graphical notation, generated from the AsmM as an alternative con-
crete syntax to be used by modelers to effectively write ASM models in a graph-
ical form. We have been investigating for this scope, the Eclipse Graphical Mod-
eling Framework (GMF) technology [GMF, 2008], which provides a generative
component and runtime infrastructure for developing graphical editors based on
EMF/GEF [EMF, 2008], and the MIC/GME [GME, 2006] which offers similar
features. Both frameworks follow a novel approach, which suggests to derive
modelling tools, like graphical model editors, from metamodels.

– The AsmetaS (ASMETA Simulator) simulator to make AsmM models ex-
ecutable; essentially, it is an interpreter which navigates through a model reposi-
tory where ASM specifications are stored (as instances of the AsmM metamodel)
to make its computations.

– The ATGT (ASM Tests Generation Tool) [ATGT, 2008], an existing tool
for test case generation from models, which has been made AsmM-compliant.

– The AsmetaV (ASMETA validator) for scenario-based validation of ASM
models. It is based on the AsmetaS simulator and on the Avalla (ASMETA
Validation Language) language. This last is another metamodel-based language
which provides constructs to express execution scenarios in an algorithmic way
as interaction sequences consisting of actions committed by the design actor.

1955Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

– The AsmM-to-CoreAsm and AsmM-to-SAL components which export
ASMETA models to the CoreASM [CoreAsm, 2008] simulator and the SAL ver-
ifier [SAL, 2008].

– A graphical front-end called ASMEE (ASM Eclipse Environment) which
acts as IDE to edit, manipulate, and export ASM models by using all tools/ar-
tifacts listed above. This environment is implemented as an Eclipse plug-in.

All the above artifacts/tools are classified in: generated, based, and integrated.
Generated artifacts/tools are derivatives obtained (semi-)automatically by ap-
plying appropriate MOF projections to the technical spaces Javaware, XMLware,
and grammarware. Based artifacts/tools are those developed exploiting the AS-
META environment and related derivatives; an example of such a tool is the
simulator (see Sect. 5). Integrated artifacts/tools are external and existing tools
that are connected to the ASMETA environment.

All available material on the ASMETA tool set (including source code, bina-
ries, documentation and a great variety of ASM specifications) can be found in
[AsmM, 2006], under GNU General Public License (GPL).

3 The AsmM metamodel

The AsmM metamodel was developed in a modular and bottom-up way. We
started separating the ASM static part represented by the state, namely domains,
functions and terms, from the dynamic part represented by the transition system,
namely the ASM rules. Then, we proceeded to model Basic ASMs, Turbo ASMs,
and multi-Agent ASMs, so reflecting the natural classification of ASMs.

Metamodelling representation results into class diagrams developed using the
MOF modelling constructs (classes, associations, generalization relationships,
packages, etc.). Each class is also equipped with a set of relevant constraints,
OCL invariants written to fix how to meaningful connect an instance of a con-
struct to other instances, whenever this cannot be directly derived from the
class diagrams. The complete AsmM metamodel is organized in one package
called ASMETA containing 115 classes, 114 associations, and 150 OCL class in-
variants, approximatively. The ASMETA package is further divided into four pack-
ages as shown in Fig. 2. Each package covers different aspects of the ASMs. The
dashed gray ovals in Fig. 2 denote packages representing the notions of State
and Transition System, respectively. The Structure package defines architec-
tural constructs (modules and machines) required to specify the backbone of an
ASM model. The Definitions package contains all basic constructs (functions,
domains, constraints, rule declarations, etc..) which characterize algebraic spec-
ifications. The Terms package provides all kinds of syntactic expressions which
can be evaluated in a state of an ASM. The TransitionRules package contains
all possible transition rules schemes of Basic and Turbo ASMs. All derived tran-

1956 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

sition rules are contained in the DerivedTransitionRules package. All relations
between packages are of type uses.

Figure 2: Package structure of the AsmM metamodel

We present here only a very small fragment of the AsmM whose complete
description can be found in [Gargantini et al., 2006b, AsmM, 2006].

Fig. 3 shows the backbone of an ASM. An instance of the root class Asm

represents an entire ASM specification. According to the working definition of
an ASM model given in [Börger and Stärk, 2003], a basic ASM has a name and
is defined by a Header (to establish the signature), a Body (to define domains,
functions, and rules), a main rule, and a set of initial states (instances of the
Initialization class). All possible initial states are linked to an ASM by the
association end initialState and one initial state is elected as default (see the
association end defaultInitialState).

ASM rule constructors are represented by subclasses of the class Rule . Fig.
4 shows a subset of basic forms of a transition rule under the class hierarchy
rooted by the class BasicRule : update rule, conditional rule, skip, do in parallel
(block rule), extend, etc.

To define the semantics of the metamodel, we established a semantic map-
ping from AsmM to a semantic domain where AsmM constructs take their
meaning. The semantic domain is the first- order logic extended with a logic
for function updates and for transition rule constructors formally defined in
[Börger and Stärk, 2003]. The semantic mapping relating syntactic AsmM con-

1957Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 3: Backbone

Figure 4: Basic rule forms (a subset)

1958 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

cepts to those of the semantic domain has been implemented to develop the
AsmetaS interpreter.

4 The AsmetaL Language

The ASMETA Language (or AsmetaL) consists of four sub-languages reflecting
the packages of the ASM matamodel: the structural language which provides the
constructs describing the structure of an ASM, the definitional language which
provides the notation to define basic ASM elements such as functions, domains,
rules, and axioms, the language of terms to represent syntactic expressions to be
evaluated in an ASM state, and the language of rules which provides a notation
to specify the transition rule schemes of an ASM.

AsmetaL is a metamodel-based language: it has been defined through a MOF-
to-grammar mapping applied to the AsmM metamodel to derive a concrete tex-
tual syntax compliant to the metamodel. To this goal, we initially investigated
the use of tools like HUTN (Human Usable Textual Notation) [HUTN, 2004] or
Anti- Yacc [Hearnden et al., 2002] which are capable of generating text gram-
mars from specific MOF-based repositories. Nevertheless, we decided not to use
them since they do not permit a detailed customization of the generated language
and they provide concrete notations merely suitable for object-oriented lan-
guages. We defined [Gargantini et al., 2006a], instead, general rules on how to de-
rive a context-free EBNF (Extended Backus-Naur Form) grammar from a MOF-
compliant metamodel, and we use these mapping rules to derive an EBNF gram-
mar from the AsmM. The AsmetaL textual notation is the resulting language. It
is completely independent from any specific platform and allows a natural and
straightforward encoding of ASM models according to the AsmM metamodel
(the abstract syntax). There are better MOF-to-grammar tools now, like xText
[Efftinge, 2006] of OpenArchitectureWare or TCS of AMMA [AMMA, 2005],
which we may consider to adopt in the future.

A detailed description of the set of mapping rules from MOF to EBNF that we
adopted to define the AsmetaL notation can be found in [Gargantini et al., 2006a].
Essentially, a class C is always mapped to a non terminal symbol C. User-defined
keywords – optional and chosen depending on how one wants the target tex-
tual notation to appear – delimit the expression with symbols in the derivation
rule for C. The expression represents the actual content of the class and is de-
termined by the full descriptor2 of the class according to the other rules for
mapping attributes, association ends, generalization relationships, etc.. As this
mapping is general enough, the same transformation rules have been reused (op-
portunely adapted) for the EMF-to-BNF mapping for the ASMETA porting to
the Eclipse/EMF framework.
2 A full descriptor is the full description of an object (all attributes, associations, etc.)

including features inherited from ancestor classes.

1959Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Due to the lack of space, we report below (see Listings 1 and 2) only some
fragments3 of the AsmetaL EBNF grammar concerning the structural sub-lan-
guage (corresponding to the AsmM portion shown in Fig. 3) and the language
of transition rules (see Fig. 4). The complete EBNF grammar can be found in
[Gargantini et al., 2006b, AsmM, 2006] and a detailed user guide is available at
[AsmM, 2006].

As mentioned above, an ASM specification encoded in AsmetaL reflect the
structure of the AsmM metamodel, and therefore includes (see the AsmetaL
program template 4 in Table 1) four sections: a header, a body, a main rule and
an initialization. The name of the ASM is specified before the header section.
Since we consider an ASM module as an ASM without the main rule and without
a set of initial states, a module is specified like an ASM but replacing the keyword
asm with the keyword module.

Listing 1: EBNF portion of the AsmetaL structural language

Asm ::= ((asm|module) ID Header Body (main MacroDeclaration)?
((Initialization)∗ default Initialization (Initialization)∗)?
Header ::= (ImportClause)∗ (ExportClause)? Signature

Body ::= definitions ‘‘:’’ (DomainDefinition)∗ (FunctionDefinition)∗
(RuleDeclaration)∗ (Axiom)∗

Initialization ::= init <ID> ‘‘:’’ (DomainInitialization)∗ (FunctionInitialization)∗
Signature ::= signature ‘‘:’’ (Domain)∗ (Function)∗

Listing 2: EBNF portion of the AsmetaL rule language

ConditionalRule ::= if Term then Rule (else Rule)? endif

UpdateRule ::= Term ‘‘:=’’ Term

SkipRule ::= ‘‘skip’’

BlockRule ::= par Rule (Rule)+ endpar

ExtendRule ::= extend <ID DOMAIN> with VarTerm (‘‘,’’ VarTerm)∗ do Rule

The header section consists of some import clauses and one export clause
which describe the ASM interface for the communication with other ASMs or
3 We adopt the following conventions: non-terminals are plain, keywords are shown

in bold face, and literal symbols are enclosed in double quotes. Moreover, words
enclosed in angle brackets indicate a placeholder for a literal value.

4 Keywords appear in bold face; a pair of square braces [] denotes that the enclosed
expression is optional; a variable identifier starts always with an initial “$”; an enum
literal is a string of length greater than or equal to two and consisting of upper-
case letters only; a domain identifier begins always with an upper-case letter; a rule
identifier always begins with the lower-case letter “r” followed by “ ”; a function
identifier always begins with a lower-case letter, but can not start with “r ”.

1960 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

AsmM elements Concrete syntax

ASM (asm|module) name
Header [import] m1 [(id11 . . . id1h1)]

[import] mk [(idk1 . . . idkhk
)]

[export (id1 . . . ide) | export *]
signature:
[dom decl1 . . . dom decln]
[fun decl1 . . . dom declm]

where:

- (idi1 . . . idihi) are names for domains, functions and rules imported from module mi

(if omitted, all exported elements of mi are imported)

- (id1 . . . ide) are names for exported domains, functions and rules (* to export all)

- dom decli and fun decli are declarations of domains and functions

Body definitions:
[domain D1 = DTerm1 . . . domain Dp = DTermp]
[function f1 [(p11 in D11 . . . p1h1 in D1h1)] = FTerm1

. . .

function fq [(pq1 in Dq1 . . . pqhq in Dqhq)] = FTermq]
[rule decl1 . . . rule declr]
[axiom decl1 . . . axiom decls]

where:

- DTermi and FTermi are terms defining domains Di and functions fi

- pij are variables ranging in the domain Dij and specifying the formal

parameters of the function fi

- rule decli and axiom decli are declarations of rules and axioms

Main rule [main rule decl]
Initial state [default] init sn:

[domain D1 = DTerm1 . . . Du = DTermu]
[function f1 [(p11 in D11 . . . p1h1 in D1h1)] = FTerm1

. . .

function fv [(pv1 in Dv1 . . . pvhv in Dvhv)] = FTermv]
[agent A1: rule1 . . . agent Az : rulez]

where:

- sn is the name of the initial state

- DTermi and FTermi specify the initial value of domains Di and functions fi

- pij are variables ranging in the domain Dij and specifying the formal

parameters of the function fi

- Ai and rulei are the agents and their associated programs

Table 1: Template of AsmetaL programs

1961Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

ASM modules. The signature contains the declarations of domains and functions
occurring in the ASM. Every ASM is allowed to use only identifiers (for functions
and rules) which are declared within its header’s signature or imported from
other modules. The imported functions will be statically added (together with
their domains and codomains declarations) in the signature of the machine as
completely new functions and the imported rules will enrich the module interface
of the machine.

The body section consists of definitions of static domains and static/derived
functions already declared in the signature, declarations of transition rules, and
declaration of axioms stating assumptions and constraints on functions, domains,
and rules of the ASM.

The main rule is a named transition rule denoted by the keyword main. It is
closed (i.e. it does not contain free variables) so that its semantics depends only
on the state of the machine. Executing an ASM means executing its main rule
starting from one specified initial state.

The initialization section consists of a set of initial states, one of which is
elected as default. An initial state defines an initial value for every dynamic
function and every concrete-domain already declared in the signature of the
ASM5. The initial state associates each agent domain (as subset of the predefined
Agent domain) with its program (a named transition rule).

In [Gargantini et al., 2006a], we also provide guidance on how to automati-
cally assemble a script file and give it in input to the JavaCC parser generator
[JavaCC, 2008] to generate a parser for the EBNF grammar of the AsmetaL
notation. This parser is more than a grammar checker: it is able to process ASM
models written in AsmetaL, to check for their well-formedness with respect to
the OCL constraints of the AsmM metamodel, and to create instances of the
AsmM metamodel in a MDR MOF repository through the AsmM-JMI APIs.
All OCL constraints have been syntactically checked by the OCLE OCL tool
and implemented in Java as a well-formedness checker of AsmM models. This
checker is used by the AsmetaL parser, but it can be also invoked by all tools
within the ASMETA environment to check if a given model (or a subset of it,
or just a model element) is well-formed or not with respect to the invariants
defined over the AsmM metamodel.

We illustrate here the AsmetaL notation by three examples of increasing
complexity.

4.1 The Flip-Flop device

Below, the ASM model of a Flip-Flop device is reported. The model originally
presented in [Börger and Stärk, 2003, page 47] contains two rules. The first one
5 Only dynamic (non-monitored) functions and concrete-domains need to be initial-

ized.

1962 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

(Fsm) models a generic finite state machine. If in ctl state = i the condition
cond is not satisfied, then a persistent if-then is achieved: the machine remains
in ctl state = i until cond becomes true, in which case the machine proceeds to
ctl state = j. The second one (FlipFlop) instantiates the Fsm for a Flip-Flop.

Fsm(i,cond,rule,j) = if ctl state = i and cond
then {rule, ctl state := j} endif

FlipFlop = {Fsm(0,high,skip,1),Fsm(1, low,skip,0)}

The rule Fsm is a named parameterized rule or macro. A macro is used as an
abbreviation to enhance the readability allowing modularization and stepwise
refinement of large machines. An occurrence of such a rule, where a rule is ex-
pected (e.g. the applications of the Fsm macro within the body of the FlipFlop

rule above), stands for the corresponding rule, which is supposed to be defined
somewhere else, with the parameters instantiated by legal values (data values or
functions or rules) so that the resulting rule has a well-defined semantics.

Listing 3 shows the specification of the Flip-Flop device written in AsmetaL,
including an example of axiom.

Listing 3: Flip-Flop Specification in AsmetaL

asm FlipFlop
import StandardLibrary
signature:

domain State subsetof Integer
dynamic controlled ctl state: State
dynamic monitored high: Boolean
dynamic monitored low: Boolean

definitions:
domain State = {0, 1}
rule r Fsm($i in State,$cond in Boolean,$rule in Rule,$j in State) =

if ctl state = $i and $cond then
par

$rule
ctl state := $j

endpar
endif

axiom inv neverBoth over high, low: not(high and low)
main rule r Main = seq

r Fsm[ctl state, 0, 1, high, <<skip>>]
r Fsm[ctl state, 1, 0, low, <<skip>>]

endseq
default init s0: function ctl state = 0

4.2 One-Way Traffic Light Control

This example is about a one-way traffic control. The problem description and the
ASM model are taken from [Börger, 2007]. The AsmetaL specification presented

1963Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 5: oneWayTrafLightGround Model

here is the result of a straightforward encoding of the original ASM specification,
however it can be made more concise.

Problem description “. . . the traffic is controlled by a pair of simple portable
traffic light units . . . one unit at each end of the one-way section . . . connect(ed)
. . . to a small computer that controls the sequence of lights. Each unit has a Stop
light and a Go light. The computer controls the lights by emitting RPulses and
GPulses, to which the units respond by turning the light on and off. The regime
for the lights repeats a fixed cycle of four phases. First, for 50 seconds, both
units show Stop; then, for 120 seconds, one unit shows Stop and the other Go;
then for 50 seconds both show Stop again; then for 120 seconds the unit that
previously showed Go shows Stop, and the other shows Go. Then the cycle is
repeated.”

In [Börger, 2007], a ground model is defined and shown to correctly capture
the user requirements, based upon explicitly stated domain properties. A ground
model refinement is then presented realizing some specific design decisions.

Ground Model. The problem is about two light units, each equipped with
a StopLight(i) and a GoLight(i) (i = 1, 2) which can be set on and off. In
the ground model, the latter are controlled locations to which a value on or
off can be assigned directly, abstracting from the computer emitting pulses.
The ground model also abstracts from an explicit time computation and treats
the passing of time by monitored locations Passed(timer(phase)), where the
function timer defines the requested light regime. The monitored locations are
assumed to become true in the model whenever (and only when) timer(phase)
has elapsed in the environment since the current phase was entered.

The sequence of lights starts with the phase Stop1Stop2 where for both
the two light units StopLight(i) = on and GoLight(i) = off. The overall be-

1964 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

havior is expressed by the sequence of four phases as shown in Fig. 5 (from
[Börger, 2007]) using a graphical notation for control-state ASMs. The subma-
chine macros are defined below. After timer(Stop1Stop2) has passed, the control
executes a submachine SwitchToGo2 and then enters phase Go2Stop1, followed
upon Passed(timer(Go2Stop1)) becoming true by a SwitchToStop2 to enter
phase Stop2Stop1, then a SwitchToGo1 to enter phase Go1Stop2 and finally a
SwitchToStop1 to return to phase Stop1Stop2.

In the above requirements description, the value of StopLight(i) and the
value of GoLight(i) are implicitly viewed as complementary; this implies their
switching can be done in parallel. Thus the two submachines SwitchToGoi and
SwitchToStopi are copies of one machine:

SwitchToGoi = SwitchToStopi = Switch(GoLight(i))
Switch(StopLight(i))

where Switch(Light) = (Light := Light
′
) (

′
for complement)

The light regime (50,120,50,120) associates to each phase its time length, rep-
resented by the function timer(phase). Following the requirements, the function
is assumed to be static6, i.e. set before running the machine as follows:

timer(phase) = case phase of Stop1Stop2 : 50sec

Go2Stop1 : 120sec

Stop2Stop1 : 50sec

Go1Stop2 : 120sec

Listing 4 shows the oneWayTrafLightGround model in AsmetaL. The specifi-
cation continues in Listing 5 with the submachines for the phase transitions as
shown in Fig. 5: from Stop1Stop2 to Go2Stop1, from Go2Stop1 to Stop2Stop1,
from Stop2Stop1 to Go1Stop2, and from Go1Stop2 again to Stop1Stop2.

The specification terminates with a main rule consisting of the parallel exe-
cution of these phase transition rules, and an initial state assuming (according to
the requirements) that the sequence of lights starts with the phase Stop1Stop2
with for both the two light units StopLight(i) = on (true) and GoLight(i) = off
(false).

Ground Model Refinement. This refinement step introduces the software
interface feature that relates R/G pulses of the computer to turning the light
units on/off. The single abstract machine oneWayTrafLightGround is replaced
by a multi-agent ASM oneWayTrafLight consisting of an environmental pulse-
triggered machine Pulses and a software machine oneWayTrafLightCtl, ob-
tained from oneWayTrafLightGroundby refining the submachines switchTo...i
to emitting pulses:
6 A change request to include the possibility to configure the time intervals associ-

ated to the phases would make the timer function dynamic and controlled by the
configuration machine.

1965Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Listing 4: oneWayTrafLightGround in AsmetaL (Part 1)

asm oneWayTrafLightGround
import StandardLibrary

signature:
abstract domain LightUnit
enum domain Phase = {STOP1STOP2|GO2STOP1|STOP2STOP1|GO1STOP2}
dynamic controlled phase: Phase
static lightUnit1: LightUnit //the two light units
static lightUnit2: LightUnit
dynamic controlled stopLight: LightUnit −> Boolean
dynamic controlled goLight: LightUnit −> Boolean
static timer: Phase −> Integer
dynamic monitored passed: Integer −> Boolean

definitions:
function timer($p in Phase) = switch($p)

case STOP1STOP2 : 50
case GO2STOP1 : 120
case STOP2STOP1 : 50
case GO1STOP2 : 120

endswitch

//macro Switch(Light) to switch the lights
macro rule r switch($l in Boolean) = $l := not($l)
//submachines switchTo...i for i=1,2
macro rule r switchToGo($i in LightUnit) =

par
r switch[goLight($i)]
r switch[stopLight($i)]

endpar
rule r switchToStop($i in LightUnit) = r switchToGo[$i]

1WayTrafLightCtl = 1WayTrafLightGround

where forall i ∈ {1, 2} switchTo...i = Emit(RPulse(i))
Emit(GPulse(i))

Pulses = forall i ∈ {1, 2}
upon Event(RPulse(i)) do Switch(StopLight(i))
upon Event(GPulse(i)) do Switch(GoLight(i))

The link between the two agents is provided by the following Pulse Output
Assumption, which relates the software actions to what happens in the environ-
ment: Emit(RPulse(i)) yields Event(RPulse(i)) to happen in the environment;
and Emit(GPulse(i)) yields Event(GPulse(i)) to happen in the environment.
Observe that each software control step of the refined switchTo...i triggers an
environment step of Pulses, which switches the corresponding lights. Thus one
ground model step is refined to two steps in the refined multi-agent machine.

The corresponding AsmetaL notation is obtained from the previous one, ac-
cording to the following. First, the signature is refined by adding the two agent

1966 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Listing 5: oneWayTrafLightGround in AsmetaL (Part 2)

rule r stop1stop2 to go2stop1 =
if phase=STOP1STOP2 and passed(timer(STOP1STOP2)) then

par
r switchToGo[lightUnit2]
phase:=GO2STOP1

endpar
endif

rule r go2stop1 to stop2stop1 =
if phase=GO2STOP1 and passed(timer(GO2STOP1)) then

par
r switchToStop[lightUnit2]
phase:=STOP2STOP1

endpar
endif

rule r stop2stop1 to go1stop2 =
if phase=STOP2STOP1 and passed(timer(STOP2STOP1)) then

par
r switchToGo[lightUnit1]
phase:=GO1STOP2

endpar
endif

rule r go1stop2 to stop1stop2 =
if phase=GO1STOP2 and passed(timer(GO1STOP2)) then

par
r switchToStop[lightUnit1]
phase:=STOP1STOP2

endpar
endif

main rule r Main = par
r stop1stop2 to go2stop1[]
r go2stop1 to stop2stop1[]
r stop2stop1 to go1stop2[]
r go1stop2 to stop1stop2[]

endpar
default init s0:

function stopLight($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2

types and the R/G pulses as shown in Listing 6. Second, the definitions sec-
tion (see Listing 7) now includes the refined version of submachines switchTo...i,
the new submachine Emit and the PULSES program. The phase transition rules
(from Stop1Stop2 to Go2Stop1, from Go2Stop1 to Stop2Stop1, from Stop2Stop1
to Go1Stop2, and from Go1Stop2 again to Stop1Stop2) remain as they are. Fi-
nally, the main rule is the sequential execution7 of the two agents’ programs,
and the initial state (see Listing 7) now contains the setting to false of the R/G
pulses and the agent initialization.
7 See discussion on the necessity of sequentializing the agents’programs in Sect. 5.4.3.

1967Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Listing 6: oneWayTrafLight in AsmetaL (The Signature)

asm oneWayTrafLight
import StandardLibrary
signature:
//old signature elements
...
//new elements:
//the two agent type
domain PULSESAgent subsetof Agent
domain ONEWAYTRAFLIGHTCTLTAgent subsetof Agent
//R/G pulses, one per light unit
dynamic shared rPulse: LightUnit −> Boolean
dynamic shared gPulse: LightUnit −> Boolean
//the two agents
static pulses: PULSESAgent
static onewaytraflightctl: ONEWAYTRAFLIGHTCTLTAgent

4.3 The clustering algorithm

In order to asses the actual power and level of abstraction of AsmetaL, we have
specified a clustering algorithm as described in terms of ASMs by Jensen et
alt. [Jensen et al., 2007]. They presented and compared several specifications of
a classical clustering algorithm written in AsmL, CoreASM and also Java and
reported fragments of them in their paper.

The clustering specification in AsmetaL is very similar (at least for the pub-
lished parts) to the CoreASM model, since AsmetaL shares with CoreASM sev-
eral keywords. The length (as number of lines) of the AsmetaL and CoreASM
specifications is about the same (around 90 lines), even if the AsmetaL specifi-
cation includes type declarations.

With respect to the CoreASM specification reported in [Jensen et al., 2007],
we preferred to use static functions instead of turbo rules (which are not sup-
ported by our simulator yet) to compute the distance between two points and
the sum of points in a cluster, which is a set of points. For example, the sum

function is defined as static recursive function as follows.

// returns the sum of the points in a Cluster
function sumPoints($c in Cluster) =

if isEmpty($c) then (0.0,0.0)
else let ($one = first(asSequence($c))) in

add($one, sumPoints(excluding($c,$one)))
endlet

endif

The complete AsmetaL specification can be found at the ASMETA web site
[AsmM, 2006].

1968 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Listing 7: oneWayTrafLight (Definitions and initial state)

definitions :
//old definitions
...
//new definitions
//submachine Emit
macro rule r emit($pulse in Boolean) = $pulse := true
//submachines switchTo... i for i = 1,2

rule r switchToGo($i in LightUnit) = par
r emit [rPulse ($i)]
r emit [gPulse($i)]

endpar
rule r switchToStop($i in LightUnit) = r switchToGo[$i]
//program PULSES
rule r pulses = forall $l in LightUnit do par

//upon Event(RPulse(i))
if (rPulse ($l)) then par

r switch [stopLight ($l)]
rPulse ($l) := false

endpar
endif
//upon Event(GPulse(i))
if (gPulse($l)) then par

r switch [goLight($l)]
gPulse($l) := false

endpar
endif

endpar
main rule r Main = seq

program(onewaytraflightctl)
program(pulses)

endseq
default init s0:

//old
function stopLight ($l in LightUnit) = true
function goLight($l in LightUnit) = false
function phase = STOP1STOP2
//new
function rPulse ($l in LightUnit) = false
function gPulse($L in LightUnit) = false
agent ONEWAYTRAFLIGHTCTLTAgent: par

r stop1stop2 to go2stop1 []
r go2stop1 to stop2stop1 []
r stop2stop1 to go1stop2 []
r go1stop2 to stop1stop2 []

endpar
agent PULSESAgent: r pulses[]

1969Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 6: AsmetaS and the ASMETA Repository

5 The AsmetaS Simulator

In this section, we present the design of the ASMETA Simulator (or AsmetaS),
its use, its main features and the validation activities we are carrying on.

AsmetaS is integrated in the ASMETA tool set and it operates directly on
elements of ASM models in the ASMETA repository. Hence, the simulator reads
ASM specifications in terms of JMI objects representing the specification the user
wants to simulate. Thanks to this direct integration with the ASMETA reposi-
tory, this simulation tool does not need to implement a parser, a type checker,
and an internal representation of the model to simulate. The specification in
the repository can be loaded from textual AsmetaL files by using the AsmetaL
parser in our tool set (as shown in Fig. 6), but AsmetaS works regardless the
way models are loaded in the repository.

Starting from the ASM model representation in terms of Java objects, at
every step the simulator builds the update set according to the theoretical def-
initions given in [Börger and Stärk, 2003] to construct the run of the model
under simulation. In the following, we explain the architecture we have designed
to perform this task.

5.1 Basic Classes

At every execution step, the simulator must compute the value for every term
and expression it evaluates in order to build the update set. We have introduced
a class Value and its hierarchy (see Fig. 7) to represent all possible values of ASM
locations. For every AsmM domain D, we have defined a DValue subclass which
represents in Java the values of D. For simple domains the translation to Java is
straightforward: we have used the corresponding Java types (e.g. values of the
ASMETA Integer domain are mapped into the Java integers). Other structured
domains required the use of other Java classes (like collections). Note that the
encoding in Java of ASM values is approximate: for example, integers used by

1970 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 7: Value hierarchy

Figure 8: Basic classes

the simulator have a defined range (defined by the Java language), while the
ASM integers are the mathematical integers.

Then we have introduced the class Location (see Fig. 8) to represent an
ASM location and the abstract class LocationValues which maps locations
to their values, i.e. LocationValues is a set of pairs (location,val). The class
LocationValues has two subclasses: State which represents the state of an
ASM, and UpdateSet which represents an update set. VariableAssignment

maps logical or location variables (not nullary functions) to their values and it is
used to evaluate a let rule, a let term or a macro call rule with parameters. The
Environment class represents the stream from which to get the values of mon-
itored functions. In the interactive mode (see Sect. 5.3), it will be instantiated
by an interactive environment which asks to the user for values of monitored
quantities. The state must keep a reference to the environment in use, since the
value of monitored functions are provided by the environment.

5.2 AsmetaS Kernel

The simulator keeps the current state (an instance of the State class) of the ASM
it is simulating and, on request, evaluates the values of terms and computes (and

1971Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 9: Evaluation process

applies) the update set (an instance of the UpdateSet class) to obtain the next
state.

Regarding the evaluation of expressions, several solutions are possible: our
main goal is to avoid the modification of the metamodel and to make the evalu-
ation process modular and easy to modify and extend. Adding a method value
in every subclass of the class Term in the AsmM would require the modifica-
tion of the metamodel; this solution is difficult to maintain and expand, since it
spreads the evaluation code in all the classes. The classical solution is to intro-
duce one class representing the evaluation process, called Visitor, and to use
a double dispatching pattern called visitor pattern. The visitor pattern would
still require the addition of a single method accept in every Term subclass. The
accept method invokes the visit method of the visitor it accepts.

To completely avoid any modification of the metamodel, we have defined a
reflective visitor pattern instead of using the classical visitor pattern: the visitor
class still defines a method visit for every Term subclass, but it also inherits
a visit(Object) from a ReflectiveVisitor which dispatches to the matching
method by using the reflection mechanism and not by the methods accept. In
this way the addition of a subclass in the hierarchy of the class Term would
require only the addition of a method in the visitor class, while the introduction
of another visiting operation would require the introduction of a new extension
of the reflective visitor. The reflective visitor pattern proved to be very effective,
and we have applied it also to perform other operations (rule evaluation, term
and rule substitution, free variables finding, and user interface). For instance,
the class RuleEvaluator which performs the very crucial task of computing the
update set, extends the ReflectiveVisitor. It defines a method visit(RuleType
R), for every RuleType subclass of the Rule class of the AsmM. Given a rule R
for which the simulator must compute the update set, the RuleEvaluator calls
the matching visit method accordingly to the type of R to obtain the update set
of R.

1972 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 10: A screenshot of the ASMEE IDE.

5.3 How to use AsmetaS

AsmetaS can be used in a command line mode by passing as arguments the name
of the specification file and some optional termination conditions for the run (it
is possible to execute a fixed number of steps or to execute till empty-updates).
We have developed also a graphical interface based on Eclipse, called ASMEE
(ASMETA Eclipse Environment). ASMEE can be used as a graphical front end
for the AsmetaL parser to edit ASM specifications (with syntax highlighting
support and other editing features), and to export the XMI format of ASM
specifications. ASMEE is also a graphical front end of AsmetaS and it allows
the user to control the simulation and inspect its results (e.g., by performing
single steps forward, observing the functions updates, etc.). The ASMEE can
be seen as an IDE of ASM specifications. A screenshot of the ASMEE IDE is
shown in Fig. 10.

Depending on the mechanism adopted to fetch values of monitored functions,
the simulator can operates in two modes: interactive mode and batch mode. In
the interactive mode, the simulator explicitly asks for values from the standard
input device; in case of input errors, it alarms the user by printing an appropriate

1973Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

message on the standard output device inviting the user to address and remove
the error. In batch mode, the simulator reads the functions values from a specific
file with extension .env, containing all the values of monitored functions and in
case of errors it terminates throwing an exception.

5.4 Key Features

In the following, we describe the key features currently supported by AsmetaS,
with a particular emphasis on those helpful for model validation.

5.4.1 Supported Constructs

AsmetaS currently supports the simulation of Basic ASMs (single-agent) and
synchronous multi-agent ASMs. Turbo ASMs rule constructors are not yet sup-
ported, except the sequence-rule. We plan to add the support for this kind of
rules in the future. Regarding the non deterministic choice, AsmetaS supports
the choose-rule with a real pseudo non determinism (i.e. there exist more than
one evaluation of the same choose rule, starting from the same state, and pro-
ducing different update sets). However, choose and forall constructs over infinite
domains are unsupported, e.g. a “forall $x in Integer” term or rule is rejected.

No specific time model has been designed in AsmetaS, but it can provided
in a conventional manner at specification level.

5.4.2 Recursive Functions

AsmetaS supports the interpretation of recursive static functions. Static func-
tions should be used instead of value returning rules, which are not supported
yet. For example, the following function qsort returns the ordered version of
the sequence of integers taken as argument.
function qsort($s in Seq(Integer)) = if length($s) = 0n then [] else

let ($pivot = first($s)) in union(
union(qsort [$x | $x in $s with $x < $pivot]),[$y | $y in $s with $y = $pivot]),

qsort([$z | $z in $s with $z > $pivot]))

5.4.3 Axiom checking

AsmetaS implements an axiom checker, which (optionally) checks in every state
reached during the computation if the axioms (if any) declared in the speci-
fication are satisfied or not. If an axiom is not satisfied, AsmetaS throws an
InvalidAxiomException, which keeps track of the violated axiom and of the
update set which has caused such violation.

1974 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

The axiom checker is particularly useful during the first phase of the model
development to validate the specification. The designer adds some invariants
of the model as axioms, activates the axiom checker, and runs the model with
some critical inputs. For example, to the refined version of the traffic light control
specification presented in Section 4.2 we added the following axiom to check that
the R and G pulses are not both true at the same time for the same light unit:
axiom inv Pulses over gPulse, rPulse:
forall $i in LightUnit with not (gPulse($i) and rPulse($i))

In the first version of the refined model, the software control machine and the
pulse-triggered machine running in parallel (by using a par in the rule r Main
of Listing 7). This was proved to be a wrong refinement by finding an axiom vi-
olation during simulation. We realized that the pulse-triggered machine, which
reacts to the pulses, must run only after the control machine has emitted the
pulses and changed the phase. The problem was solved by defining a simple
sequence scheduling between the two agents, as correctly reported in the speci-
fication in Listing 7.

The axiom checker was helpful to validate the clustering specification too.
The clustering algorithm keeps track of the cluster centers by a controlled func-
tion center and when it moves a point from a cluster to another, updates the
centers of the modified clusters in a quick way by considering only the old centers
and the moved point (and not all the other points in the clusters). To check the
correctness of such algorithm we have added the following axiom stating that
the center of the each cluster (as mathematically defined) is equal to the center
as updated by the algorithm.
axiom inv center over center: forall $c in clusters with

center($c) = (x(sumPoints($c)) / size($c), y(sumPoints($c)) / size($c))

This axiom helped us to discover faults in early versions of the specification.
We had also to slightly modify the axiom above to consider rounding errors.

Although the axiom checker is useful for model validation, it significantly
increases the execution time. This is evident for the clustering algorithm by
comparing columns e and g of the table on the left in Fig. 11.

5.4.4 Consistent Updates checking

AsmetaS is able to reveal inconsistent updates throwing an UpdateClashEx-

ception. The UpdateClashException records the location which are being in-
consistently updated and the two different values which are assigned to that
location. The user, analyzing this error, can detect the fault in the specification.

As the axiom checker, this feature is useful for model validation. For ex-
ample, upon running a dining philosophers specification allowing synchronous
parallel executions of all agents, inconsistent updates arise due to the tentative

1975Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

of agents to access shared resources at the same time. Several suitable scheduling
policies among the agents avoiding any inconsistent update can be found in the
specifications available at [AsmM, 2006].

5.4.5 Two extension mechanisms

AsmetaS can be extended in a heavyweight or lightweight way. Heavyweight
extensions, to include, for example, new kinds of terms and rules, require the
extension of the metamodel and, therefore, of the AsmetaS code. Lightweight
extensions, like those two presented below to customize the interpretation of
undefined static functions and the evaluation of monitored functions, do not
require, instead, any change to the metamodel and the simulator.

5.4.5.1 Static function interpretation in Java

The first lightweight extension is the introduction of new static undefined func-
tions whose interpretation is given in terms of Java code. In this case, the devel-
oper must (i) include the declaration of functions in an AsmetaL module (like
MyLib.asm), (ii) write a class (like MyLib.java) with a static method having
name and arguments equals to the new static functions and return value of type
Value and (iii) associate the module and the class by calling a method register
of the StaticFunctionEvaluator. We have adopted this simple mechanism for
the functions declared in the StandardLibrary. When the StaticFunctionEva-

luator finds a function f which has been declared in a module M but it has
not been defined in M (like all functions of the StandardLibrary), it searches the
class C registered with M, and invokes the Java method f of C.

This extension mechanism allows the direct definition of static functions in
Java and it generally results in a faster execution. This feature was exploited
to develop a version of the clustering specification where several static functions
are defined in the Java class ClusterFunctions registered with the specification.
The static function sum, for instance, becomes:
static public TupleValue sumPoints(SetValue sv){

double dx = 0.0, dy = 0.0;
for(Value v: sv.getValue()){

dx += ((RealValue)((TupleValue)v).getValue()[0]).getValue();
dy += ((RealValue)((TupleValue)v).getValue()[1]).getValue();}

return new TupleValue({new RealValue(dx),new RealValue(dy)});
This clustering specification was much faster as reported in the table in Fig.

11, columns e and f.

5.4.5.2 Monitored function evaluation

The second lightweight extension mechanism allows the designer to extend the
way the AsmetaS evaluates monitored functions (by default either from the con-
sole by asking to the user or from an environment file). This extension mechanism

1976 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

a b c d e f g

2 6 10 1.6 0.2 2.4 0.45
4 12 10 2.2 0.94 3.0 1.3
25 75 100 29.1 24.9 159 26.2
33 99 120 43.8 40.0 SO SO

a: number of points per clusters
b: total number of points
c: number of steps
d : average time of running the ASM model
e: average time of running the ASM model with

JAVA interpretation of static functions
f : average time of running the ASM model with

the axiom checker
g : average time of running the ASM model with

the axiom checker and the JAVA interpretation
of static functions

SO : stack overflow

Figure 11: Execution times of the clustering algorithm in AsmetaL

needs the definition of a new class implementing the MonFuncReader abstract
class and passing an instance of the new class to the AsmetaS when starting the
simulation. In this way, one may define a graphical environment which asks to
the user the values of monitored variables by means of graphical dialogs or define
an ad-hoc environment which reads the monitored quantities from an external
device. Interactive and batch simulation (see Section 5.3) are performed by two
basic MonFuncReader subclasses.

5.4.6 Random simulation

By using the second extension mechanism, we have introduced a random envi-
ronment which produces random values for monitored functions. The random
environment can be used by the developer to validate the specification against,
for example, its axioms. We have performed a first validation of the AsmetaS
code by using a random simulation (to see, for example, if all language constructs
are supported, if NullPointer exceptions occur, and so on).

5.4.7 Logging

AsmetaS (and ASMEE) produces a minimal output to show the current state
and the update set. Normally, the output is sent to the standard output (and
to an XML file called log.xml in the working directory). However, the user
can increase the output to inspect how the simulator performs particular tasks
(including the evaluation of terms, the building of update set for rules, and the
substitution of variables) by providing a log4j [LOG4j, 2008] configuration file
in which he/she activates and sets the level of the logging facilities of AsmetaS
classes.

The log messages are sent to the logger and formatted in XML. We have
adopted the XML since the log output can be easily processed in this way by
other tools to further analyze the runs produced by AsmetaS.

1977Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

Figure 12: Fit Table of test cases

5.5 Validation of AsmetaS

By executing most of the available AsmetaL specifications, we have performed
a first validation of AsmetaS. However assessing the correctness of AsmetaS
with respect to the ASM semantics by user simulation is error prone, since it
is the user who judges the conformance of the actual outputs with respect to
the expected ones, although the axiom and the inconsistent update checkers can
help him/her to discover faults in the simulator too.

To provide a more effective and reliable way to assess AsmetaS correctness,
we have implemented a wide range of JUnit test cases and Fit tables [FIT, 2007].
A Fit table is a simple table written for example in HTML which specifies some
test cases (one for each row) by defining the expected outputs on given inputs.
Our Fit tables define the expected final states of simple AsmetaL programs
containing each only few types of terms or rules. Then, the tester runs the fit
framework and the results are given again in a table which reports, besides
the expected outputs, also the actual outputs. For example, the Fit table in
Fig. 12 shows the result obtained running a set of test cases, each simulating a
specific AsmetaL model (first column with header asmPath), for a given number
of steps (second column nTimes), and for which we specify the expected final
state (third column state()). Discrepancies of the expected final state and the
actual final state are marked in red. Fit tables are available at the ASMETA
web site [AsmM, 2006].

1978 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

6 Related work

A number of ASM tools have been developed for model simulation.
The Abstract State Machine Language (AsmL) [ASML, 2001] developed by

the Foundation Software Engineering group at Microsoft is the greatest effort
in this respect. AsmL is a rich executable specification language, based on the
theory of Abstract State Machines, expression- and object- oriented, and fully
integrated into the .NET framework and Microsoft development tools. However,
AsmL does not provide a semantic structure targeted for the ASM method. “One
can see it as a fusion of the Abstract State Machine paradigm and the .NET
type system, influenced to an extent by other specification languages like VDM
or Z” [Gurevich et al., 2004]. Adopting a terminology currently used, AsmL is
a platform-specific modelling language for the .NET type system. A similar
consideration can be made also for the AsmGofer language [Schmid, 2001]. An
AsmGofer specification can be thought, in fact, as a PSM (platform-specific
model) for the Gofer environment.

Other specific languages for the ASMs, no longer maintained, are ASM-SL
[Castillo, 2001], which adopts a functional style being developed in ML and
which has inspired us in the language of terms, and XASM [Anlauff, 2000] which
is integrated in Montages, an environment generally used for defining semantics
and grammar of programming languages.

Recently, other simulation environments for ASMs have been developed, in-
cluding the CoreASM [CoreAsm, 2008], an extensible execution engine devel-
oped in Java, TASM (Timed ASMs) [Ouimet and Lundqvist, 2007], an encoding
of Timed Automata in ASMs, and a simulator-model checker for reactive real-
time ASMs [Vasilyev, 2007] able to specify and verify First Order Timed Logic
(FOTL) properties on ASM models. Among these, the CoreASM engine is the
more comparable to our.

Like our simulator, CoreASM is a general-purpose ASM simulator, is written
in Java, and its textual syntax for writing ASM specifications and our AsmetaL
notation are very similar (at least in defining the rule schemes). While we stati-
cally enforce type correctness, since we perform the type checking prior execution
during the evaluation of the OCL constraints defined over the AsmM metamodel
for the functions’ domains, the CoreASM supports dynamic type checking.

Although dynamic type checking gives more freedom and flexibility to the
modeler, this flexibility is at the cost that type checking errors occur unpre-
dictably at run-time and that type errors are detected only if executed. The
advantages of static checking are that potential errors can be identified earlier,
the specification is better documented, more care is needed in the design, and
implementations can take advantage of the additional information to produce
more efficient programs with less runtime checking code. Moreover, a CoreASM
specification is structurally made of a header block, where various definitions take

1979Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

place, and a rule declaration block for the rules definitions (including the init rule
that creates the initial state); however, the CoreASM Kernel does not define any-
thing for the header section. What goes into the header section depends on the
plugins that are used. Most of the functionalities of the CoreASM engine are
implemented, in fact, through plug-ins to the basic kernel. The architecture sup-
ports three classes of plug-ins: backgrounds (provide all that is needed to define
and work with new backgrounds), rules (to implement specific rule forms) and
policies (to implement specific scheduling policies for multi-agent ASMs). Al-
though the plug-in mechanism makes the CoreASM architecture extensible, few
standard plugins come with the engine and the development of new ones is not so
easy as it requires, especially for background plug-ins, an extension of the parser
defining the concrete syntax (operators, literals, static functions, etc.) needed for
working with elements of the background, an extension to the abstract storage
providing encoding and decoding functions for representing elements of the back-
ground for storage purposes, and an extension to the interpreter providing the
semantics for all the operations defined in the background. Clearly, all these ex-
tensions require a certain effort, expertise in Java programming, and knowledge
of the CoreAsm extension mechanisms, which do not follow extension standards
like those proposed by OSGi [OSGi, 2008] or by Eclipse. Our ASMETA frame-
work does not support the extension via plugins; it can be extended in a more
classical heavyweight way only by adding new classes to the metamodel for new
concepts, for example for new kinds of terms or rules. These new classes should
be sub-classes of existing ones. Then the new Java APIs, and the grammar rules
would be (semi)automatically generated for such new constructs, while the ex-
tension of the simulator would require the definition of new visit methods to the
evaluators. We believe that the effort required by extending ASMETA should be
comparable with that required by CoreAsm, which is built for extensibility, since
ASMETA extensions would be based on known standards (like e.g. EMF, Java
inheritance, and the use of reflective visitors). As we tried to make AsmM, and
therefore AsmetaL, as complete (i.e. representing all the ASM concepts) as pos-
sible, heavyweight extensions are usually not needed. However, AsmetaS offers
two lightweight extension mechanisms to customize both the interpretation of
undefined static functions and the evaluation of monitored functions, as already
explained in Sect. 5.4.5.

7 Conclusions and future directions

We have presented the ASMETA tool set for Abstract State Machines, and in
particular the ASMETA language and the simulation engine for writing and
executing ASM models, respectively.

The ASMETA framework has been developed exploiting the MDE metamod-
elling approach. It is based on an abstract specification language, namely the

1980 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

AsmM metamodel, which represents a set of mathematical concepts used for the
definition of ASMs, and acts as an interlingua among tools. The concrete nota-
tion, AsmetaL, and its parser have been constructed in a generative manner from
the ASMETA framework to effectively write ASM models. An alternative visual
notation is also being defined to this purpose, but limited to control-state ASMs.
The developed simulation engine makes formal models executable and assists,
therefore, the modeler in identifying omission and logical errors. A graphical
front-end called ASMEE (ASM Eclipse Environment) has been implemented as
an Eclipse plug-in to allow editing and manipulation of AsmM models within an
integrated development environment.

Although the ASMETA framework is targeted to the ASMs, our approach
can be applied to any other formal method to develop a tool set around it.

Future work will include the integration of more existing tools and the de-
velopment of new ones in the ASMETA tool set. We believe the development
of code engineering tools (including code generation, reverse engineering, and
synchronized round-trip engineering) supporting specific compilation techniques
is an easy task to accomplish by implementing appropriate walkers capable of
navigating throughout the AsmM abstract storage.

Moreover, we are evaluating other metamodelling frameworks to better sup-
port model transformations such as the ATL language [AMMA, 2005], the Xac-
tium XMF Mosaic [XMF Mosaic, 2007], to name a few, and model evolution
activities [Mens et al., 2005] such as model refinement, model refactoring, model
inconsistency management, etc. Today, only limited support is available in model-
based development tools for these activities, but a lot of research is being car-
ried out in this particular field to establish synergies between model-driven ap-
proaches like MDE and many other areas of software engineering including soft-
ware reverse and re-engineering, generative techniques, grammarware, aspect-
oriented software development, etc.

References

[AMMA, 2005] AMMA (2005). The AMMA Platform. http://www.sciences.univ-
nantes.fr/lina/atl/.

[Anlauff, 2000] Anlauff, M. (2000). XASM - An Extensible, Component-Based ASM
Language. In Abstract State Machines, pages 69–90.

[ASML, 2001] ASML (2001). The ASML language. research.microsoft.com/
foundations/AsmL/.

[AsmM, 2006] AsmM (2006). The Abstract State Machine Metamodel website. http:
//asmeta.sf.net/.

[ATGT, 2008] ATGT (2008). ATGT: ASM Tests Generation Tool. http://cs.unibg.
it/gargantini/projects/atgt/.

[Bézivin, 2004] Bézivin, J. (2004). In Search of a Basic Principle for Model Driven
Engineering. CEPIS, UPGRADE, The European Journal for the Informatics Pro-
fessional, V(2):21–24.

1981Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

[Börger, 2007] Börger, E. (2007). The Abstract State Machines Method for High-Level
System Design and Analysis. Technical report, BCS Facs Seminar Series Book.

[Börger and Stärk, 2003] Börger, E. and Stärk, R. (2003). Abstract State Machines: A
Method for High-Level System Design and Analysis. Springer Verlag.

[Cabot and Teniente, 2006] Cabot, J. and Teniente, E. (2006). Constraint support in
MDA tools: A survey. In ECMDA-FA, Proceedings, volume 4066 of LNCS. Springer.

[Castillo, 2001] Castillo, G. D. (2001). The ASM Workbench - A Tool Environment
for Computer-Aided Analysis and Validation of Abstract State Machine Models. In
Proc. of TACAS, volume 2031 of LNCS, pages 578–581. Springer.

[CoreAsm, 2008] CoreAsm (2008). The CoreASM Project. http://www.coreasm.
org/.

[Efftinge, 2006] Efftinge, S. (2006). oAW xText - A framework for textual DSLs. In
Workshop on Modeling Symposium at Eclipse Summit.

[EMF, 2008] EMF (2008). Eclipse Modeling Framework. http://www.eclipse.org/
emf/.

[FIT, 2007] FIT (2007). Fit: Framework for integrated test. http://fit.c2.com/.
[Gargantini and Riccobene, 2000] Gargantini, A. and Riccobene, E. (2000). Encoding

Abstract State Machines in PVS. In et al., Y. G., editor, Abstract State Machines:
Theory and Applications, volume 1912 of LNCS, pages 303–322. Springer-Verlag.

[Gargantini et al., 2003] Gargantini, A., Riccobene, E., and Rinzivillo, S. (2003). Us-
ing spin to generate tests from ASM specifications. In Abstract State Machines,
Advances in Theory and Practice, number 2589 in LNCS, pages 263–277. Springer.

[Gargantini et al., 2006a] Gargantini, A., Riccobene, E., and Scandurra, P. (2006a).
Deriving a textual notation from a metamodel: an experience on bridging Modelware
and Grammarware. In 3M4MDA’06 workshop at the European Conference on MDA.

[Gargantini et al., 2006b] Gargantini, A., Riccobene, E., and Scandurra, P. (2006b).
Metamodelling a Formal Method: Applying MDE to Abstract State Machines. Tech-
nical Report 97, DTI Dept., University of Milan.

[Gargantini et al., 2007a] Gargantini, A., Riccobene, E., and Scandurra, P. (2007a). A
metamodel-based simulator for ASMs. In Prinz, A., editor, Proceedings of the 14th
International ASM Workshop.

[Gargantini et al., 2007b] Gargantini, A., Riccobene, E., and Scandurra, P. (2007b).
Ten reasons to metamodel ASMs. In Dagstuhl Workshop on Rigorous Methods for
Software Construction and Analysis, LNCS Festschrift. Springer.

[GME, 2006] GME (2006). The Generic Modeling Environment (GME). http://www.
isis.vanderbilt.edu/Projects/gme.

[GMF, 2008] GMF (2008). The Eclipse Graphical Modeling Framework. http://www.
eclipse.org/gmf/.

[Gurevich et al., 2004] Gurevich, Y., Rossman, B., and Schulte, W. (2004). Semantic
essence of AsmL. Technical Report MSR-TR-2004-27, Microsoft Research.

[Hearnden et al., 2002] Hearnden, D., Raymond, K., and Steel, J. (2002). Anti-Yacc:
MOF-to-text. In Proc. of EDOC, pages 200–211.

[HUTN, 2004] HUTN (2004). OMG, Human-Usable Textual Notation, v1.0. Docu-
ment formal/04-08-01. http://www.uml.org/.

[JavaCC, 2008] JavaCC (2008). Java Compiler Compiler. https://javacc.dev.
java.net/.

[Jensen et al., 2007] Jensen, O., Koteng, R., Monge, K., and Prinz, A. (2007). Ab-
straction using ASM tools. In The 14th International ASM Workshop.

[JMI, 2002] JMI (2002). Java Metadata Interface Specification, Version 1.0. http://
java.sun.com/products/jmi/.

[Jouault et al., 2006] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., and Valduriez,
P. (2006). ATL: a QVT-like transformation language. In OOPSLA ’06: Companion
to the 21st ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 719–720. ACM.

1982 Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

[Jouault and Bézivin, 2006] Jouault, F. and Bézivin, J. (Bologna, Italy, 2006). KM3:
a DSL for Metamodel Specification. In Proceedings of 8th IFIP International Con-
ference on Formal Methods for Open Object-Based Distributed Systems.

[Kent, 2002] Kent, S. (2002). Model Driven Engineering. In IFM ’02: Proc. of
the Third International Conference on Integrated Formal Methods, pages 286–298.
Springer-Verlag.

[Kurtev et al., 2002] Kurtev, I., Bézivin, J., and Aksit, M. (Irvine, USA, 2002). Tech-
nical Spaces: An Initial Appraisal. In CoopIS, DOA’2002, Federated Conferences,
Industrial track.

[LOG4j, 2008] LOG4j (2008). Log4J. http://logging.apache.org/log4j.
[MDR, 2003] MDR (2003). The Model Driven Repository for NetBeans. http://mdr.
netbeans.org/.

[Mens et al., 2005] Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfeld,
R., and Jazayeri, M. (2005). Challenges in software evolution. In International
Workshop on Principles of Software Evolution (IWPSE’05).

[Microsoft DSL Tools, 2005] Microsoft DSL Tools (2005). Microsoft DSL Tools. http:
//msdn.microsoft.com/vstudio/DSLTools/.

[MOF, 2002] MOF (2002). OMG. The Meta Object Facility (MOF) v1.4, formal/2002-
04-03.

[Nytun et al., 2006] Nytun, J. P., Prinz, A., and Tveit, M. S. (2006). Automatic gen-
eration of modelling tools. In Proc. of ECMDA-FA, pages 268–283.

[OCLE, 2005] OCLE (2005). OCL Environment (OCLE). http://lci.cs.ubbcluj.
ro/ocle.

[OMG, 2008] OMG (2008). The Object Managment Group (OMG). http://www.
omg.org.

[OSGi, 2008] OSGi (2008). OSGi Alliance. http://www.osgi.org/.
[Ouimet and Lundqvist, 2007] Ouimet, M. and Lundqvist, K. (2007). The Timed Ab-

stract State Machine Language: Abstract State Machines for Real-Time System En-
gineering. In Proceedings of the 14th International Workshop on Abstract State Ma-
chines (ASM ’07).

[Riccobene and Scandurra, 2004] Riccobene, E. and Scandurra, P. (2004). Towards
an Interchange Language for ASMs. In Zimmermann, W. and Thalheim, B., editors,
Abstract State Machines. Advances in Theory and Practice, LNCS 3052, pages 111 –
126. Springer.

[SAL, 2008] SAL (2008). The Symbolic Analysis Laboratory. http://sal.csl.sri.
com/.

[Schellhorn and Ahrendt, 1997] Schellhorn, G. and Ahrendt, W. (1997). Reasoning
about Abstract State Machines: The WAM Case Study. J. of Universal Computer
Science, 3(4):377–413.

[Schmid, 2001] Schmid, J. (2001). AsmGofer. http://www.tydo.de/Doktorarbeit/
AsmGofer.

[Sztipanovits and Karsai, 1997] Sztipanovits, J. and Karsai, G. (1997). Model-
integrated computing. IEEE Computer, 30(4):110–111.

[Vasilyev, 2007] Vasilyev, P. (2007). Simulator-model checker for reactive real-time
abstract state machines. In Proceedings of the 14th International ASM Workshop
(ASM’07). http://rotor.di.unipi.it/AsmCenter/.

[Winter, 1997] Winter, K. (1997). Model Checking for Abstract State Machines. Jour-
nal of Universal Computer Science (J.UCS), 3(5):689–701.

[XMF Mosaic, 2007] XMF Mosaic (2007). The Xactium XMF Mosaic. www.
modelbased.net/www.xactium.com/.

1983Gargantini A., Riccobene E., Scandurra P.: A Metamodel-based Language ...

