
Ontology and Grammar of the SOPHIE Choreography
Conceptual Framework - An Ontological Model for

Knowledge Management

Sinuhé Arroyo
(University of Alcalá de Henares, Spain

sinuhe.arroyo@alu.uah.es)

Abstract: Ontologies have been recognized as a fundamental infrastructure for advanced
approaches to Knowledge Management (KM) automation in SOA. Building services
communicate with each other by exchanging self-contained messages. Depending on the
specific requirements of the business model they serve and the application domain for which
services were deployed, a number of mismatches (i.e. sequence and cardinality of messages
exchanges, structure and format of messages and content semantics), can occur which prevent
interoperation among a prior compatible services. Existing choreography technologies attempt
to model such external visible behavior. However, they lack the consistent semantic support
required to fully meet the necessities of heterogeneous KM environments. This paper describes
the ontology and grammar of SOPHIE, a semantic service-based choreography framework for
overcoming conversational pattern mismatches in knowledge intensive environments.
Consequently, the paper provides an overview of the framework that depicts its main building
blocks, so a good understantind of the ontology and grammar that summarize the conceptual
model is gained. Such ontology allows the desing and description of fully fledged
choreographies that can be used, as a result of a mediation task, to produce the mediating
structures that in fact allow dynamic service-to-service interoperation. Finally, a use case
centred in the telcomunications field serves as proof of concept of how SOPHIE is being
applied.

Keywords: Semantic Services, Choreography
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1

1 Introduction

The discipline of Knowledge Management (KM) has evolved and matured in the last
decade, resulting in a considerable amount of models, tools and technologies
[Sicilia06]. Nonetheless, such conceptual structures should be properly integrated into
existing ontological bases, for the practical purpose of providing the required support
for the development of intelligent applications. In addition, the supporting
technologies for socialization, externalization, combination and internalization of
knowledge are available and can be applied to build KM solutions of a diverse kind
[Mohame04]. Formal ontologies [Gruber93] have been proposed and applied as the
backbone of KM systems [Maedche03], and even ontologies specific to certain KM
domains exist—e.g. for software development organizations [Marwick01. The new
requirements in the design of knowledge [Sicilia06] intensive software systems call

Journal of Universal Computer Science, vol. 13, no. 9 (2007), 1157-1183
submitted: 15/8/06, accepted: 1/3/07, appeared: 28/9/07 © J.UCS

for well decoupled approaches where components interoperate by exchanging self-
contained messages. These systems realize their functionality by defining from a high-
level point of view their dynamics. Still, components autonomously define their
control flow and the message interface that allows others consuming their
functionality. As the use of services is catching up, more and more interest is being
place in the development of initiatives that allow their agile interoperation. With the
aim of fulfilling the communication necessities, the concept of choreography, as a
means to model the external visible behaviour of services withing KM environements
has been sketched.

Services communicate with each other by exchanging self-contained messages,
allowing them to make or to respond to requests. Upon the reception of a message,
services react by executing some internal processes and possibly responding with
other messages. Depending on the specific requirements of the business model they
serve and the application domain for which services were deployed, a number of
mismatches can occur which prevent interoperation among a prior compatible
services.

• Sequence and cardinality of messages exchanges. Services follow different
conversational patterns, which define the order and number in which
messages are sent and/or received in a univocal way. A number of scenarios
can be sketched that prevent interoperation:

1. Messages being sent/received in a different order than expected
(Sequence).

2. Too many messages being sent/received that are not compliant with
the expected behavior of the other party –i.e. acks, control
messages, or messages being split into smaller ones– (Cardinality).

3. Too little messages are sent/received not being compliant with the
expected behavior of the other party –one message that makes up
for a number of others, or no acks or no control messages–
(Cardinality).

• Structure and format of messages. Services use different
conceptualizations and naming conventions for encoding contents and
characterizing messages. Even when all the information expected is enclosed
in messages, the means to assert compatibility, identify and reorganize the
contents and structure of messages and rename messages as appropriate, so
they match the conversational model of the receiving party, need to be put in
place.

• Content Semantics. Depending on the application domain services make use
of a wide range of terminological conventions to represent concepts encoded
into messages and the messages themselves. Prior to effective message
exchanges the means to identify equivalent concepts needs to be put in place
so messages and the pieces of data they contain can be understood by
interacting services.

Due to the fact that the semantics, sequence, cardinality, structure and format
followed by interacting services is wide, the means to overcome these limitations need
to be put in place. Current infrastructures present an “ad-hoc” alternative for

1158 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

overcoming heterogeneity which need to be improved so services are enabled to
interact in a more dynamic and decoupled fashion.

SOPHIE12 ([Arroyo, 06a][Arroyo, 06b]), puts in place the required
computational semantics that enable defining a meditation layer among the message
exchanges of heterogeneous Semantic Services in knowledge intensive environments.
This is avhieved regardless of the structural and behavioural models and the
technological aspects used by interacting parties.

The remaining of the paper is structured as follows. Section 2 shows a high level
architecture of the framework, together with the main actors involved and core ideas
behind the framework. Section 3 presents the ontology of the conceptual framework
that summarizes the main concepts required to model fully-fledged choreographies,
providing. Section 4 Section 4 introduces the grammar of the SOPHIE choreography
framework. Section 5 depicts the details of a use case centred in the
Telecommunication industry where the principles and ideas of SOPHIE have been
successfully applied. Finally, Section 6 outlines the conclusion of this research
together with future direction for extending the work.

Figure 1: Choreography service

2 SOPHIE

SOPHIE is a knowledge management conceptual framework and architecture for a
choreography service realized as a SOA. Services that use the choreography service
fall into two main categories, namely, initiating parties and answering services. Both
parties produce and consume messages. Additionally, initiating parties indicate the

1 SOPHIE is an acronym for Semantic services chOreograPHi servIcE
2 Notice that this paper complements a series of papers already published that go in detail into

various aspects of the framework. This is why, only the relevant characteristics of SOPHIE
are briefly covered in this work. The interested reader is encouraged to read other SOPHIE
related publications to gain a deeper understanding of its particularities and details.

1

generateOperationalModel

removeOperationalModel

correlateMessage

3

2

Choreography
Framework

Initiating Party Answering Service

1159Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

choreography framework by means of any of its constitutes correlating services that
the infrastructure for the interoperation of heterogeneous message exchanges should
be established.

Figure 1 shows a high level architecture of the conceptual framework. Informally,
initiating parties indicate that want to communicate with an answering service by
means of “generateOperationalModel” (1). Once an operational model that allows the
interoperation among the heterogeneous message exchanges has been created, parties
can start submitting messages by means of the “correlateMessage” (2) primitive.
Messages will go through the designated operational model, forwarding the
framework the message(s) to the receiving party according to its choreography.
Finally, when the conversation is finished, either party indicates that the operational
model for a given conversation can be put off line, by means of the primitive
“removeOperationalModel”.

3.1 Conversations

A conversation represents the logical entity that permits to group a set of related
message exchanges among parties. Conversations are composed of a number of
building blocks.

Elements represent elementary unit of data that build up documents. Documents
are complete, self-contained groups of elements that are transmitted over the wire
within messages. Messages characterize the primitive piece of data that can be
exchanged among parties. As messages are exchanged, a variety of recurrent scenarios
can be played out. Message Exchange Patterns (MEP), identify placeholders for
messages, that allow to model its sequence and cardinality, defining the order on
which parties send a receive messages. A set of messages sent and received among
parties, optionally following Message Exchanged Patterns are referred as message
exchange. They characterize a well defined part of a conversation. A conversation can
be thus defined as a set of message exchanges among parties with the aim of fulfilling
some goal. Every conversation need to rely on top of some communication facility
referred as communication network.

3.2 Choreographies

A choreography describes the behavior of the answering service from the initiating
party point of view [Roman04a]. It governs the message exchanges among parties in a
conversation. A choreography as presented in this work is based on the Finite State
Machines (FSMs)3 formalism. FSMs allow specifying the sequences of states the
choreography goes through during its lifetime, together with its responses to events. In
this sense the main building blocks of abstract state machines are up to some extent
redraw.

A state is a situation during the lifetime of a choreography during which it waits
for some event or satisfies some condition. Conditions are modeled as
booleanExpression. Boolean expressions are expressions evaluated to “true” or

3 Activities, entry actions and exit actions have been deliberately left out of the scope of the

work, as they are not required for purpose of the thesis.

1160 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

“false” as in any programming or ontology language. An action represents the atomic
task of sending a message to a party. Events represent occurrences of stimulus. They
do not specify state transitions. Transitions among states are defined by guarded
transitions. Guarded transitions allow modeling the relations between two states by
means of events, actions and guard conditions. Guarded conditions are rules that
specify a target state. Parts permit to relate guarded transitions and message
exchanges, defining the message exchange in terms of state transitions. Finally, a
choreography comprises a set of parts that define a conversation.

3.3 Logic Boxes

The atomic building blocks that permit to solve the mismatches among interacting
parties are referred as logic boxes. A logic box facilitates the means to reorganize the
content of documents, its mapping to messages, and the order and cardinality of
messages, enabling the interoperation among heterogeneous message exchanges.
Additionally, and depending on the type of box, the differences in the vocabulary used
to describe the application domain can be overcome. Currently the specification
defines five different types of logic boxes, namely: refiner box, merge box, split box,
select box, add box. Logic boxes are grouped into logic diagrams. Logic diagrams
permit to model the relation among the message exchange pattern followed by the
initiating party, and the one used by the answering service. Logic diagrams are
assimilated, for implementation purposes, to correspondence tables. A
correspondence table is a logical structure, similar to routing tables, which defines
relations among incoming and outgoing messages as a realization of a logic diagram.
A number of logic diagrams defining a conversation are referred as logic group.

3.4 Ontologies

Ontologies define the semantics of the framework. They facilitate a formal and
consensual [Gruber93] vocabulary as data and information machine-processable
semantics for the shared and common understanding of a domain [Fensel01] that can
be mediated for the understanding of interacting parties. Domain ontologies supply
the general vocabulary to describe the application domain of parties. Choreography
ontologies make available the terminology that describes the choreography of parties.
In doing so they define the different entities (concepts) taking part in a choreography.
Ontology mappings characterize the conceptual entity that allows to link similar
ontological concepts and instances.

3.5 Related Technologies

In the following different technologies that are related to the definition of a conceptual
framework for choreography are concisely reviewed. In doing so, their core
characteristics are presented, their drawbacks identified and the main ideas reused in
this research are summarized.

1161Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

layered model no yes

tight Business Process
Languages

Choreography
Languages relation with

communicatio
n framework loose Choreography

Languages

Semantic-driven
choreography

initiatives

SOPH
IE

no yes semantic support

Table 1: A first cut in classifying related languages

Table 1 presents a preliminary classification based on a three dimension exam.
The first dimension depicts the relation with the underlying communication
framework, differentiating among tight and loose. The second one addresses the
semantic support provided. Finally, the third one discriminates them depending on
whether or not they follow a layered model. Based on these depiction four main
categories of languages are distinguished:

• Technologies with a tight relation to the underlying communication
framework, lacking of a layered model and no support for semantics, such as
BPEL4WS

• Technologies with a tight relation to the underlying communication
framework, that follow a layered model and no support for semantics, such as
WS-CDL

• Technologies with a loose relation to the underlying communication
framework, lacking of a layered model and no support for semantics, such as
WSCI

• Technologies with a loose relation to the underlying communication
framework, with support for semantics but lacking of a layered model, such
as WSMO-Choreography

In [Arroyo06b] a detailed overview of the related languages detailed in Table 1 is
presented.

4 Ontology of the Conceptual Model

In the following the ontology that summarizes the ideas and concepts of SOPHIE is
presented. In doing so, the different conceptual models are briefly reviewed and the
fragments of the ontology where such concepts are modeled are provided.

1162 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

4.1 Conceptual Model

The conceptual model presented of SOPHIE describes the structure, behavior,
operation and ontologies of conceptual framework for choreography as separate
concerns. The semantic model details the semantic support. The structural concern
provides the grounding pillars of the framework. The behavioral concern permits to
model the conduct of the structural model. Finally, the operational concern facilitates
the means to allow the interoperation of different behavioral models.

This clear separation of concerns facilitates a straight mechanism to extend the
different models, for example Petri nets, temporal logic or transaction logic can be
used instead of Finite State Machines (FSMs) for the behavioral model.

The work presented here defines the behavioral model as FSMs. Still, any other
suitable paradigm can be easily plugged-in. The terms used, in particular the terms
choreography, state and guarded transition, follow the formalism proposed in
[Roman04b] and [Booch99]. Furthermore, the semantic model is currently based on
WSML. Nonetheless, the design allows to easily extending the grammar and ontology
of SOPHIE to accommodate any other ontology language.

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-flight"

namespace { _"http://www.example.org/ontologies/sophie#",
 dc _"http://purl.org/dc/elements/1.1#",
 xsd _"http://www.w3.org/2001/XMLSchema#",
 wsml _"http://www.wsmo.org/wsml-syntax#"
 }

ontology _"http://www.deri.org/ontology/sophie#"

nonFunctionalProperties
 dc#title hasValue "Choreography Conceptual Model"
 dc#creator hasValue "Sinuhé Arroyo"
 dc#description hasValue "an ontology for describing the concepts of

 SOPHIE"
 dc#publisher hasValue "DERI International"
 dc#contributor hasValue "Jos de Bruijn"
 dc#date hasValue "2005-04-11"
 dc#type hasValue "http://www.deri.org/2005/#ontology"
 dc#format hasValue "text/html"
 dc#language hasValue "en-us"
 dc#rights hasValue "http://deri.at/privacy.html"
 version hasValue "$Revision 0.1$"
endNonFunctionalProperties

concept sophie#conceptualModel
 nonFunctionalProperties
 dc#description hasValue "root of the conceptual model"
 endNonFunctionalProperties

1163Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 structuralConcern ofType (0 1) structural
 behavioralConcern ofType (0 1) behavioral
 operationalConcern ofType (0 1) operational

 ontologies ofType (0 1) sophie#ontologies

concept sophie#entity
 nonFunctionalProperties
 dc#description hasValue "entities of the choreography service"
 endNonFunctionalProperties
 name ofType (1 1) sophie#name
 URI ofType (1 1) sophie#uri

concept sophie#name
 nonFunctionalProperties
 dc#description hasValue "name or key value of an entity"
 endNonFunctionalProperties

concept sophie#handler
 nonFunctionalProperties
 dc#description hasValue "address and protocol of an entity"
 endNonFunctionalProperties

concept sophie#uri
 nonFunctionalProperties
 dc#description hasValue "handler, entity and identifier"
 endNonFunctionalProperties
 handler ofType (1 1) sophie#handler
 entity ofType (1 1) sophie#entityType
 identifier ofType (1 1) sophie#name

concept sophie#entityType
 nonFunctionalProperties
 dc#description hasValue "type of an entity"
 endNonFunctionalProperties

axiom sophie#allowedEntityTypes
 definedBy
 !- ?x memberOf entityType and naf ?x = sophie#party
 and naf ?x = sophie#element
 and naf ?x = sophie#document
 and naf ?x = sophie#message
 and naf ?x = sophie#mep
 and naf ?x = sophie#messageExchange
 and naf ?x = sophie#conversation
 and naf ?x = sophie#state
 and naf ?x = sophie#action

1164 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 and naf ?x = sophie#booleanExpression
 and naf ?x = sophie#event
 and naf ?x = sophie#guardCondition
 and naf ?x = sophie#guardedTransition
 and naf ?x = sophie#part
 and naf ?x = sophie#choreography
 and naf ?x = sophie#logicBox

 and naf ?x = sophie#logicDiagram
 and naf ?x = sophie#logicGroup
 and naf ?x = sophie#correspondenceTable

 and naf ?x = sophie#correspondenceModel
 and naf ?x = sophie#domainOntology

and naf ?x = sophie#choreographyModel
 and naf ?x = sophie#choreographyOntology
 and naf ?x = sophie#ontologyMapping.

concept sophie#role
 nonFunctionalProperties
 dc#description hasValue "specifies whether a party is an initiating

 party an answering service or a correlating
 service"

 endNonFunctionalProperties

axiom sophie#allowedRoles
 definedBy

 !- ?x memberOf role and naf ?x = sophie# initiatingParty
 and naf ?x = sophie# answeringService

 and naf ?x = sophie# correlatingService.

concept sophie#formalism
 nonFunctionalProperties
 dc#description hasValue "formalism"
 endNonFunctionalProperties

concept sophie#concern
 nonFunctionalProperties
 dc#description hasValue "model of the choreography service "
 endNonFunctionalProperties

4.1.1 Structural Model

The structural model deals with the provision of a reusable collection of entities
following different levels of abstraction that facilitate the basis for the description of a
conceptual model. Table 2, enumerates the entities that allow the structural model to
be defined.

1165Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

element = [name, type, value]

document = [name, URI, elements*4]
message = [name, URI, from?5, to?, documents*]

messageExchangePattern = [name, URI, description?]
message exchange = [name, URI, mep?, messages*]
conversation = [name, URI, messageExchanges*]

Table 2: Structural model

Conversations are the outer most entity of the structural model. They represent the
logical entity that permits to group a set of related message exchanges among parties.
Conversations are composed of a set of building blocks. Elements describe elementary
units of data that define a name, a type6 and a value that build documents. Documents
are complete, self-contained groups of elements. Documents are transmitted over the
wire within messages. Messages characterize pieces of information that can be
exchanged among parties. As messages are exchanged, a variety of recurrent scenarios
can be played out as defined by Message Exchange Patterns (MEP). A MEP defines a
minimal contract among parties. They allow the sequence and cardinality of messages
to be modeled, defining the order in which parties send and receive messages. The
constituent description is a part that depicts the behavior of the pattern. A set of
messages sent and received among parties optionally following a Message Exchanged
Pattern that account for a well defined part of a conversation, is referred as a message
exchange. A conversation can thus be defined as a set of message exchanges among
parties, optionally following message exchange patterns to model their behavior.
Every conversation need to rely on top of some communication facility, referred to as
a communication network.

concept sophie#structural
 subConceptOf {concern}
 nonFunctionalProperties
 dc#description hasValue "structural model"
 endNonFunctionalProperties
 formalisms ofType (0 *) sophie#formalism

 axiom sophie#allowedStructuralFormalisms
 definedBy
 !- ?x memberOf entityType and naf ?x = sophie#MEPConversational.

concept sophie#MEPConversational
 subConceptOf {formalism}

4 The symbol ”*” represents that there can exist zero or more instances of the attribute
5 The symbol ”?” represents zero or one instances of the attribute
6 Element types, belong to a limited set of types as defined by the standard XSD [Fehler!
Verweisquelle konnte nicht gefunden werden.]

1166 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 nonFunctionalProperties
 dc#description hasValue "MEP structural formalism"
 endNonFunctionalProperties
 party ofType (1 1) sophie#party
 elements ofType (0 *) sophie#element
 documents ofType (0 *) sophie#document
 messages ofType (0 *) sophie#message
 messageExchanges ofType (0 *) sophie#messageExchange
 MEPs ofType (0 *) sophie#mep
 conversations ofType (0 *) sophie#conversation
 suffcientElements ofType (0 *) sophie#sufficientSet
 sufficientMessages ofType (0 *) sophie#sufficientSet

concept sophie#type
 nonFunctionalProperties
 dc#description hasValue "XSD type subset"
 endNonFunctionalProperties

axiom sophie#allowedTypes
 definedBy
 !- ?x memberOf type and naf ?x = xsd#string
 and naf ?x = xsd#decimal

 and naf ?x = xsd#integer
 and naf ?x = xsd#float
 and naf ?x = xsd#boolean

 and naf ?x = xsd#date
 and naf ?x = xsd#time.

concept sophie#value
 nonFunctionalProperties
 dc#description hasValue "value of the element"
 endNonFunctionalProperties
 representation ofType _string
 type ofType sophie#type

concept sophie#element
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "piece of data either supplied or consumed

 by parties"
 endNonFunctionalProperties
 sophie#value ofType (1 1) sophie#value

concept sophie#sufficientSet
 subConceptOf {entity}
 nonFunctionalProperties

1167Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 dc#description hasValue "sufficient set of entities"
 endNonFunctionalProperties
 entities ofType (0 *) sophie#entity
 sophie#hasValue ofType (1 1) sophie#value

concept sophie#party
 subConceptOf {sophie#entity}

 nonFunctionalProperties
 dc#description hasValue "active entities inside or outside the

 choreography framework"
 endNonFunctionalProperties
 role ofType (1 1) sophie#role
 URI ofType (1 1) sophie#role

concept sophie#document
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "grouping of a number related elements"
 endNonFunctionalProperties
 elements ofType (0 *) sophie#element

concept sophie#message
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "minimal unit that can be exchanged

 among parties"
 endNonFunctionalProperties
 from ofType (0 1) sophie#party
 to ofType (0 1) sophie#party
 documents ofType (0 *) sophie#document

concept sophie#mep
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "placeholder for message exchanges"
 endNonFunctionalProperties
 description ofType (0 1) sophie#part

concept sophie#messageExchange
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "piece of a conversation optionally

 following a mep"
 endNonFunctionalProperties
 MEP ofType (0 1) sophie#mep
 messages ofType (0 *) sophie#message

1168 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

concept sophie#conversation
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "set of message exchanges"
 endNonFunctionalProperties
 messageExchanges ofType (0 *) sophie#messageExchange

4.1.2 Behavioral Model

The behavioral model cares for the description of the dynamic interaction among the
entities defined in the structural model. As presented in this work, the behavioral
models are based on the formalism presented by Finite State Machines (FSMs)
[Wagner06]. Nevertheless, any other formalism such as Petri nets, temporal or
transactional logic can be easily modeled and plugged-in in to the behavioral model.
In doing so, it makes use of the entities enumerated in Table 3.

booleanExpression = [name,URI, expression?]

state = [name, URI, subStates*]
action = [name, URI, task?]

task = [party.message]
event = [name, URI, booleanExpression?]

guardCondition = [name, URI, rule?]
rule = [if booleanExpression then state]

guarded transition = [name, URI, events*, guardCondition?, actions*]
part = [name, URI, messageExchange?, guardedTransitions*]

choreography = [name, URI, conversation?, parts*]

Table 3: Behavioral model

A choreography represents the outer most entity in the behavioral model. It
describes the behavior of the answering service from the initiating party point’s of
view [Roman04a]. It governs the message exchanges among parties in a conversation.

States, actions and events and guard conditions represent the same concepts as
defined by FSMs. However, the scope of events and actions has been narrowed.
Particularly, actions represent the atomic task of sending a message, and events can
not trigger a state transition, since do not specify a target state, but just a
booleanExpression. Additionally, activities, entry actions and exit actions have been
deliberately left out of the scope of the work, as they are not required for our
purposes. Finally, the concept of guarded transitions, parts and choreography have
been added.

A guarded transition defines the relationship between states by means of events,
guard conditions and actions. In a nutshell, a guarded transition defines events and
conditions, which when satisfied, perform certain actions and trigger the state
transition as defined in the guarded condition. Parts permit guarded transitions and
message exchanges to be related, defining the message exchange in terms of state
transitions according to the logic of the application. Finally, a choreography can be

1169Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

defined as a set of parts, which govern the message exchanges among parties in a
conversation.

concept sophie#behavioral
 subConceptOf {concern}
 nonFunctionalProperties
 dc#description hasValue "behavioral model"
 endNonFunctionalProperties
 hasFormalism ofType (0 *) sophie#formalism

axiom sophie#allowedBehavioralFormalisms
 definedBy
 !- ?x memberOf entityType and naf ?x = sophie#FSM.

concept sophie#FSM
 subConceptOf {formalism}
 nonFunctionalProperties
 dc#description hasValue "Finite State Machine behavioral formalism"
 endNonFunctionalProperties
 states ofType (0 *) sophie#state
 actions ofType (0 *) sophie#action
 booleanExpressions ofType (0 *) sophie#booleanExpression
 events ofType (0 *) sophie#event
 guardConditions ofType (0 *) sophie#guardCondition
 guardTransitions ofType (0 *) sophie#guardTransition
 parts ofType (0 *) sophie#part
 choreography ofType (0 1) sophie#choreography
 sufficientActions ofType (0 *) sophie#sufficientSet
 sufficientBooleanExpressions ofType (0 *) sophie#sufficientSet

concept sophie#state
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "condition or situation during the lifetime of a

 choreography"
 endNonFunctionalProperties
 subStates ofType (0 *) sophie#state

concept sophie#task
 nonFunctionalProperties
 dc#description hasValue "Party and message to be sent"
 endNonFunctionalProperties
 party ofType (0 1) sophie#party
 message ofType (0 1) sophie#message

1170 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

concept sophie#action
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "action of sending a message"
 endNonFunctionalProperties
 task ofType (0 1) sophie#task

concept sophie#booleanExpression
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "boolean expression"
 endNonFunctionalProperties

concept sophie#event
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "occurrence of an stimulus that has a location

 in time and space"
 endNonFunctionalProperties
 booleanExpression ofType (0 1) sophie#booleanExpression

concept sophie#rule
 nonFunctionalProperties
 dc#description hasValue "defines a rule"
 endNonFunctionalProperties
 booleanExpression ofType (0 1) sophie#booleanExpression
 state ofType (0 1) sophie#state

concept sophie#guardCondition
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "defines transitions among states by means of

 rules"
 endNonFunctionalProperties
 rule ofType (0 1) sophie#rule

concept sophie#guardTransition
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "defines relations among states by means of

 events, guardConditions and actions"
 endNonFunctionalProperties
 events ofType (0 *) event
 guardCondition ofType (0 1) sophie#guardCondition
 actions ofType (1 *) sophie#action

1171Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

concept sophie#part
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "allows establishing the link among a set of

 guarded transitions and a message
 exchange"

 endNonFunctionalProperties
 messageExchange ofType (0 1) sophie#messageExchange
 guardTransitions ofType (0 *) sophie#guardTransition

concept sophie#choreography
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "set of parts that govern the message

 exchange among parties in a conversation"
 endNonFunctionalProperties
 hasConversation ofType (0 1) sophie#conversation
 hasParts ofType (0 *) sophie#part

4.1.3 Operational Model

The operational model facilitates the means to allow the interoperation among
different behavioral models. Table 4, enumerates the entities that allow an operational
model to be defined.

logicBox = [name, URI, type, inputMessages*, inputMep?,

outputMep?, ontologyMapping?]
logicDiagram= [name, URI, inputMessageExchange?,

outputMessageExchange? logicBoxes*]
logicGroup = [name, URI, conversation?, logicDiagrams*]

Table 4: Entities of the operational model

Logic boxes constitute the key entity of the operational model. The outer most
entities of the operational model are logic groups.

 concept sophie#operational
 subConceptOf {concern}
 nonFunctionalProperties
 dc#description hasValue "operational model"
 endNonFunctionalProperties
 formalism ofType (0 *) sophie#formalism

axiom sophie#allowedOprationalFormalisms
 definedBy
 !- ?x memberOf entityType and naf ?x = sophie#FSM.

1172 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

concept sophie#logicBoxCorrespondence
 subConceptOf {formalism}
 nonFunctionalProperties
 dc#description hasValue "Logic box behavioral formalism"
 endNonFunctionalProperties
 logicBoxes ofType (0 *) sophie#logicBox
 logicDiagrams ofType (0 *) sophie#logicDiagram
 logicGroups ofType (0 *) sophie#logicGroup
 correspondenceTables ofType (0 *) sophie#correspondenceTable
 correspondenceModels ofType (0 *) sophie#correspondenceModel

concept sophie#logicBoxType
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "type of the logic box "
 endNonFunctionalProperties

axiom sophie#allowedBoxTypes
 definedBy
 !- ?x memberOf logicBoxType and naf ?x = sophie#refineBox
 and naf ?x = sophie#mergeBox

 and naf ?x = sophie#splitBox
 and naf ?x = sophie#selectBox

 and naf ?x = sophie#addBox.

concept sophie#logicBox
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "allows to solve a number of heterogeneities

 in the messages exchanged by parties"
 endNonFunctionalProperties
 type ofType (1 1) sophie#logicBoxType
 inputMessages ofType (0 *) sophie#message
 inputMEP ofType (0 1) sophie#mep
 outputMep ofType (0 1) sophie#mep
 ontologyMapping ofType (0 1) sophie#ontologyMapping

concept sophie#logicDiagram
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "set of interconnected logic boxes that model

 the relation among the message exchanges
 used by interacting parties"

 endNonFunctionalProperties
 inputMessageExchange ofType (0 1) sophie#messageExchange

1173Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 outputMessageExchange ofType (0 1) sophie#messageExchange
 logicBoxes ofType (0 *) sophie#logicBox

concept sophie#logicGroup
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "conceptual entity that allows to put together

 a number of logic diagrams that model a
 conversation"

 endNonFunctionalProperties
 conversation ofType (0 1) sophie#conversation
 logicDiagrams ofType (0 *) sophie#logicDiagram

concept sophie#correspondenceTable
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "structure containing the operational model"
 endNonFunctionalProperties
 inputMessages ofType (0 *) sophie#message
 outputMessagese ofType (0 *) sophie#message
 sophie#value ofType (0 *) sophie#value

concept sophie#correspondenceModel
 subConceptOf {entity}
 nonFunctionalProperties
 dc#description hasValue "disjunctive piece of the operational model"
 endNonFunctionalProperties

initiatitingPartyCorrespondenceTable ofType (0 1)
sophie#correspondenceTable

 answeringServiceCorrespondenceTable ofType (0 1)
sophie#correspondenceTable

4.1.4 Ontologies

The framework differentiates among three types of ontologies, namely “domain
ontologies”, “choreography model” “choreography ontologies”. Domain ontologies
facilitate the general vocabulary to describe the application domain of the parties. The
choreography model summarizes the SOPHIE concepts and ideas as presented in this
research. Finally, choreography ontologies provide the conceptual framework and
vocabulary required to semantically describe a choreography, by borrowing
terminology from the domain ontology and choreography model. Additionally
ontology mappings put in place the mechanisms to link similar ontological concepts
and instances, same for the domain and choreography ontologies.

1174 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

domainOntology = [name, URI]

choreographyOntology = [name, URI]
ontologyMapping = [name, URI, source, target]

Table 5: Entities of the semantic model

Table 5, distinguishes the different constituents of the semantic model.

 concept sophie#semantics
 subConceptOf {aspect}
 nonFunctionalProperties
 dc#description hasValue "semantic aspects"
 endNonFunctionalProperties
 hasSemanticModel ofType (0 1) sophie#semantic

 concept sophie#semantic
 subConceptOf {model}
 nonFunctionalProperties
 dc#description hasValue "semantic model"
 endNonFunctionalProperties

 concept sophie#domainMapping
 subConceptOf {formalism}
 nonFunctionalProperties
 dc#description hasValue "Domain knowledge mapping formalist formalism"
 endNonFunctionalProperties
 hasDomainOntologies ofType (0 *) sophie#domainOntology
 hasChoreographyOntologies ofType (0 *) sophie#choreographyOntology
 hasChoreographyMapping ofType (0 *) sophie#ontologyMapping

 concept sophie#ontology
 subConceptOf {entitiy}
 nonFunctionalProperties
 dc#description hasValue "ontology"
 endNonFunctionalProperties

 concept sophie#domainOntology
 subConceptOf {sophie#ontology}
 nonFunctionalProperties
 dc#description hasValue "domain ontology"
 endNonFunctionalProperties

 concept sophie#choreographyOntology
 subConceptOf {sophie#ontology}
 nonFunctionalProperties

1175Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

 dc#description hasValue "choreography ontology"
 endNonFunctionalProperties

 concept sophie#ontologyMapping
 subConceptOf {sophie#ontology}
 nonFunctionalProperties
 dc#description hasValue "domain or choreography ontology mapping"
 endNonFunctionalProperties
 hasSource ofType (0 *) sophie#ontology
 hasTarget ofType (0 *) sophie#ontology

5 Grammar of the Conceptual Model

A symbol between square brackets ([]) is not required to occur (may occur zero or one
time). A symbol between curly brackets is not required and may occur zero or more
times. A symbol not enclosed in square or curly brackets is required and may only
occur one time. The bar (|) stands for an exclusive choice. All keywords are
represented in boldface. [de Bruijn04].

conceptualModel ::= ‘ConceptualModel (‘ structure behavior operation

 semantics ‘)’
party ::= ‘Party (‘ name URI role ‘)’
name ::= identifier
URI7 ::= handler ‘/’ entity ‘/’ identifier
handler ::= identifier
entity ::= ‘party’ | ‘element’ | ‘document’ | ‘message’ | ‘mep’ | ‘messageExchange’ |

‘conversation’ | ‘state’ | ‘action’ | ‘booleanExpression’ | ‘event’ |
‘guardCondition‘ | ‘guardedTransition’ | ‘part’ | ‘choreography’ |

logicBox’ | ‘logicDiagram’ | ‘logicGroup’ ‘correspondenceTable’ |
‘correspondenceModel’
‘ontology’ | ‘domainOntology’ | ‘choreographyOntology’ |
‘choreographyModel’ | ‘sufficientSet’

role ::= ‘initiatingParty’
 | ‘answeringService’
 | ‘correlatingService’
sufficientSet ::= ‘SufficientSet (‘ name URI { entity } ‘)’
formalism ::= ‘Formalism (‘ nameFormalism { sufficientSet }‘)’
nameFormalism ::= ::= ‘MEPConversational’

 | ‘FSM’
 | ‘logicBoxCorrespondence’
structure ::= ‘Structure (‘ { formalism } ‘)’
conversation ::= ‘Conversation (‘ name URI { messageExchange } ‘)’

7 The definition of the URI has been narrowed to better accommodate the requirements of the

work.

1176 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

messageExchange ::= ‘MessageExchange (‘ name URI [mep] { message } ‘)’
mep ::= ‘mep (‘ name URI [description] ‘)’
message ::= ‘Message (‘ name URI [from] [to] { document } ‘)’
from ::= party
to ::= party
document ::= ‘Document (‘ name URI { element } ‘)’
element ::= ‘Element (‘ type name value ‘)’
type ::= ‘xs:string’
 | ‘xs:decimal’
 | ‘xs:integer’
 | ‘xs:float’

 | ‘xs:boolean’
 | ‘xs:date’
 | ‘xs:time’

value ::= valueSpace8
description ::= part
behavior ::= ‘behavior (‘{ formalism } ‘)’
choreography ::= ‘Choreography (‘ name URI [conversation] { part } ‘)’
part ::= ‘Part (‘ name URI [messageExchange] { guardedTransition } ‘)’
guardedTransition ::= ‘GuardedTransition (‘ name URI { event }

 [guardedCondition] {
action } ‘)’

guardedCondition ::= ‘GuardedCondition (‘ name URI [rule] ‘)’
rule ::= ‘Rule (if’ booleanExpression ‘then’ state ‘)’
event ::= ‘Event (‘ name URI [booleanExpression] ‘)’
booleanExpression ::= ‘BooleanExpression (’ name URI LogicalExpresion ‘)’
logicalExpression ::= expr9
action ::= ‘Action (‘ name URI [party] [message] ‘)’
state ::= ‘State (‘ name URI { subState } ‘)’
subState ::= ‘SubState (‘ state ‘)’
operation ::= ‘Operation (‘{ formalism } ‘)’
logicGroup ::= ‘LogicGroup (‘ name URI [conversation] { logicDiagram } ‘)’
logicDiagram ::= ‘LogicDiagram (‘ name URI [inputMessageExchange]

 [outputMessageExchange]
 { logicBox } ‘)’

logicBox ::= ‘LogicBox (‘ name URI boxType { inputMessage }
[inputMep] [outputMep] [ontologyMapping]‘)’

correspondenceTable ::= ‘correspondenceTable (‘ name URI
{ inputMessageExchange }
{ outputMessageExchange }

 value ‘)’

8 XSD value-space for a given data type
9 WSML expression as defined in [Fehler! Verweisquelle konnte nicht gefunden werden.]

1177Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

correspondenceModel ::= ‘correspondenceModel (‘ name URI
 [initatingPartyCorrespondenceTable]

[answeringServiceCorrespondenceTable] ‘)’
boxType ::= ‘refineBox’ | ‘mergeBox’ | ‘splitBox’ | ‘selectBox’ | ‘addBox’
inputMep ::= mep
outputMep ::= mep
inputMessageExchange ::= messageExchange
outputMessageExchange ::= messageExchange
initatingPartyCorrespondenceTable ::= correspondenceTable
answeringServiceCorrespondenceTable ::= correspondenceTable
semantics::= ‘Semantics (‘ { domainOntology } { choreographyOntology }

 [choreographyMapping] ‘)’
ontology ::= ‘Ontology (‘name URI ‘)’
domainOntology ::= ‘DomainOntology (‘ontology ‘)’
choreographyModel ::= ‘ChoreographyModel (‘ ontology ‘)’

choreographyOntology ::= ‘ChoreographyOntology (‘ ontology ‘)’
ontologyMapping ::= ‘OntologyMapping (‘name URI { source } { target } ‘)’
choreographyMapping ::= ontologyMapping
source ::= ontology | ontologyMapping
target ::= ontology
identifier ::= letter { letter | digit } | digit { letter | digit }
letter ::= ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ | ‘n’ | ‘o’ | ‘p’ |
 ’q’ | ‘r’ | s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ | ‘_’ | ‘-’ | ‘.’ | ‘/’ | ‘ :’ | ‘@’
digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ ‘5’ | ‘6’ | ‘7’ | ‘8’ |

6 Use case: BT Wholesale KM Operational Support System

SOPHIE10 has provided the paradigm used to define the choreographies of the trading
partners and BT as Wholesale Provider in the context of the DIP project11. Using the
previously defined domain ontology and the choreography ontology model, it is
possible to specify a choreography that depicts the structural and behavioral models.
To do so, it imports from both (domain and model choreography) ontologies.

Figure 2 shows the MEPs followed by both interacting parties. If the service
provider were to use a different MEP and terminology than BT Wholesale, then the
operational model of SOPHIE can be applied. In this case, the Service Provider uses
the message exchange tPontTestRequest following the MEP request-response while
BT Wholesale makes use of the message exchange eCoTestRequest following the In-
Multi-Out one. More concretely, the Service provider starts the message exchange
with the MRequest message, while BT Wholesale expects the message testRequest.
Additionally, BT provides two different response message (failure and success),

10 The evaluation focuses at the message exchange level as it is considered enough to prove the

consistency of the model. In later versions of the work, probably full conversations will be
exemplified.

11 http://dip.semanticweb.org/

1178 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

indicating whether the test was accepted or rejected, and if accepted, the result of the
test, while the Service Provider awaits the reception of a single message named
MCompleted accounting for both of them.

Figure 2: Request-Response and In-Multi-Out Message Exchange Pattern

Elements

testPerformer (testPerformerCustomerID,
 testPerformerPartyID),
testConductor (testConductorAgencyID,
 testConductorPartyID),
testReference (testIdentifier, testDate),
testCategory,
testParam1, testParam2, …, testParamn,
testResult1, testResult2,…, testResultn,
testOK

Documents

DRequest, DCompleted

Messages

MRequest, MCompleted

Documents-Elements mapping

DRequest.{ testPerformer, testConductor,
 testReference, testCategory,
 testParameters}
DCompleted.{ testReference, testCategory,
 testOK, testResults }

Messages-Documents

mapping

MRequest.{ DRequest }
MCompleted.{ DCompleted }

Table 6: Service Provider structural model

MCompleted

MRequest

testRequest

failure

success

 Service Provider BT Wholesale

1179Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

6.1 Structural Model

The service provider follows the message exchange pattern “request-response” based
on the structural model12 tPontStr, detailed in Table 6.

The test conductor follows the message exchange pattern “in-multi-out” which
uses the structural model eCoStr, detailed in table 7.

Elements

performer (customerID, performerPartyID),
conductor (agencyID, conductorPartyID),
reference (identifier,date),
category,
parameter1,parameter2, …, parametern,
result1, result2,…,resultn,
accepted

Documents

requestDoc, successDoc, failureDoc

Messages

testRequest, failure, success

Documents-Elements mapping

requestDoc.{ performer, conductor,
 reference, category,
 parameters }
successDoc.{ reference, category,
 accepted, results }
failureDoc.{ reference, category, accepted }

Messages-Documents mapping

testRequest.{requestDoc }
success.{ successDoc }
failure.{ failureDoc }

Table 7: BT Wholesale structural model

Service Provider

BT Wholesale

Actions

sendMRequest

outFailure,
outSuccess

Boolean Expressions

receiveMCompleted

recTestRequest

Table 8: Behavioral model of both parties

12 With the aim of facilitating the reader understanding testPerformer, testConductor,

testReference are presented at this point as complex data structure. However, as far as
SOPHIE concerns they are single elements, built as a result of the concatenation of their
constituents. The same principle applies to the elements performer, conductor and reference
of the BT Wholesale structural model.

1180 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

6.2 Behavioral Model

As far as the behavioral model concerns, Table 8 depicts the most relevant entities
required to assert interoperability among the behavioral models tPontBhv and
eCoBhv.

In [Arroyo, 07] the complete ontologies that describe the domain knowledge and
choreographies of both parties are carefully depicted.

7 Conclusion and future work

This paper has presented the ontology and grammar of SOPHIE, an extensible
knowledge management conceptual framework that is especially suitable for
supporting the fine grained interaction among services following different structural,
behavioral or semantic models. SOPHIE elaborates on current existing initiatives
trying to rise above their limitations with the addition of a computational semantics
and a clear separation of concerns that help to overcoming intrinsic service
heterogeneity. On the one hand, the SOPHIE ontology allows to semantically
drescribing the conversational patterns of intereacting services, with the aim of, as a
result of a reasoning task, producing the intermediate models that enable
communication among heterogeneous parties in knowledge intensive settings. On the
other hand, the clear separation of concerns facilitates to easily change, add or modify
the different underlying formalisms, without impacting other concerns or the
architecture itself.

The applicability of SOPHIE as semantic framework for the integration of
choreographies has been demonstrated, as a solution to the compatibility of data and
interchange details between parties engaged in business collaboration. SOPHIE can
thus be considered an extension to existing languages and formalisms dealing with
choreography that allows the reconciliation of divergences that are common in
concrete implementation of typical scenarios. A detailed example of such capability
centred in KM for the Telecomunications field.

The mapping provided in this paper can be further extended and revised for
concrete application profiles, and it is essentially intended to provide a concrete
realization of an existing ontology of KM [Holsapple04], thus sharing with it the
objective of providing a foundation for systematic KM research study and practice.

Future work should deal with improving the abilities of the choreography service,
by extending the different conceptual models with the addition of new formalisms
remains open. Also, the definition of a mapping language that permits executing an
operational model in traditional workflow engines represents an interesting research
field. Areas of this work that definitely need to be researched are the assessment of
performances, QoS and security, as the discussion about these topics is well out of the
scope of this work. In addition to that, the extension to support different
communication frameworks constitutes an interesting research area.

1181Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

Acknowledgements

The work is funded by the European Commission under the project LUISA (IST –
FP6-027149), and by the Comunidad Autónoma de Madrid under the project
PAWSEL funded by the CAM-PRICYT program.

References

[Arroyo, 07] Arroyo, S (2007). SOPHIE: A choreography framework for semantic services.
PhD Thesis.

[Arroyo, 06] Arroyo, S., López Cobo, J.M. and Sicilia, M. (2006). Patterns of Message
Interchange in Decoupled Hypermedia Systems. Journal of Networks and Computer
Applications. 2006 (to appear).

[Arroyo, 06] Arroyo, S., Duke, A., López-Cobo, J. M. and Sicilia, M. A. (2006). A Model-
driven Choreography Conceptual Framework. Computer Standards & Interfaces. 2006 (to
appear).

[Booch, 99] Booch, G., Rumbaugh, J., and Jacobs, I.: “The Unified Modelling Language User
Guide, Addison-Wesley, 1999.

[de Bruijn, 04] de Brujin, J. (editor), Polleres, A., Lara, Ruben, Fensel, D.: “D20.3 v0.1 OWL
Flight” WSML Working draft, http://www.wsmo.org/2004/d20/d20.3/v0.1/20040823/, 2004.

[Fensel, 01] Fensel, D.: “Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce”, Springer-Verlag, Berlin, 2001.

[Gruber, 93] Gruber, T. R. (1993). A Translation Approach to Portable Ontology
Specifications, Knowledge Acquisition, 5:199-220, 1993.

[Holsapple, 04] C.W. Holsapple, K.D. Joshi, A formal knowledge management ontology:
Conduct, activities, resources and influences, Journal of the American Society for Information
Science and Technology 55 (7) (2004) 593–612.

[Maedche, 03] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz, Ontologies for
enterprise knowledge management, IEEE Intelligent Systems 18 (2) (2003) 26–33.

[Marwick, 01] A.D. Marwick, Knowledge management technology, IBM Systems Journal 40
(4) (2001) 814–830.

[Mohame, 04] A. Mohame, S. Lee, S. Salim, An ontology-based knowledge model for software
experience management, Journal of Knowledge Management Practice 5 (2004).

[Roman, 04] Roman, D., Scicluna, J., Feier, C., (eds.) Stollberg, M and Fensel, D.: “D14v0.1.
Ontology-based Choreography and Orchestration of WSMO Services”,
http://www.wsmo.org/TR/d14/v0.1/, March, 2005.

[Roman, 04] Roman, D., Lausen, H. and Keller, U. (eds): Web Service Modeling Ontology.
WSMO Working Draft v0.3. http://www.wsmo.org/2004/d2/v1.0/, 2004.

[Sicilia, 06] Sicilia, M. A. Lytras, M., Rodríguez, E., García-Barriocanal. (2006).Integrating
descriptions of knowledge management learning activities into large ontological structures: A
case study. Data & Knowledge Engineering 57 (2006) 111–121.

1182 Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

[Wagner, 06] Wagner, F. (2006). Modeling Software with Finite State Machines: A Practical
Approach", Auerbach Publications.

1183Arroyo S.: Ontology and Grammar of the SOPHIE Choreography ...

