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Abstract: Multi-processor systems have become the standard in current computer 
architectures. Software developers have the possibility to take advantage of the additional 
computing power available to concurrent programs. This paper presents a way to automatically 
use additional processors, by performing memory management concurrently. A new 
architecture with little explicit synchronization for concurrent lazy cyclic reference counting is 
described. This architecture was implemented and preliminary performance tests point at 
significant efficiency improvements over the sequential counterpart. 
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1 Introduction  

Automatic memory management (often called garbage collection) has become 
widespread in current programming systems as witnessed by the wide adoption of 
garbage-collected execution environments such as Sun Java and Microsoft .NET 
platform. Automatic memory management programming systems improve 
programmer productivity and the reliability of resulting programs by relieving 
programmers from the burdensome and error prone task of having to manage memory 
manually [Jones and Lins, 1996].  

Most current systems, implemented on sequential architectures, use a sequential 
garbage collector, where memory management tasks alternate with tasks related to the 
user process; these two tasks are never executed concurrently. However, current 
trends in processor design and marketing indicate that single-chip multiprocessors are 
becoming of widespread use in recent computer systems. Such change in computer 
architecture opens the possibility of taking advantage of the extra computing power 
available. Executing memory management tasks concurrently with the user processes, 
programs can automatically take advantage of the available processors on a computer, 
with no changes required to the user programs. 

Reference counting, first developed by G.E. Collins [Collins, 1960], is one of the 
main methods for automatic memory management. This paper proposes a new 
architecture for a concurrent reference counting memory management system, based 
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on a similar proposal by Lins [Lins, 2005]. The motivation for a new architecture was 
the need to minimize explicit synchronization between the collector and the rest of the 
program, particularly to avoid the use of locks; Lins’ original proposal was the basis 
of the garbage collector of several commercial machines, but their code was never 
freely available. The architecture proposed herein was implemented in a real 
programming system, and preliminary performance tests show promising gains in 
overall performance of programs. 

This paper is organized as follows: Section 2 briefly presents the reference 
counting algorithm in its simplest form and some milestones in its development, 
leading to previous architectures for parallel and concurrent reference counting, some 
of which were used as the basis for the one presented here; Section 3 details the new 
architecture for concurrent reference counting on multiprocessors that minimizes 
explicit synchronization, and emphasizes its differences in relation to its predecessors; 
the architecture in Section 3 is limited to one collector and one user process, thus 
Section 4 suggests ways in which the proposed architecture may be extended to work 
with multiple user processes, and multiple collector processes; finally, Section 5 
presents the current implementation of the proposed architecture and the results of 
some initial performance measurements. 

2 Reference Counting 

The reference counting method consists of associating with each object in the heap a 
counter that stores the number of references to it. An object is active when it is 
currently in use and somehow accessible by the user program, which is indicated by it 
being transitively connected by references to one of the roots of the computation. The 
user process alters the connectivity of the objects both increasing and decreasing their 
reference count. Whenever the counter of an object reaches zero, it means that it is no 
longer active thus it is garbage and may be reclaimed to be later reused. It is usual to 
consider the heap as organized in a directed graph, where objects are the nodes and 
references are the edges. After Dijkstra [Dijkstra et al., 1976] it is common to call 
mutator the part of the program that is concerned with the user process and collector 
the garbage collection system. 

A distinctive advantage of reference counting over other methods of garbage 
collection is that its operations are interleaved with mutator activity, resulting in a 
technique that is naturally incremental. Other techniques, like mark-scan [McCarthy, 
1960] and copying collection [Fenichel and Yochelson, 1969], require that the 
mutator stops for some time while the collector performs its work; this leads to pauses 
in interactive systems, which may be a nuisance. However, standard reference 
counting has a serious drawback: it can not reclaim cyclic data structures, as noticed 
by J.H.McBeth in 1963 [McBeth, 1963]. Thereafter, many solutions to this problem 
were proposed, but either they were not general-use, or were actually a proposal to 
use two memory management systems, one of them solely to reclaim cycles. The first 
general solution to the problem of reference counting cyclic structures was published 
in 1990 by Martinez, Wachenchauzer and Lins [Martinez et al., 1990]; the idea is to 
identify points in the graph where cycles can be formed, and perform from there a 
local mark-scan to detect potential space-leaks, garbage cycles. In subsequent papers, 
Lins extended this solution in many ways, for instance by making the local cycle 
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analysis lazy [Lins, 1992a] and by identifying critical points in the graph that could 
speed up the analysis [Lins, 2002]. 

To keep track of the state of local analysis in a local mark-scan, objects have to 
maintain not only a reference count, but also a color. The current color of a cell 
indicates its state regarding the local mark-scan. 

Lins also developed a series of parallel reference counting algorithms targeted at 
multi-threaded or multi-processor systems [Lins, 1991; Lins, 1992b; Lins, 2005], but 
none of them were implemented in real multi-processor architectures. However, they 
were the basis for the two IBM Java machines implemented at IBM-T.J.Watson 
[Bacon et al., 2001] and IBM-Haifa [Levanoni and Petrank, 2006]. The architecture 
presented in this paper is based on the latest version of Lins’ algorithm for parallel 
multi-processed lazy cyclic reference counting [Lins, 2005], detailed in the next 
section. This new architecture was implemented, with promising performance results, 
as detailed in Section 5 of this paper. 

3 The Proposed Architecture 

The new architecture proposed in this paper, in its basic version, is designed to use 
two processors executing concurrently: the mutator and the collector. Figure 1 shows 
a schematic view of this architecture. The two processes share access to three queues: 
a list of free objects, an increment queue and a decrement queue. The mutator alters 
graph connectivity getting memory from the free-list whenever a new object is 
created. When new references are made, the mutator inserts increment requests onto 
the increment queue; likewise, when references are destroyed, the mutator inserts 
decrement requests onto the decrement queue. The collector manages memory, 
removing and processing requests for increment and decrement from the appropriate 
queues and detecting when objects become garbage; when this happens, memory 
reclaimed from garbage objects is added to the free list. A detailed presentation of 
how the algorithm works is presented in the next subsections. For a matter of 
simplicity of the management of the free-list, it is considered that objects are fixed-
size cells. 

3.1 Mutator Operations 

From the point of view of garbage collection, the mutator can only create new objects 
(getting cells from the free-list), create new references to objects, or destroy existing 
references to objects. Besides standalone operations for creation and destruction of 
references, it’s often useful to have a single update operation that combines the 
deletion of a reference to an object and the creation of a reference to another object – 
e.g., when a pointer that references an object is changed to point to another one – a 
reference to the former object is destroyed, while the latter has a new reference to it. 
So, in this model the mutator performs three operations: 

• New – to allocate new cells, getting them from the free list 

• Del(S) – used when a reference to cell S is destroyed; generates a 
decrement request 
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• Update(R, S) – used to update a reference from object R to object S 
 

 

Figure 1: Basic architecture for concurrent reference counting with one mutator and 
one collector  

The mutator never changes directly the reference count of a cell, nor its color. All 
memory management is done by the collector. This has implications for the necessary 
synchronization of mutator and collector, as will be seen later. 

The algorithm for operation New is presented below. The mutator simply checks 
the existence of cells in the free list and gets one if available; otherwise it remains 
busy waiting for new cells. This is reasonable, because in this case the mutator can 
not continue its computation, and must wait for the collector to make cells available. 

 
New() =  
   if not empty(free-list) then 
      newcell := get_from_free_list() 
   else  
      newcell := New() 
   return newcell 
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The operation Del is even simpler than in standard reference counting: the 
mutator only inserts a new decrement request into the decrement queue. The collector 
takes care of the remaining graph adjustment. 

 
Del(S) =  

   add_decrement(S) 
 
Finally, Update must replace a reference by another, thus it must call Del to 

notify the destruction of a reference, and insert a reference onto the increment queue. 
 

Update(R, S) =  
   Del(*R) 
   add_increment(S) 
   *R := S 

 
It is easy to see in the operations above that the mutator only removes cells from 

the free list (actually organized as a queue) and inserts elements onto the increment 
and decrement queues. This results in simpler management of the three queues, 
shared by two concurrent processes. 

3.2 Collector Operations 

The memory management responsibilities, for a reference counting system, are to 
keep track of reference counts and detect when objects become garbage. It is also 
necessary to manage the cycle analysis, performed by the local mark-scan procedures. 
In the proposed architecture, the collector must process increment and decrement 
requests placed on the corresponding queues; adjust reference counts accordingly; 
detect any cells that have become garbage and insert them onto the free list; and 
besides that to keep track of possible cyclic structures that may have become garbage. 
This outline of how the collector works is reflected in its main operation, 
Process_queues, detailed below. 

The analysis of cyclic structures requires that cells must have one of three 
possible colors: green, red and black. Green cells are active cells that are not 
scheduled for a local mark-scan. Red cells are currently under a local mark-scan. 
Finally, black cells are marked and scheduled for a local mark-scan at some point in 
the future. Only shared cells may be part of a cycle, and such a cycle becomes 
garbage when a shared cell has its reference count decremented. This means that 
when a cell has its reference counted decremented to a value greater than zero, it must 
be marked for future analysis. Cells that were marked for a local mark-scan are kept 
in a data structure called the status analyzer. It is a collection of cells that were 
marked black and must be analyzed later on. The original algorithm by Martinez, 
Wachenchauzer and Lins [Martinez et al., 1990] was eager: whenever a shared cell 
had its counter decremented, it was immediately analyzed with a local mark-scan. 
Experience has proved that doing the analysis lazily, as proposed by Lins [Lins, 
1992a], yields far better performance. 

When a cell in the status analyzer is selected, a local mark-scan takes place: the 
cell and its sub-graph is painted red and their reference counters are decremented, 
eliminating references that are internal to this sub-graph. If there remain cells with 
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reference counter greater than zero at the end of this red-marking phase, it means that 
there are external references to the sub-graph, thus it is necessary to paint cells green 
and restore their counters. If no red cell in the sub-graph has a counter greater than 
zero, the whole sub-graph is a garbage cycle and must be collected so that the cells 
can be returned to the free list. The status analyzer is also used to keep objects that are 
critical points in the object graph, points that when analyzed will allow the algorithm 
to decide in less steps whether a sub-graph is cyclic garbage or not. This is a very 
brief description of the cyclic reference counting algorithms developed by Lins. For 
further details one may refer to [Lins, 2002]. 

The main operation in execution by the collector is Process_queues, whose 
basic function is to process requests for increment and decrement of reference counts, 
getting them from the appropriate queues. Adjustment of reference counter in objects 
will then trigger most other actions of the collector, like freeing the memory occupied 
by garbage objects and marking objects for cycle analysis. The only operation that 
will not be triggered by adjusts in reference counters is scanning the status analyzer to 
detect cycles, so this is included in Process_queues: it first processes the 
increment queue, taking increment requests from it and performing them (cells are 
assumed to have a reference counter field rc and a color field color); then it 
processes the decrement queue, calling operation Rec_del to destroy a reference; 
finally, after processing both queues, the status analyzer is processed by a call to 
scan_status_analyzer. Operation Rec_del must be used to delete a 
reference because if the cell has its counter hit zero, all its outgoing references must 
be deleted recursively. The operation Process_queues is defined by the following 
pseudo-code listing: 

 
Process_queues() =  
   while not empty(inc-queue) 
      S := get_increment() 
      S.rc := S.rc + 1 
      S.color := green 
   if not empty(dec-queue) then 
      S := get_decrement() 
      Rec_del(S) 
   else 
      scan_status_analyzer() 
   Process_queues() 

 
The recursive reference deletion operation, Rec_del, is defined so that it first 

checks to see if the removed reference is the last one to the object; in this case, it must 
be deleted and its outgoing references removed recursively; the field children in a 
cell is supposed to be a collection of all its outgoing references. If the cell has a 
reference count with value greater than one, it is either a potential candidate to have 
an external reference transitively connecting it to root or being a knot-tying point to a 
cycle, and thus it must be painted black and added to the status analyzer; a later scan 
of the status analyser will reveal which one is the case. Thus, the complete definition 
of this function is:  
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Rec_del(S) =  
   if S.rc == 1 then 
      S.color := green 
      for T in S.children do 
         Rec_del(T) 
      add_to_free_list(S) 
   else 
 S.rc := S.rc - 1 
      if S.color != black then 
         S.color := black 
         add_to_status_analyzer(S) 
 

The remaining operations of the collector are all related to the analysis and 
detection of cyclic garbage. scan_status_analyzer will be called whenever 
there are no increment or decrement requests to be processed (in the worst case, it will 
be called because of memory exhaustion – the mutator will be blocked if it can not 
allocate a new object). Its definition is presented below. When a cell S is in the status 
analyzer, it may be either black or red. If it is black, a local mark-scan is scheduled to 
be performed in the sub-graph below S. Operation mark_red is called to start the 
local analysis. If the cell is red, it means it was identified in mark_red as a critical 
point that may be connected to external references; its counter is checked, and if it is 
greater than zero the sub-graph below it is active, so it is necessary to undo the effects 
of operation mark_red by calling scan_green. The function calls itself 
recursively, looking for further items to process; if there are none left, the remaining 
cells still colored red are garbage in cyclic structures, so collect is called to 
recycle them. 

 
scan_status_analyser () =  
   S := select_from(status_analyser) 
   if S == nil then return 
   if S.color == black then 
      mark_red(S) 
   if S.color == red && S.rc > 0 then  
      scan_green(S) 
   scan_status_analyser () 
   if S.color == red then  
      collect(S) 

 
mark_red performs the red-marking phase of the local mark-scan. It tests if the 

cell is red, coloring it red if not; then the reference counter of all its children (objects 
referenced by it) is decremented, canceling references that may be internal to a cycle. 
mark_red is called recursively through the whole sub-graph of S. If a cell is already 
painted red – which means it already had its reference counter decremented – and still 
has a counter with value greater than zero, it is a critical point in the graph that may 
be connected to external references. Adding it to the status analyzer will speed up the 
process of deciding if a sub-graph is a garbage cycle or not [Lins, 2002]. This 
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accounts for red-colored cells found in the status analyzer, as seen previously while 
describing scan_status_analyzer. 

 
mark_red(S) =  
   if S.color != red then  
      S.color := red 
      for T in S.children do 
         T.rc := T.rc - 1 
      for T in S.children do 
         if T.color != red then 
            mark_red(T) 
         if T.rc > 0 && T not in status-analyzer then 
            add_to_status_analyser(T) 

 
If a sub-graph is found to have external references, it is necessary to restore 

counters decremented by mark_red; This is the task of scan_green. It paints a 
cell green and increments the counter of its children. 

 
scan_green(S) =  
   S.color := green 
   for T in S.children do 
      T.rc := T.rc + 1 
      if T.color != green then 
         scan_green(T) 

 
The only remaining operation to be described is collect, whose 

responsibility is to free the memory associated with each garbage object detected in a 
sub-graph. Its definition is shown below. Cells returned to the free list are painted 
green and assigned a reference counter with value 1, to simplify cell initialization 
when they need to be later reallocated. 

 
collect(S) =  
   for T in S.children do 
      Delete(T) 
      if T.color == red then 
         collect(T) 
   S.rc := 1 
   S.color := green 
   add_to_free_list(S) 

 

3.3 Synchronization 

Now that the operations of both processes were described, it is now considered how 
they can work concurrently in a safe and efficient manner. These operations were 
adapted from the sequential version of the cyclic reference counting algorithm [Lins, 
2002], and the whole architecture presented here was based on that of Lins [Lins, 
2005]. Lins’ architecture used only two shared queues between collector and mutator, 
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the free list and a decrement queue (called a delete queue in the original paper). The 
result is that both collector and mutator read and update reference counts in cells, so 
this configures a potential interference between them [Andrews, 1999]. Lins dealt 
with this by assigning priorities to the processors, so that one would always be 
allowed to access reference counter fields before the other in a situation of contention. 
This would be a good solution, if current hardware provided a way to ensure the 
priorities. However, this is not the case in current shared-memory multi-processor 
architectures, so implementing Lins’ architecture in current hardware would create the 
necessity of explicit synchronization between collector and mutator when reading or 
updating reference counts in cells, and as these are frequent operations, the overhead 
involved with synchronization would compromise performance. The architecture 
presented here solves this by using a technique of disjoint variables [Andrews, 1999], 
where only the collector reads and updates the values of reference counts in cells, and 
only the mutator changes the value of references in the memory graph. This works by 
having two queues, one for requests for increment and another for requests of 
decrements, shared between the two processes. The resulting architecture has little 
need for explicit synchronization. None is needed for reads and updates of reference 
counts or reads or updates of pointers. 

A remaining concern regarding synchronization is about the three shared queues. 
Although it is not described here, there are known ways to implement concurrent 
queues with little need for explicit synchronization, especially for the case of a single 
reader and single writer [Valois, 1994]. The chosen implementation of concurrent 
queues will dictate how operations like add_increment, add_decrement, 
get_from_free_list and their counterparts will be ultimately implemented. 

 

Figure 2: Architecture for concurrent reference counting with more than one mutator 
process 
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4 Multiple Mutators and Collectors 

In Section 3 the basic architecture for concurrent reference counting was presented, 
considering a designation of one process as the mutator and one as the collector. In 
many programs, it may be desirable to have more than one mutator or thread 
executing concurrently, thus the architecture is now generalized. Figure 2 shows a 
schematic version of this multi-mutator architecture. 

The main difference in relation to the single mutator version is that now all 
mutators must share access to one end of the three queues. To accomplish this, 
mutator processes no longer access the queues directly, but through shared registers, 
called top-free-list, bot-dec-queue and bot-inc-queue. Access to 
these registers must be synchronized to avoid interference; this can be done by using 
compare-and-swap type operations, present in hardware in most current processors. 
Implementation of lock-free queues with many readers (for the free list) or many 
writers (for the request queues) is still possible [Valois, 1994]. Otherwise, the 
algorithms work just like the single mutator case. In particular, the collector does not 
need any changes to accommodate this architecture. 

Another direction of extension to the architecture presented in Section 3 is to 
allow for many collector processes to work cooperatively in a parallel garbage 
collection architecture. This could be combined with the suggestions for multiple 
mutators to obtain a multi-mutator, multi-collector architecture. The issues involved 
in such architecture, however, are more complicated and include greater problems of 
interference and load-balancing between collectors, and between them and the 
mutators. This possibility is not considered further in this paper. Previous work by 
Lins [Lins, 2005] presents such architecture in greater detail. 

The multimedia retrieval is completely separated from the multimedia database, 
according to the objective of modularity. In our prototype a Web interface is used to 
specify queries and to display the search results. The Web server forwards the queries 
of each user to a broker module. This broker communicates with the multimedia 
database, groups received search results, and caches binary data. The usage of broker 
architecture makes it possible to integrate other (e.g. text) databases or search engines 
by simply adding the brokers of these data sources to the Web server. Vice versa also 
other search engines can have access to the multimedia database by using the broker 
from this system. 

5 Implementation and Results 

The architecture of Section 3 was implemented as the garbage collection sub-system 
for a programming language. A compiler for a lazy, purely functional programming 
language (similar to a subset of Haskell) was written to generate benchmarks for the 
implemented garbage collection system. The compiler uses well-known techniques 
for implementation of functional programming languages [Peyton-Jones, 1987] and 
generates code for an execution environment similar to the G-machine; this runtime 
environment includes an implementation of the garbage collector described in Section 
3. 

826 Formiga A.A., Lins R.D.: A New Architecture ...



This implementation was used in experiments to assess the performance of the 
new architecture with relation to the sequential version of the same algorithm. Table 1 
shows the results for execution of six test programs compiled to work with a 
sequential reference counting algorithm. All tests were executed in a single 1.6GHz 
Athlon MP computer with 2 processors and 512Mb of RAM, with a free list of 5000 
cells and a status analyzer structure that could hold a hundred items. 

 
Benchmark alloc scan_sa mark_red scan_green collect time(s) 
acker 253175 4013 40574 40127 447 0,0351 
conctwice 42834 521 5468 5406 62 0,005 
fiblista 14837640 27892 857421 836317 21104 3,0812 
recfat 335959 4985 49872 49338 534 0,0872 
somamap 94309 1356 10521 10409 112 0,0473 
somatorio 35298 499 4987 4933 54 0,0274 

Table 1: Results for the execution of six test programs  
with sequential reference couting 

The tests where selected for being highly recursive programs, and in some cases 
for using many list objects. Recursion was implemented by knot tying the Y-
combinator, yielding cycles in the graph-reduction machine [Turner 79] which is part 
of the execution environment. Programs with many recursive calls generate many 
cycles, exercising the cycle analysis capabilities of the algorithm. The last column on 
Table 1 reports overall execution (CPU) times, in seconds. The other columns list the 
number of calls to operations related to memory management: the alloc column 
contains the number of allocated cells during the execution of the program; scan_sa 
is the number of calls to scan_status_analyzer; mark_red, scan_green and 
collect each record the number of times the respective operations were called. 

The results on Table 1 make sense only when compared with those of Table 2, 
which shows results for the same tests, but executed in a system with the concurrent 
reference counter algorithm of Section 3. The meaning of the columns is the same. 

 
Benchmark alloc scan_sa mark_red scan_green collect time(s) 
acker 253175 9304 57966 57434 532 0,025 
conctwice 42834 897 7210 7127 83 0,0038 
fiblista 14837640 35112 956874 935527 21347 2,732 
recfat 335959 11421 112663 112075 588 0,0702 
somamap 94309 1647 11896 11773 123 0,0298 
somatorio 35298 532 6052 5980 72 0,0208 

Table 2: Results for the execution of six test programs 
with concurrent reference counting 

 
The two tables show that the number of calls for memory management functions 

is greater in the concurrent architecture. This happens because the collector calls 
scan_status_anlyzer every time the increment and decrement queues are both 

827Formiga A.A., Lins R.D.: A New Architecture ...



empty, while the sequential version only examines the status analyzer whenever there 
are no free cells [Lins, 2002]. However, overall execution times where, on average, 
about 20% smaller for the concurrent reference counting system, in relation to the 
sequential version. Albeit these performance results are preliminary – for example, 
the total execution time of the benchmark programs above is still too small – they 
indicate that the concurrent architecture of Section 3 represents a performance gain to 
programs that use it, without any need to alter the source code of user programs; 
besides, such a garbage collector uses better the available hardware in multi-processor 
systems, even when the executing programs are not concurrent themselves. 

6 Conclusions and lines for further works 

This paper presented a new architecture for concurrent lazy cyclic reference counting 
on multi-processor systems, targeted for implementation on current commercial 
hardware and with less need for explicit synchronization than its predecessors. This 
architecture was implemented in a 1.6GHz Athlon MP computer with 2 processors 
and 512Mb of RAM. A lazy functional compiler was developed, together with the 
garbage collection subsystem, and its performance was tested against the sequential 
version of the same algorithm. Six benchmarks were used to test the performance of 
the architecture proposed.  A rise in throughput of about 20% was observed between 
the sequential and the concurrent version for the programs tested.  

The implementation of the language and the garbage collector serves as a test bed 
for further and more complex benchmarks as well as allowing for the possibility of 
testing different garbage collection strategies. Considering that the architecture 
proposed in this paper was based on a previous proposal by Lins [Lins, 2005], a 
comparison between both versions would be interesting to verify the real gains 
achieved after minimizing the amount of required synchronization. However, Lins’ 
architecture was never implemented; this is planned for future works. Another 
direction for further investigation is the use of more computer intensive benchmark 
programs – preferably real-world programs – that could provide more realistic figures 
on how the proposed algorithms would behave in production situations. In a recent 
paper Lins and Carvalho Jr. [Lins and Carvalho, 2007] introduce the notion of 
“permanent” or “tenured” objects to cyclic reference counting, making the local 
mark-scan more efficient. The extension of the architecture presented herein to 
encompass such objects is on progress. 

The source code for the benchmarks, compiler and garbage collector may be 
found at: http://postele.homelinux.net/~andrei/faul.tar.gz. 
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