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Abstract: The recent interest in isolating real roots of polynomials has revived inter-
est in computing sharp upper bounds on the values of the positive roots of polynomials.
Until now Cauchy’s method was the only one widely used in this process. Ştefănescu’s
recently published theorem offers an alternative, but unfortunately is of limited appli-
cability as it works only when there is an even number of sign variations (or changes)
in the sequence of coefficients of the polynomial under consideration. In this paper
we present a more general theorem that works for any number of sign variations pro-
vided a certain condition is met. We compare the method derived from our theorem
with the corresponding methods by Cauchy and by Lagrange for computing bounds on
the positive roots of polynomials. From the experimental results we conclude that it
would be advantageous to extend our theorem so that it works without any restrictive
conditions1.
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1 Introduction

Computing an upper bound, ub, on the values of the (real) positive roots of a
polynomial p(x) is a very important operation because it can be used to isolate
these roots—that is, to find intervals on the positive axis each containing exactly
one positive root.

As an example, suppose that the positive roots of p(x) lie in the open interval
]0, ub[ and that we have a test for determining the number of roots in any interval
]a, b[. Then, we can isolate these roots by repeatedly subdividing the interval
]0, ub[ until each resulting interval contains exactly one root and every real root
is contained in some interval. This bound, ub, is of practical use because we now
work with a definite interval ]0, ub[, instead of ]0, +∞[.
1 Note added in proof : In the mean time the above mentioned theorem was extended

by Akritas, Strzebonski, and Vigklas, (in their paper: “Implementations of a New
Theorem for Computing Bounds for Positive Roots of Polynomials”; Computing, 78,
(2006), 355–367 ) so that it now works in all cases; this extension was achieved by
introducing the concept of breaking up a positive coefficient into several parts to be
paired with “unmatched” negative coefficients of lower order terms.
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Obviously, the sharper the upper bound, ub, the more efficient the real root
isolation method becomes, since fewer bisections will be performed. Please note
that the bisection method uses the upper bound only once and imagine the
savings in time that would occur if an isolation method depends heavily on
repeated computations of such bounds!

Such is the case with the continued fractions method for isolating the positive
roots of polynomial equations. This method is based on Vincent’s theorem of
1836, [Vincent 1836], which states:

Theorem 1. If in a polynomial equation, p(x), with rational coefficients and
without multiple roots we perform sequentially replacements of the form

x← α1 + 1
x , x← α2 + 1

x , x← α3 + 1
x , . . .

where α1 ≥ 0 is an arbitrary non negative integer and α2, α3, . . . are arbitrary
positive integers, αi > 0, i > 1, then the resulting polynomial either has no sign
variations or it has one sign variation. In the last case the equation has exactly
one positive root, which is represented by the continued fraction

α1 + 1
α2+ 1

α3+ 1

...

whereas in the first case there are no positive roots.

Note that if we represent by ax+b
cx+d the continued fraction that leads to a trans-

formed polynomial f(x) = (cx + d)np(ax+b
cx+d ), with one sign variation, then the

single positive root of f(x)—in the interval (0,∞)—corresponds to that positive
root of p(x) which is located in the open interval with endpoints b

d and a
c . These

endpoints are not ordered and are obtained from ax+b
cx+d by replacing x with 0 and

∞, respectively. See the papers by Alesina & Galuzzi, [Alesina and Galuzzi 1998]
and Chapter 7 in [Akritas 1989] for a complete historical survey of the subject
and implementation details respectively.

Therefore, with Vincent’s theorem we can isolate the (positive) roots of a
given polynomial p(x). The negative roots are isolated—as suggested by Sturm—
after we transform them to positive with the replacement x ← −x performed
on p(x). The requirement that p(x) have no multiple roots does not restrict the
generality of the theorem because in the opposite case we first apply square-free
factorization and then isolate the roots of each one of the square-free factors.

There are two ways for computing the partial quotients αi —and, there-
fore, two ways for isolating the positive roots of p(x) using continued fractions.
The first method was developed by Vincent in 1836, whereas the second was
developed by Akritas in his Ph.D. thesis (1978).
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In his 1836 paper Vincent demonstrates his method for computing the partial
quotients (exponential behavior) with several examples. In all of these examples
he computes a partial quotient αi with unit increases of the form αi ← αi + 1.
Each one of these increases corresponds to the replacement x← x + 1 which is
performed on some polynomial f(x).

During this process Vincent uses Budan’s theorem, [Akritas 1982], in order
to determine when the computation of one partial quotient αi (whose initial
value is set to 0) has been completed, so that he can move on to the computation
of the next one. To wit, Vincent keeps performing replacements of the form
x ← x + 1 (and unit increases of the form αi ← αi + 1) until he detects sign
variation losses in the polynomials f(x + αi) and f(x + αi + 1). Then, and only
then, does Vincent perform the replacement of the form x ← 1

x+1 , in order to
start the computation of the next partial quotient αi+1.

Vincent’s method is exponential—something that was first observed by Sturm
and then by Uspensky. The exponential behavior appears only in the cases of very
large partial quotients αi. However, for small αi Vincent’s method is astonish-
ingly fast; see Tables 1 and 3 in [Akritas and Strzebonski 2005] for experimental
results, which were independently verified in the SYNAPS implementation of
the CF method by Emiris and Tsigaridas, [Tsigaridas and Emiris 2006].

In 1978, [Akritas 1978], [Akritas and Strzebonski 2005], it was realized that
each partial quotient αi is the integer part of a real number—i.e. αi = �αs�,
where αs is the smallest positive root of some polynomial f(x)—and, hence,
that it can be computed as the lower bound, �b, on the values of the positive
roots of a polynomial. So assuming that �b = �αs� the exponential behavior of
the continued fractions method can be eliminated by setting αi ← �b, �b ≥ 1,
and performing the replacement x ← x + �b, �b ≥ 1— which takes about the
same time as the replacement x← x + 1.

A lower bound, �b, on the values of the positive roots of a polynomial f(x),
of degree n, is found by first computing an upper bound, ub, on the values of the
positive roots of xnf( 1

x ) and then setting �b = 1
ub . So, clearly, what is needed

is an efficient method for computing upper bounds on the values of (just) the
positive roots of polynomial equations2.

The rest of this paper is structured as follows:
In Section 2 we present the well known classical theorems by Cauchy and

Lagrange as well as our main result, Theorem 5, which works for any number of
sign variations—provided inequality (2) holds.

In Section 3 we present experimental results comparing the methods by
Cauchy, Langrange and the one obtained from Theorem 5. The experiments were
2 with suitable transformations p(x) ≡ p(−x) = 0 and p(x) ≡ xnp(− 1

x
) = 0 one

can find the lower −ub and upper − 1
ub

bounds of the negative roots x− of p(x)

respectively, −ub ≤ x− ≤ − 1
ub
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performed using the computer algebra system Mathematica, which provides “in-
finite precision” arithmetic. Note that we work with polynomials having only
integer coefficients of any (arbitrary) bit length.

2 Methods for computing bounds on the values of the
positive roots of polynomials

Several methods for computing bounds on the values of the positive roots of poly-
nomials exist in the literature [Demidovich and Maron 1987], [Kioustelidis 1986],
[Obreschkoff 1963]. Recently, Ştefănescu, [Ştefănescu 2005], presented a new the-
orem giving yet another alternative for such a computation, but unfortunately, it
is of limited applicability as it works only when there is an even number of sign
variations (or changes) in the sequence of coefficients of the polynomial under
consideration.

In this section we present the two classical theorems by Cauchy and Lagrange-
MacLaurin along with Theorem 5, which works for any number of sign variations.
The reason for our choice is to evaluate (in the following section) the performance
of a new rule based on Theorem 5 against the classical methods, which are widely
used.

In the sequel we will refer to polynomials of the type

p(x) = αnxn + αn−1x
n−1 + . . . + α0, (αn > 0) (1)

with real coefficients αn, αn−1, . . . , α0 and having at least one sign variation.

2.1 Cauchy’s Method

Theorem 2. Let p(x) be a polynomial as in Eq. (1), of degree n > 0, with
αn−k < 0 for at least one k, 1 ≤ k ≤ n. If λ is the number of negative co-
efficients, then an upper bound on the values of the positive roots of p(x) is
given by

ub = max
{1≤k≤n:αn−k<0}

k

√
−λαn−k

αn

Note that if λ = 0 there are no positive roots.

Proof. : From the definition above we have

ubk ≥
(
−λαn−k

αn

)

for every k such that αn−k < 0. For these k, the inequality above could be
written

ubn ≥
(
−λαn−k

αn

)
ubn−k
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Summing for all the k’s we have

λubn ≥ λ
∑

1≤k≤n:αn−k<0

(
−λαn−k

αn

)
ubn−k

or

ubn ≥
∑

1≤k≤n:αn−k<0

(
−αn−k

αn

)
ubn−k

i.e., dividing p(x) = 0 by αn, making unitary the leading coefficient, and
replacing x with ub, x ← ub, the first term, i.e. ubn, would be greater than, or
equal to, the sum of the absolute values of the terms with negative coefficient.
Hence, for all x > ub, p(x) > 0. �	

2.2 Lagrange’s and MacLaurin’s Method

Theorem 3. Suppose αn−k, k ≥ 1, is the first of the negative coefficients of a
polynomial p(x), as in Eq. (1), then an upper bound on the values of the positive
roots of p(x) is given by

ub = 1 + k

√
B

αn
,

where B is the largest absolute value of the negative coefficients of the polynomial
p(x).

Proof. Set x > 1. If in p(x) each of the nonnegative coefficients αn−1, αn−2, . . . ,

αk−1 is replaced by zero, and each of the remaining coefficients αk, αk+1, . . . , α0

is replaced by the negative number −B, we obtain

p(x) ≥ αnxn −B(xn−k + xn−k−1 + . . . + 1) = αnxn −B
xn−k+1 − 1

x− 1

Hence for x > 1 we have

p(x) > αnxn − B

x− 1
xn−k+1 =

xn−k+1

x− 1
(αnxk−1(x − 1)−B)

>
xn−k+1

x− 1
(αn(x− 1)k −B)

Consequently for

x ≥ 1 + k

√
B

αn
= ub

we have p(x) > 0 and all the positive roots x+ of p(x) satisfy the inequality
x+ < ub. �	
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2.3 A New Theorem

In 2005 Ştefănescu, [Ştefănescu 2005], proved the following theorem:

Theorem 4 Stefanescu, 2005. Let p(x) ∈ R[x] be such that the number of
variations of signs of its coefficients is even. If

p(x) = c1x
d1 − b1x

m1 + c2x
d2 − b2x

m2 + . . . + ckxdk − bkxmk + g(x),

with g(x) ∈ R+[x],ci > 0, bi > 0, di > mi > di+1 for all i, the number

B3(p) = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of the polynomial p for any choice of
c1, . . . , ck.

We point out that Ştefănescu’s theorem introduces the concept of matching
or pairing a positive coefficient with the negative coefficient of a lower order
term. However, as stated above, Theorem 4 works only for polynomials with an
even number of sign variations.

In the sequel we present a generalization of Ştefănescu’s theorem in the sense
that Theorem 5 works for any number of sign variations provided inequality (2)
holds.

Theorem 5. Let p(x) be a polynomial as in Eq. (1) and denote by d(p) and t(p)
the degree of p(x) and the number of its terms, respectively.

Moreover, let

p(x) = q1(x) − q2(x) + q3(x) − q4(x) + . . . + q2m−1(x)− q2m(x) + g(x),

where all the polynomials qi(x), i = 1, 2, . . . , 2m and g(x) have only positive
coefficients, and the exponent of each term in qi(x) is greater than the exponent
of each term in qi+1(x), i = 1, 2, . . . , 2m − 1. In addition, for i = 1, 2, . . . , m,
assume that

t(q2i−1) ≥ t(q2i), (2)

and that

q2i−1(x) = c2i−1,1x
e2i−1,1 + . . . + c2i−1,t(q2i−1)x

e2i−1,t(q2i−1 )

q2i(x) = b2i,1x
e2i,1 + . . . + b2i,t(q2i)x

e2i,t(q2i )
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where

e2i−1,1 = d(q2i−1) and e2i,1 = d(q2i)

Then an upper bound of the values of the positive roots of p(x) is given by

ub = max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i )−e2i,t(q2i)

}

Proof. Suppose x > 0. We have

|p(x)| ≥ c1,1x
e1,1 + . . . + c1,t(q1)x

e1,t(q1) − b2,1x
e2,1 − . . .− b2,t(q2)x

e2,t(q2)

+
...

+ c2m−1,1x
e2m−1,1 + . . . + c2m−1,t(q2m−1)x

e2m−1,t(q2m−1 )

− b2m,1x
e2m,1 − . . .− b2m,t(q2m)x

e2m,t(q2m ) + g(x)

= xe2,1 (c1,1x
e1,1−e2,1 − b2,1) + . . .

+ xe2m,t(q2m )(c2m−1,t(q2m)x
e2m−1,t(q2m )−e2m,t(q2m) − b2m,t(q2m)) + g(x)

which is strictly positive for

x > max
{i=1,2,...,m}

{(
b2i,1

c2i−1,1

) 1
e2i−1,1−e2i,1

, . . . ,

(
b2i,t(q2i)

c2i−1,t(q2i)

) 1
e2i−1,t(q2i)−e2i,t(q2i)

}

�	

3 Empirical Results

We compare the performance of the three methods described above. As we men-
tioned earlier, the method obtained from Theorem 5 works only when inequality
(2) holds. In that case, if λ is the number of negative coefficients of the polyno-
mial under consideration, we match them with the first λ positive coefficients of
higher order terms.

We followed the standard practice and used as benchmark the Laguerre3,
Chebyshev (first4 and second5 kind), Wilkinson6 and Mignotte7 polynomials, as
well as several types of randomly generated polynomials of degrees {5, 15, 35, 45,

3 recursively defined as: L0(x) = 1, L1(x) = 1 − x, and Ln+1(x) = 1
n+1

((2n + 1 −
x)Ln(x) − nLn−1(x))

4 recursively defined as: T0(x) = 1, T1(x) = x, and Tn+1(x) = 2xTn(x) − Tn−1(x)
5 recursively defined as: U0(x) = 1, U1(x) = 2x, and Un+1(x) = 2xUn(x) − Un−1(x)
6 defined as: W (x) =

∏n
i=1(x − i)

7 defined as: Mn(x) = xn − 2(5x − 1)2
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55, 65, 100, 200}. For the random polynomials the size of the coefficients ranges
from −220 to 220. Along with the bounds we also compute numerically (using
Mathematica’s function NSolve) the Maximum Positive Root, MPR, of each
polynomial. � means that there are no positive roots for this polynomial and
N/A that the method here is N on Applicable.

More precisely, N/A means that the polynomial has negative coefficients,
which cannot be matched with positive coefficients of a higher order terms.

In Table 1 we used some polynomials presented in [Ştefănescu 2005]. As we
see, the method of Theorem 5 gives slightly better results in most cases.

Polynomials Cauchy Lagrange Theorem 5 MPR

Q1 1.25992 2.00000 0.42857 0.42152
Q2 2.02000 2.10000 1.04881 1.00347
Q3 1.14870 2.00000 0.75395 0.72543
Q4 1.35791 2.14186 1.14186 1.12041
P1 7.81025 8.81025 7.81025 4.27293
P2 1.31607 2.07722 1.58740 1.16541
P3 2.08008 2.58740 1.44225 1.12612
P4 1.64375 2.31951 1.31951 1.06815

Table 1: Bounds for positive roots of the polynomials used in [Ştefănescu 2005].

In Table 2 we used the Laguerre polynomials. For these polynomials the
method of Theorem 5 is by far better than the others two.

Degree Cauchy Lagrange Theorem 5 MPR

5 75 601 25 12.6408
15 1800 7.44× 1013 225 48.0261
35 22050 2.33× 1043 1225 123.173
45 46575 1.35× 1060 2025 161.459
55 84700 5.11× 1077 3025 199.987
65 139425 1.03× 1096 4225 238.686
100 500000 4.89× 10164 10000 374.984
200 4.00× 106 1.19× 10385 40000 767.815

Table 2: Bounds for positive roots of Laguerre polynomials.
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The bounds for Chebyshev polynomials of the first kind are given in Table 3
whereas the bounds for Chebyshev polynomials of the second kind are given in
Table 4. In both cases the method of Theorem 5 is much better than Lagrange’s
method and slightly better than Cauchy’s.

Degree Cauchy Lagrange Theorem 5 MPR

5 1.11803 2.11803 1.11803 0.95106
15 3.87298 3.07289 1.93649 0.99452
35 8.87412 13.7421 2.95804 0.99899
45 11.1243 31.2022 3.35410 1.00064
55 13.8744 72.7588 3.70810 1.41983
65 16.1245 184.152 4.03113 1.27649
100 25.0000 4440.05 5.00000 1.67201
200 50.0000 4.60× 107 7.07107 1.68006

Table 3: Bounds for positive roots of Chebyshev polynomials of the first kind.

Degree Cauchy Lagrange Theorem 5 MPR

5 1.00000 2.00000 1.00000 0.866025
15 3.74166 2.87083 1.87083 0.980785
35 8.74643 12.7969 2.91548 0.996195
45 11.0000 28.7539 3.31662 0.997669
55 13.7477 68.0370 3.67423 0.998427
65 16.0000 171.000 4.00000 0.998867
100 24.8747 4093.60 4.97494 0.999516
200 49.8748 4.25× 107 7.05337 0.999878

Table 4: Bounds for positive roots of Chebyshev polynomials of the second kind

The bounds for the Wilkinson polynomials are given in Table 5. Here the
superiority of the method of Theorem 5 over the other two is remarkable.

The bounds for the Mignotte polynomials are given in Table 6. Here all three
methods are about the same.

The bounds for random polynomials with unitary leading coefficient are given
in Table 7, whereas the bounds for random polynomials with randomly generated
leading coefficient are given in Table 8. Here, when applicable, the method of
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Degree Cauchy Lagrange Theorem 5 MPR

5 45 226 15 5
15 960 6.17× 1012 120 15
35 11340 8.05× 1040 630 35
45 23805 1.14× 1057 1035 45
55 43120 1.51× 1074 1540 55
65 70785 1.16× 1092 2145 65
100 252500 1.81× 10159 5050 100
200 2.01× 106 2.99× 10376 20100 200

Table 5: Bounds for positive roots of Wilkinson polynomials

Degree Cauchy Lagrange Theorem 5 MPR

5 4.64159 4.68403 3.68403 3.54410
15 1.42510 2.35111 1.35111 1.31731
35 1.14976 2.12586 1.12586 1.11242
45 1.11304 2.09524 1.09524 1.08491
55 1.09078 2.07660 1.07660 1.06821
65 1.07584 2.06406 1.06406 1.05700
100 1.04811 2.04073 1.04073 1.03618
200 1.02353 2.01995 1.01995 1.01770

Table 6: Bounds for positive roots of Mignotte polynomials

Degree Cauchy Lagrange Theorem 5 MPR

5 17.4356 32.6386 N/A 2.1557
15 47.0319 27.0384 17.7764 �

35 9240.00 1007.00 N/A 616.94
45 13920.0 1018.00 696.000 695.16
55 20332.0 958.000 N/A 883.39
65 1.12× 107 1.01× 106 N/A 339158
100 83545.0 32589.6 N/A 1.6884
200 4.52× 106 1.05× 106 N/A 1.31275

Table 7: Bounds for positive roots of random polynomials with unitary leading
coefficient

Theorem 5 is slightly or much better than the other two.
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Degree Cauchy Lagrange Theorem 5 MPR

5 2.78167 3.36560 2.20782 0.45627
15 7.41029 3.16699 N/A 1.32124
35 7.00776 2.07539 N/A 1.19835
45 31.5639 3.07302 1.66126 0.99823
55 2.39960 2.26034 1.28591 0.93821
65 1.49472 2.01141 1.39012 �

100 12.5311 1.97929 N/A 1.28714
200 338.386 4.72440 N/A 2.65901

Table 8: Bounds for positive roots of random polynomials

Degree Cauchy Lagrange Theorem 5 MPR

5 1714 858 857 856.342
15 2616 908 N/A 327.983
35 8853 908 681 679.695
45 10.0199 6.65547 N/A �

55 23.2463 11.0761 8.29619 �

65 164.302 102.105 52.3026 �

100 2217.16 1007.53 N/A 1.12060
200 4.69× 1019 1.11× 1018 N/A 4.99× 1017

Table 9: Bounds for positive roots of random polynomials with seed “1001” and
unitary leading coefficient

Degree Cauchy Lagrange Theorem 5 MPR

5 1.72435 1.86217 1.09090 �

15 3.05607 2.05958 N/A �

35 33.0336 4.38433 2.54104 �

45 21.6805 2.68709 N/A 1.14158
55 54.1144 3.15890 N/A 1.68826
65 6.02084 2.45091 N/A 1.24624
100 6.11942 3.77805 N/A 1.11428
200 136.564 4.22554 N/A 0.48657

Table 10: Bounds for positive roots of random polynomials with randomly gen-
erated leading coefficient and seed “1001”
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The bounds for random polynomials with seed “1001” and unitary leading
coefficient are given in Table 9, whereas the bounds for random polynomials with
seed “1001” and randomly generated leading coefficient are given in Table 10.
Same conclusions here as in Tables 7 and 8.

4 Conclusion

From the tables presented here we conclude that the method derived from The-
orem 5, when applicable, gives in most cases a better, or much better, upper
bound on the values of the positive roots of polynomials than the well known
and widely used methods by Cauchy and Lagrange.

So in order to compute sharper upper bounds on the positive roots of poly-
nomials we are tempted to pursue the matter further and extend Theorem 5 so
that it works for the cases when inequality (2) fails; if we succeed, then there
would be no reason at all to continue using the “classical” methods in our real
root isolation methods.
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