
The Use of Runtime Reconfiguration on FPGA Circuits to
Increase the Performance of the AES Algorithm

Implementation

Oscar Pérez
(Université Henri Poincaré I, Nancy France

Laboratoire d’Instrumentation Electronique de Nancy
oscar.perez@lien.uhp-nancy.fr)

Yves Berviller

(Université Henri Poincaré I, Nancy France
Laboratoire d’Instrumentation Electronique de Nancy

yves.berviller@lien.uhp-nancy.fr)

Camel Tanougast
(Université Henri Poincaré I, Nancy France

Laboratoire d’Instrumentation Electronique de Nancy
camel.tanougast@lien.uhp-nancy.fr)

Serge Weber

(Université Henri Poincaré I, Nancy France
Laboratoire d’Instrumentation Electronique de Nancy

Serge.Weber@lien.uhp-nancy.fr)

Abstract: This article presents an architecture that encrypts data with the AES algorithm. This
architecture can be implemented on the Xilinx Virtex II FPGA family, by applying pipelining
and dynamic total reconfiguration (DTR). The originality of our implementation is that it
computes sequentially in the FPGA the Key and Cipher part of the AES algorithm. This
dynamic reconfiguration implementation allows a good optimization of logic resources with a
high throughput. This architecture employs only 11619 slices allowing a considerable economy
of the resources and reaching a maximum throughput of 44 Gbps.

Keywords: AES, FPGA, dynamic total reconfiguration, reconfiguration controller, pipeline,
registers, iterative looping, unrolling looping, metrics, throughput, latency, reconfiguration
time.
Categories: B.2.2, B.3.3, B.4.4, D.4.8, E.3, E.4

1 Introduction

The data security is a significant subject for which various algorithmic solutions have
been proposed. In 2001, Advanced Encryption Standard (AES) was accepted as a
FIPS (Federal Information Processing Standard) [NIST, 01]. AES is an encoding
algorithm intended to replace DES, which had already showed some safety
weaknesses in data protection. In October 2002 NIST (National Institute of Standards

Journal of Universal Computer Science, vol. 13, no. 3 (2007), 349-362
submitted: 30/11/06, accepted: 16/2/07, appeared: 28/3/07 © J.UCS

and Technology) selected Rijndael cipher developed by two Belgian cryptographers
as the AES algorithm. Since then, many achievements on hardware and software had
been proposed by combining various architectures. In general, various architectures
have been used to apply the AES algorithm on hardware. They seek to satisfy two
metrics important in digital systems: the throughput, and the area or the amount of
hardware resources required to achieve this throughput. The throughput reached goes
from 20 Mbps to 70 Gbps according to the technology and the architecture used as
described in [Elbirt et al, 01], [Standaert et al, 03], [Chodowiec et al, 01], [Hodjat et
al, 04], [Jarvinen et al, 03] and [Kancharla et al, 03].

The technology of the circuits as well as the tools available for the design, the use
and the implementation of the algorithms have played a significant role to achieve a
high throughput, but with a high cost in terms of resources used. Nevertheless, the
intrinsic parallelism of the algorithm is still well adapted to a hardware
implementation. We chose to work on FPGAs because of their great design
flexibility.

In this paper we propose one solution for the implementation of the AES
algorithm in a pipelined and dynamically reconfigurable way. The originality of this
approach is that this implementation can be realized using dynamic reconfiguration
and allows obtaining a very good compromise between high speed and low area.

The paper is organized as follows. Section 2 gives a short description of the AES
algorithm. Section 3 describes the related work and our approach. Section 4 details
the choice of the implementation and section 5 presents the techniques suggested for
the AES algorithm on FPGA technology. Section 6 presents the metrics used. Section
7 presents our experiments and results; in addition we describe and detail the different
partitions, the synthesis aspects, our implementation results and a comparison with
other works. Finally, we give conclusions and prospects about this work in section 8.

2 Description of the algorithm

The AES is a block cipher with possible block and key lengths of 128, 192 and 256
bits. The block to be encrypted and the key can be of different lengths. The encryption
is comprised of a variable number of rounds (determined by the key and block
lengths) with each round containing four transformations: ByteSub, ShiftRow,
MixColumn and Round Key Addition (in the last round, the MixColumn is omitted).
An initial key is expanded to form an Expanded Round Key based on the number of
rounds. Since AES is a symmetric cipher, decryption is just the inverse of the
encryption. If more details are needed see [NIST, 01], [FIPS, 99]. [Fig. 1] shows the
operation of the algorithm [Angel, 00].

3 Related work

In general, various architectures have been used to apply the AES algorithm on
hardware. Next we described some of the most interesting approaches.

In an effort to achieve the maximum efficiency possible, some authors not
implant the key scheduling. Rounds keys for encryption are loaded from the external
keys bus and are stored in internal registers. Then, all keys must be loaded before

350 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

encryption may begin [see Elbirt et al, 01]. According to [Chodowiec et al, 01], they
unroll all cipher rounds, together with their internal registers. [Hodjat et al, 04]
present the architecture of a fully pipelined AES encryption processor on a single chip
FPGA. By using loop unrolling, inner-round and, outer-round pipelining techniques.
They use block RAM for their implementation.

Expansion_kiCipher

Input

AddRoundKey

ByteSub
ShiftRows

MixColumns
AddRoundKey

ByteSub
ShiftRow

MixColumns

Output

K0

Ki

Kr

Initial Key

SubKey i

Final Key

Input :
128 bits

Initial
Round

Nr – 1
rounds

Final
Round

Figure 1: Operation of the two parts of the algorithm.

[Kancharla et al, 03] compute the key on the fly with the rounds. In these works the
reconfiguration is used in order to change the functionality between encryption and
decryption. The first configuration unrolls the key and encrypts the data, whereas the
second configuration unrolls the key and decrypts the data.

4 Choice of implementation

We decided to split the AES algorithm into two partitions: Expansion_ki partition
(expansion key) and the Cipher partition (data encryption), [see Fig. 1]. By contrast
with other works, in this study we concentrate only on one aspect of the AES:
encryption. Thus we do the following: in the first step, the Expansion_ki partition is
loaded into the FPGA, in order to expand the key. The second stage consists in re-
configuring the FPGA with the Cipher partition in order to encrypt the data.
Furthermore, we combined this dynamic reconfiguration with pipelining. [Fig. 2]
shows the comparison between a static implementations of the AES algorithm in
FPGA and our proposal called P-DR (Pipeline- Dynamic Reconfiguration). Thus, the
original algorithm was broken in two principal parts: Expansion_ki partition (key
Expansion) and the Cipher partition (data Encryption). The choice of splitting the
algorithm in two partitions was dictated by an optimizing methodology described in
[Tanougast et al, 03]. This methodology can be adapted to different objectives, one of
them being reducing the FPGA resources and the size of the memory needed for data

351Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

retention between the reconfigured partitions. By cutting the algorithm between the
key expansion and the data cipher, we ensure a minimization of the memory size,
because only the expanded keys are needed for the second partition [Liu et al, 04].
This separation also ensures that the expanded keys are located right where there are
needed in the cipher. This is an advantage compared to the other works, where these
keys need to be routed from the expansion key part to the cipher part.

Figure 2: Comparison of the two implementations.

Furthermore, if the same key is used for several data blocks we also ensure a
minimization of the number of reconfigurations.

4.1 Expansion_ki partition

The AES algorithm takes the Cipher Key K, and performs a Key Expansion routine to
generate a key schedule (i.e. the ten different keys that will be used later by the
Cipher module). The Key Expansion generates a total of Nb(Nr+1) words: the
algorithm requires an initial set of Nb words and each of the Nr rounds requires Nb
words of key data. The resulting key schedule consists in a linear array of 4-byte
words, denoted [wi], with i in the range 0 < i < Nb(Nr + 1) [NIST, 01], [FIPS, 99].
The data are arranged in a linear vector of words of 4 bytes, indicated by [wi]. The
data are put to the algorithm through dato_e (128 bits) and the result is provided at
dato_s. Let us specify that temp is a variable of 32 bits wide and w[i] is the line of a
matrix that has a dimension of 4 by 4 bytes. RotWord function takes a word of 32 bits
[a0, a1, a2, a3] as input, carries out a cyclic permutation, and returns the word [a1,
a2, a3, a0]. SubWord is a function that takes on its entry a word of four bytes and
applies a look-up matrix S_Box to each four byte to produce a new word. This matrix
has a size of 256 data of 8 bits each. The constant Rcon[i] contains already defined
values. For word indices that are integer multiple of Nk (number of 32-bit words

352 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

comprising the Cipher Key), a transformation is applied to w[i-1], followed by a XOR
with a constant iteration, Rcon[i]. The transformation is composed of a circular shift
of the bytes in a word (RotWord), followed by a look-up of each byte in a word
(SubWord). [Fig. 3] shows the block diagram of the execution of a single round for
this module.

Figure 3: Diagram for the Expansion_ki module for only one round

4.2 Cipher partition

At the beginning of the Cipher module, the input is stored in the State array that has a
size of 128 bits (16 bytes). Following the addition of the Ki key(i-th key), the State
array is modified by applying the standard round (Nr-1 times) and a final round,
which does not include the Mixcolumns transformation. Finally, State is sent to the
output. The various transformations (SubBytes, ShiftRows, MixColumns, and
AddRoundKey) that treat the State array are described in the following sub-sections.

• SubByte is a non-linear function, operating independently on each byte from
the State vector, known as a substitution box (S-Box).

• The ShiftRows function shifts the data (this function divides its input in 4
segments of 4 bytes each and makes a rotation towards the left of
respectively 0, 1, 2, 3 bytes for segments 1, 2, 3 and 4).

353Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

• MixColumns is a function that transforms each byte of input into a linear
combination of bytes. This function can be expressed mathematically as a
matrix product in the body of Galois (28) [NIST, 01]. This matrix
multiplication uses multiplications in "finite fields" by two and three, that
reduce to an exclusive-OR function and thus makes the architecture more
efficient [McLoone et al, 03].

• AddRoundKey transformation, Ki (previously generated by the Expansion_ki
module) is added to State by an XOR operator. Each Ki is composed of Nb
words that are generated by the module Expansion_ki. Ki is the kth sub-key
calculated by the algorithm starting from the main key K. The application of
the AddRoundKey transformation in the Nr rounds of Cipher, occurs when
1< round <= Nr [NIST, 01].

Finally, as it can be seen on [Fig. 4], the transformations SubBytes, ShiftRows and
MixColumns are always used. So, the reusability of these operators can be exploited
here.

Figure 4: Diagram for the Cipher module

4.3 Reconfiguration Controller

The main role of the controller is to indicate to the processor (or the FPGA itself)
when it must load the next bitstream. The controller of reconfiguration can be
implemented in various manners. In the case of a SoC, this one can be done by a
hardwired module (ASIC), by a processor or a portion of the FPGA. Here, this
controller is a static module, i.e., the cells that implement it will not be modified in
the case of an FPGA with partial reconfiguration. In the case of an FPGA with global
reconfiguration, the controller will be present in an identical way in all the

354 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

configurations, but it will not be able to carry out the whole reconfiguration process.
This is required, because the controller indicates when the FPGA must be
reconfigured and a reconfiguration must take place at the end of each partition.

Figure 5: Diagram of the controller

This last case is presented here.
The method suggested requires at least two memory banks located on both sides

of the reconfigurable array, in order to be able to read and write independently the
input data and output of the various partitions. The controller allows writing and
reading in the memory banks with an aim of permuting the data between
configurations and loading the next configuration. It consists in two counters that
point to read and write memory addresses and a state machine for the control of
reconfiguration. This controller consumes 20 CLBs in each partition [see Fig. 5].

The process of runtime reconfiguration is described next. First, the Expansion_ki
partition is loaded into FPGA in order to expand the sub keys. Then, the FPGA is
reconfigured with the Cipher partition in order to cipher all the data. Thus, the
encryption process is finished. But if a new key is detected, then all the process is
started again by configuring the FPGA with the Expansion_ki partition.

5 Techniques suggested

Pipelining increases the throughput, but also the used resources [Patterson et al (96)].
Pipelining is an economic form of parallelism especially in FPGAs with flip-flops that
are already presents in each cell whether they are used or not.

With the purpose of reaching high values of throughput, different ways to do
pipelining have been proposed for the AES. All of them are based on Iterative
Looping. Loop unrolling is a very known technique of speed improvement for
iterative algorithms. Nevertheless, full loop unrolling leads to a significant increase of

355Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

processing resources. This method can be combined with pipelining and is known as
outer-round pipelining [Chodowiec et al, 01], [Hodjat et al, 04]. When the hardware
device does not have sufficient space for a complete loop unrolling or when resource
reduction is needed, then a Partial Combination of Iterative Looping is used with
Loop Unrolling. Another way to increase the throughput without an excessive cost of
resources is to apply Sub-pipelining or Inner-round Pipelining. This consists in adding
pipeline registers inside the loop without unrolling the later.

Reconfiguration or re-configurable computing, allows system designers
implementing more hardware than they physically have. Re-configurable computing
involves the manipulation of the logic within the FPGA at run-time. In other words,
the design of the hardware may change in response to the demand placed upon the
system while it is running. Re-configurable computing has several advantages: First,
it is possible to reach a better functionality with a smaller hardware. The second
advantage is a lower system cost. The final advantage of re-configurable computing is
reducing the time-to-market [Barr, 98]. The reconfiguration makes possible using the
same circuit to carry out various operations that leads to a reduced and better
exploited hardware.

6 Metrics used

The combination of these two techniques: Pipeline and Dynamic Reconfiguration, are
very interesting. On the one hand, the Pipelining offers an increase in the throughput
and the reconfiguration provides saving in resources (that shrinks the side effect of the
pipeline). On the other hand, some FPGA, like the Xilinx XC2V3000, allow dynamic
reconfiguration with an acceptable time overhead, proportional to the used resources
[Xilinx, 05].

In order to calculate the throughput, we considered two cases. For the first one
(case a), the number of bits to encrypt is 128 or one data word; for the second one
(case b), it is 3840000 bits (an image of 600 x 800 pixels) or 30000 data words. In
both cases the size of the key is 128 bits and we assume that the same key is used for
the entire data block.

The throughput is defined as the number of bits encrypted per the time duration of
the clock period. Of course, the actual throughput will depend on the size of the data
block processed with the same key. The latency of encryption is defined as the time it
takes to obtain the first encrypted word after the moment the first data word is read.
Next we show the equations used:

1. Latency_T = Latency_ki + Latency_ci
2. Latency_ki = t_conf_ki + n_prolog_ki * t_clk_ki * iters_ki
3. Latency_ci = t_conf_ci + n_prolog_ci * t_clk_ci * iters_ci
4. T_process_total = Latency_T + (t_clk_ci * iters * S_data / 128)
5. Throughput = S_data / T_process_total
Where:
n_prolog_ki is number of pipeline stages for one iteration of the key expansion.
n_prolog_ci is number of pipeline stages for one iteration of the data cipher.
t_clk_ki is the minimal clock period for the key expansion processing part.
t_clk_ci is minimal clock period for the data cipher processing part.

356 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

iters_ki, iters_ci are the number of iterations for the key expansion and the data
cipher processing part respectively.
t_conf_ki , t_conf_ci are configuration time for the key expansion and the data cipher
processing part respectively. S_data = 128 bits for the case a and S_data = 3840000
bits for case b. Taking S_data of the equation 4 and replacing it in equation 5, the
next equation is obtained:

6.
data

data
S_ *n m

S_Throughput +=

Where m = Latency_T; n = t_clk_ci * iters /128; and iters = 1.
In order to carry out a comparison with other works, CLB-slices was chosen as an

area measurement, but for the calculation of the configuration time, CLB were used. 1
CLB = 4 CLB-slices for Virtex-II FPGAs [Xilinx , 05]. The configuration times
t_conf_ki and t_conf_ci are calculated by considering the number of CLBs in the module
(Area), multiplied by the time to configure a CLB, here the configuration time is 5 μs,
[Xilinx , 05].

7 Experimentation and results

We propose two different strategies: IRP-R (Inner-round Pipelining and
Reconfiguration) and ORP-R (Outer-round Pipelining and Reconfiguration) to
implement the AES algorithm that combine the pipelining with dynamic
reconfiguration. For each one of the two strategies, two cases are evaluated. The first
one, case a: the number of data to process it is 128 bits and the second one, case b:
3840000 bits. Of course, in both cases the size of the key is 128 bits and we assume
that the same key is used for the entire data block, as it was already mentioned in the
previous section. Table 1 summarizes this situation.

IRP-R implements the Expansion_Ki and Cipher_ki partitions, using only
iterative loops (the resources of a single round of each module are used and a loop is
applied to them, i.e., n_prolog_ki = n_prolog_ci = 1 and iters_ki = iters_ci = 10). This
strategy saves area but reduces the throughput.

ORP-R use full loop unrolling with complete pipelining for both modules (i.e.,
n_prolog_ki = n_prolog_ci = 10 and iters_ki = iters_ci = 1). Thus, the throughput is increased,
but more area is used. Table 2 shows the obtained results of both implementations
after place and route.

The tools used for these implementations were:
 VHDL.
 ISE 8.1i.
 The RC203 board of Celoxica for the evaluation, which include a Xilinx

Virtex-II device XC2V3000.
 FTU2 (Celoxica File Transfer Utility) allows you to configure the FPGA

on a RC100, RC200 or RC203 board via a parallel port cable.

357Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

Architecture Case study Size of data

(bits)
Size of Key

(bits)
IRP-R a 128 128
IRP-R b 3840000 128
ORP-R a 128 128
ORP-R b 3840000 128

Table 1: Description of IRP-R and ORP-R.

Area Architecture Module Speed
Grade Slices

Slice
F/F

4 input
LUTs

CLBs
BRAM t_clk_ki

(ns)

Expansion_ki 4 618 128 1234 155 0 2,8 IRP-R
Cipher_ci 4 1285 128 2575 322 0 3,0

Expansion_ki 6 2973 128 5951 744 0 2,7 ORP-R
Cipher_ci 6 11619 128 23236 2905 0 2,9

Table 2: Resources used by IRP-R and ORP-R after place and route.

Architecture t_conf_ki
(ms)

t_conf_ci
(ms)

Latency_T
(ms)

S_data
(bits)

T_process_total
(ms)

Throughput

IRP-R (a) 128 2,4 53,3 Kbps
IRP-R (b)

0,775

1,6

2,4 3840000 3,3 1.2 Gbps

ORP-R (a) 128 18,2 7 Kbps
ORP-R (b)

3,7

14,5

18,2 3840000 18,3 211 Mbps

Table 3: Obtained results by IRP-R and ORP-R.

The values of throughput obtained by IRP-R and ORP-R, for both case a and case
b, are shown in table 3. The results of this table indicate that IRP-R architecture is
better than ORP-R architecture for this quantity of data. However, for larger
quantities of data to cipher, the throughput of ORP-R architecture is larger than the
throughput of IRP-R architecture. This situation can be seen from equation 6, where
maximum throughput = 128 / t_clk_ci , when S_data → ∞. In this way, the maximum
throughput obtained by IRP-R is 4,41 Gbps and 44,1 Gbps by ORP-R. Figure 6 shows
this behavior. We can also derive from equation 6, the S_data value for which the
throughput is maximum.

358 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

Throughput versus Number of data

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

4 5 6 7 8 9

Log of number of data in data words.

L
og

 o
f t

he
 T

hr
ou

gh
pu

t i
n

G
bp

s.

 IRP-R ORP-R

Figure 6: Shows the behaviour of IRP-R and ORP-R.

We can see that the maximum throughput is obtained where the number of data to
process is very large by using the same key. Table 4 shows a summary of the obtained
results and a comparison with other works done on the AES algorithm. We can see
that the FPGA resources are not minimized in our implementation, because the two
partitions have very different sizes. If we had cut the algorithm at another boundary
(to half) with approximately 7296 slices {(2973 + 11619) / 2, see table 2 ORP-R} in
each partition, we could implement it with 37 % less area. But as discussed in section
5, we might need a larger memory plus a reconfiguration for each new data block
whether it needs a new key or not. The last point would dramatically reduce the
throughput. Thus the compromise between area and performance is acceptable here.

It should be noted that in all cases, i.e. with or without reconfiguration, the initial
bitstream loading increases the latency and thus reduces the throughput. Hence, if
there is not key change, ORP-R should outperform every other implementation.

Unfortunately, there is always a key change, but the larger the amount of data to
encrypt with the same key, the better the efficiency of the run time reconfiguration.

The following results are obtained from table 4. Implementation IRP-R obtains a
throughput maximum of 2x-4x compared with those of [Kancharla et al, 03] and
[Elbirt et al, 01], needing up to 10 times less resources for its implementation.
Nevertheless, it suffers of the time of latency. Implementation ORP-R obtains
throughput maximum of 2X compared with the implementation of [Hodjat et al, 04]

359Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

(who presents a larger throughput), consuming a 23% of resources of more. Its main
disadvantage is the high latency. Like it was to be expected, implementation ORP-R
reaches greater throughput than IRP-R.
In the other works, the reconfiguration time is not given. For this reason, we can not
calculate their performance in the case studies a and b. The only thing that we can
predict is that a key change, during a block encryption, will not affect their throughput
because the key is expanded in the same configuration as the cipher (or decryption).
Thus, the biggest impact on performance would come from the rate of change
between encryption and decryption rather than from a key change.

Design Device Slices T_conf

(ms)
Latency

(ns)

Mean
throughput

(Gbps)

Max.
throughput

(Gbps)
[Kancharla et al, 03] XC2V6000 14062 ? ? ? 1,2
[Elbirt et al, 01] XC2V1000 10992 ? 66 ? 1,94
[Standaert et al, 03] XCV3200E 15112 ? ? ? 18,56
[Jarvinen et al, 03] XC2V2000 10750 ? ? ? 17,8
[Hodjat et al, 04] XC2VP20 9446 ? 420 ? 21,64
IRP-R case a 0.0000533 -
IRP-R case b

XC2V3000 1285 1,6 2400000
1,2 4,3

ORP-R case a 0,000007 -
ORP-R case b

XC2V3000 11619 15 18200000
0,211 44,1

Table 4: Results obtained and comparison with other works.

There are two main reasons that explain why OPR-R has a higher maximum
throughput than the other.

The first is, as stated in section 4, that we do not need to route the sub keys from
the expansion part to the cipher part. Indeed, the second configuration localizes these
sub keys directly where they are needed by the cipher.

The second is related to the design tool. Indeed, in the second partition, we have
only the cipher part, which is mainly a data path. This allows the place and route tool
(ISE in our case) to easily implement the operators in a regular pipelined dataflow
manner.

8 Conclusions and prospects

By combining the run-time reconfiguration feature of FPGA with the pipeline
processing, we can obtain two different architectures. One that uses very low
computing resources at the cost of a low throughput and one that can achieve a very
high throughput at the cost of a medium amount of resources. The combination of the
outer pipeline with dynamic total reconfiguration (ORP-R), offers an interesting
alternative for the implementation of the AES algorithm if a considerable amount of
data must be ciphered with the same key. Of course, as it is well known, the biggest
drawback of the run-time reconfiguration techniques is the high latency time due to
the time needed for reconfiguring the FPGA. But with reconfigurable FPGAs
associated with algorithm/data that do not need reconfiguration for each data word to
process, this can in some cases be lowered to an acceptable level as shown in our

360 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

results for the encryption of an entire image with the same key. Current prospects
focus on the use of BRAM to reduce both reconfiguration time and resource usage.
We also investigate the possibility of hiding the reconfiguration time by interleaving
processing and reconfiguration on two areas of the FPGA.

References

[Angel, 00] AES – Advanced Encryption Standard. José de Jesús Angel Angel.
http://computacion.cs.cinvestav.mx/~jjangel/.

[Barr, 98] Barr, M., "A Re-configurable Computing Primer," Multimedia Systems Design,
September 1998, pp. 44-47.

[Chodowiec et al, 01] P. Chodowiec P., Khuon P., Gaj K., “Fast implementation of secret-key
block ciphers using mixed inner-and outer-round pipelining”. ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA, FPGA’01 Monterrey, CA, February
11-13, 2001.

[Elbirt et al, 01] Elbirt A.J., Yip W., Chetwynd B., Paar C. “An FPGA-based performance
evaluation of the AES block cipher candidate algorithm finalists”. VLSI Systems, IEEE
Transactions on Volume 9, Issue 4, Aug 2001 Pages: 545–557.

[FIPS, 99] “Data Encryption Standard”, revised version issued as FIPS 46-3, National Institute
of Standards and Technology, 1999.

[Hodjat et al, 04] Hodjat A. and Verbauwhede I.. “A 21.54 Gbits/s Fully Pipelined AES
Processor on FPGA”. Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines 2004, Pages: 308–309.

[Jarvinen et al, 03] Jarvinen et al. “A fully pipelined memory less 17.8 Gbps AES-128
encryptor”. International Symposium on Field Programmable Gate Arrays. In 2003
ACM/SIGDA 11th International.

[Kancharla et al, 03] Kancharla P. and Buell D.A., The Advanced Encryption Standard on the
HC 36m Reconfigurable Computer, MAPLD 2003”.

[McLoone et al, 03] McLoone M. and McCanny J.V., “Rijndael FPGA implementations
utilising look-up tables”, Journal of VLSI Signal Processing, July 2003, pp. 261-275.

[NIST, 01] Announcing the ADVANCED ENCRYTION STANDARD (AES). Federal
Information. Processing Standards Publication 197 AES page available via
http://www.nist.gov/CryptoToolkit.

[Patterson et al, 96] Patterson and Hennesy. “Computer organization and design (2nd ed.):The
hardware/software interface”. Morgan Kaufmann, 1996.

[SRC, 05] Society Reconfigurable Computing. 2005 http://www.srccomp.com/default.htm.

[Standaert et al, 03] Standaert et al, “Efficient Implementation of Rijndael Encryption
Reconfigurable Hardware: Improvements and Designs Tradeoffs”, CHES 2003 LNCS 2779,
pp. 334-350, 2003.

[Tanougast et al, 03] Tanougast C., Berviller Y., Weber S., Brunet P.,"A partitioning
methodology that optimizes the area on reconfigurable real-time embedded systems" EURASIP
Journal on Applied Signal Processing, Special Issue on Rapid prototyping of DSP Systems
April 2003.

361Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

[Liu et al, 04] Liu T., Tanougast C., Berviller Y., Weber S., “An Optimised FPGA
Implementation of an AES Algorithm for Embedded Applications”. Proceeding of the 2004
International Workshop on Applied Reconfigurable Computing, Algarve, Portugal, February
22, 2005.

[Xilinx, 03] Xilinx. Development System Reference Guide. April 30 2003.

[Xilinx, 04] Xilinx. ISE 6 In Depht Tutorial. 2004.

[Xilinx, 05] Xilinx. Virtex-II Platform FPGAs: Complete Data Sheet. 1 March 2005.

[Xilinx, 05]Xilinx. Virtex II Platform User guide. 23 March 2005.

362 Perez O., Berviller Y., Tanougast C., Weber S.: The Use of Runtime Reconfiguration ...

