
Performance Evaluation and Limitations of a Vision
System on a Reconfigurable/Programmable Chip

José Fernández-Pérez, Francisco J. Sánchez-Fernández,
Ricardo Carmona-Galán

(Instituto de Microelectrónica de Sevilla, Centro Nacional de Microelectrónica,
Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla

Edificio CICA, Avda. Reina Mercedes s/n 41012 Sevilla, Spain
{jfernan, fsanchez, rcarmona}@imse.cnm.es)

Abstract: This paper presents a survey of the characteristics of a vision system implemented in
a reconfigurable/programmable chip (FPGA). System limitations and performance have been
evaluated in order to derive specifications and constraints for further vision system synthesis.
The system hereby reported has a conventional architecture. It consists in a central
microprocessor (CPU) and the necessary peripheral elements for data acquisition, data storage
and communications. It has been designed to stand alone, but a link to the programming and
debugging tools running in a digital host (PC) is provided. In order to alleviate the
computational load of the central microprocessor, we have designed a visual co-processor in
charge of the low-level image processing tasks. It operates autonomously, commanded by the
CPU, as another system peripheral. The complete system, without the sensor, has been
implemented in a single reconfigurable chip as a SOPC. The incorporation of a dedicated visual
co-processor, with specific circuitry for low-level image processing acceleration, enhances the
system throughput outperforming conventional processing schemes. However, time-
multiplexing of the dedicated hardware remains a limiting factor for the achievable peak
computing power. We have quantified this effect and sketched possible solutions, like
replication of the specific image processing hardware.

Keywords: image processing, system-on-a-programmable-chip implementation, algorithms
implemented in hardware [Integrated Circuits], hardware architecture [Computer Graphics].
Categories: B.7.1, C.1.4, C.4, C.5.4, I.3.1, I.4.9

1 Introduction

High-speed image processing is of crucial importance in applications with critical
timing. Especially in fields like autonomous robot navigation [Makimoto, 02], cruise
control and collision alerts in the automotive industry [Stein, 05] and the development
of ambient intelligence devices based on artificial vision [Aarts, 03]. When
considering obstacle detection and object tracking in a changing environment,
systems based in a single general purpose processor are not suitable for an accurate
and timely response. On one side, serialized data processing is prone to limiting
bottlenecks. On the other side, the microprocessor, which may not have optimized
hardware for the realization of the processing tasks, has to deal with lateral tasks like
communication with the peripheral devices and the execution of a global program.
Therefore, the implementation of real-time image processing in highly demanding
applications is not viable with serialized data processing systems. Let us consider an

Journal of Universal Computer Science, vol. 13, no. 3 (2007), 440-453
submitted: 8/11/06, accepted: 6/2/07, appeared: 28/3/07 © J.UCS

image flow of 25 frames per second (fps). With a QCIF frame size, 176 x 144 pixels
[ITU, 93], it means a rate of 0.63Mpixels/s. If a particular application requires the
convolution of the image with 20 3x3-pixel spatial masks —what means 9 products
and 8 additions of integers, once digitized—, the system should be able to develop a
peak computing power of 214MOPS1. In addition, in applications like autonomous
robots and portable smart cameras, strong limitations on the overall system power
consumption are found. It is practically impossible to achieve, in these conditions, the
required computing power with a general purpose processor —although being able of
e. g. 9730MIPS2 [Intel, 04], this is done at the expense of a high clock frequency,
3.2GHz, and hence a high power consumption, 103W. In order to efficiently realize
the required computing power, a feasible alternative would be the design of a specific
piece of hardware. It would have the twofold mission of realizing the low-level image
processing tasks at a lower cost and, besides, alleviate the central processor load. In
the end, these tedious and regular tasks are the most computationally demanding part
of the vision algorithm. As a natural consequence of this partition, the image
processing throughput will increase.

In this paper, we will evaluate the performance and limitations of a vision system
consisting in a central processor, with on-chip peripherals, and a special co-processor
for low-level image processing tasks. The complete system will be implemented in a
Xilinx Virtex II Pro FPGA, operating at a 50MHz clock.

2 Architecture of the Vision SOPC

The architecture of the vision system developed for this project is depicted in Fig. 1. It
incorporates, in a single silicon reconfigurable chip, all the components required for
image processing and transmission, as well as the port for connecting to image
acquisition devices. Described at the higher level, this vision SOPC is composed of:

• A general-purpose microprocessor. It operates as a microcontroller unit
(MCU) with the help of some peripherals. Its main functions are to execute a
global program, to manage the system buses and to exchange data with
external devices.

• A visual co-processor (VP) in charge of low-level image processing. It
contains the appropriate hardware to apply spatial masks and other operators
specially designed for the manipulation and filtering of images.

• A dual-port random access memory (DPRAM). It is the place where image
data are going to be stored. The MCU have access to this area of the memory
just as it was any other area of the address space. The other port is used by
the VP for image data I/O. In this form, the MCU continues executing the
global program without interfering with the work of the visual coprocessor.

1 MOPS: Millions of operations per second (additions, multiplications, etc.).
2 MIPS: Millions of instructions per second. This performance index is not very accurate as some
instructions may require a variable number of clock cycles and, at the same time, a single arithmetic
operation may require of several instructions to be completed.

441Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

Figure 1: Block diagram of the vision system

2.1 Microcontroller Unit

The primary processor of the system (CPU) and the peripherals for data storage and
exchange constitute the microcontroller unit (MCU). For the implementation of the
MCU we have employed a public domain processor, Aquarius [Aitch, 03], obtained
from [OpenCores, 99]. In the selection of the MCU, several factors contributed to the
decision of using Aquarius. Contrarily to Xilinx Microblaze [Xilinx, 06], OpenCores
offers full access to the microprocessor code. This, at an initial stage, supposes an
advantage, especially when trying to implement a system that will incorporate non-
conventional peripherals and whose advanced features could be based on the
implementation of a dedicated architecture. When working with Microblaze, access to
the internal structure of the MCU is blocked, as it is provided as an encrypted core
that the CAD tools incorporate to the design as is. Other factors that contributed to the
selection of Aquarius are that it is fully documented and it complies with a bus
architecture intended to realize a system-on-a-chip (SoC). And, finally, it was
described in Verilog [IEEE, 01]. Being part of a larger project concerning the
development of vision SoC’s, we sought for a processor that we could test on FPGA
and incorporate later to an ASIC, using tools for IC synthesis accessible for us.

The main characteristics of the selected MCU are:

• Pipelined architecture with 5 stages
• A reduced instruction set (RISC), with 16-bit-long instructions, compatible

with SuperH-2 [Renesas, 04].
• 32-bit-wide address and data buses. Able to address up to 4GB of memory.
• 16KB internal RAM.
• UART for serial-port communication
• 32-bit parallel-port (PIO)
• System controller for handling interrupts

Inside Aquarius, the architecture of the buses follows WISHBONE specifications

[Peterson, 02]. This allows for feasible device integration into a SoC (System-on-a-
Chip). One of the main features of WISHBONE compatible buses is the standard
interconnection scheme, which is based in a low number of gates. This will simplify

442 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

the interconnection between different components of the system. Therefore, the
design of the interface for the visual coprocessor will be quite straightforward, while
proper connection to the MCU is granted.

As depicted in Fig. 1, the original Aquarius MCU contains the CPU and a set of
peripherals: the system controller, the internal RAM, the parallel port (PIO) and the
UART. Added to the basic system, another two peripherals have been incorporated to
build our vision system: the visual co-processor and the DPRAM. Both of them are
WISHBONE compatible, in order to be seamlessly allocated in the processor’s
address space. However, a controller for direct memory access (DMA) between the
visual co-processor and the DPRAM has been implemented, as these data exchanges
occur separately from the system data bus. Concerning application programming,
there are cross-compilers that allow developing programs in C and translating them
into SuperH-2 instructions to be executed by the vision SOPC. In our development
system, the internal RAM of Aquarius is directly programmed in C. The proper
initialization is realized by the hardware development tools. In a stand-alone
production system, this program could be coded in an EEPROM and loaded at system
boot time.

2.2 Visual Co-Processor

The visual co-processor (VP) has been designed to realize low-level processing on
images stored in the DPRAM. They can be received from a camera or sent by a PC
via the UART. The parallel I/O can also be employed for this purpose, but it will
require the incorporation of some glue logic. In this first version of the system,
images are received through the UART and the CPU allocates them in the image data
memory (DPRAM). The VP has access to the image data through an additional port,
in order not to interfere with the operation of the MCU. Fig. 2 depicts a block diagram
of the internal structure of the visual processor and its main components:

• Convolver: realizes convolutions of the original image with a 3x3-pixel

spatial mask. The values of the mask elements are programmed by the user
and passed as parameters during execution. The outcome of the convolution
is an image in which the value of each pixel depends not only on its original
value but also on the values of its nearest neighbours. The convolver is in
turn composed of two different blocks: the data router and the incremental
modifier. The data router scans the memory, bringing the values of the
neighbouring pixels that are necessary to carry out the convolution. The
incremental modifier is employed to update the pixel value in accordance
with the result of the convolution. It is a dedicated MAC which operates with
positive and negative numbers, but generates an unsigned 8-bit output,
appropriate to be stored in the DPRAM.

• Adder/subtractor: Realizes pixel-wise additions and subtractions between
two images. The output saturates in order to be represented by an 8-bit
binary number, suitable for the DPRAM.

• Thresholder: converts the input image into a binary image according to a
user-defined threshold. Any pixel above this value is set to 255, while those
below are set to 0.

443Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

Figure 2: Internal structure of the co-processor and connections to the DPRAM

Back to the diagram in Fig. 2, data buses are represented in blue while address
buses are in red. The processing operators described above share the secondary port
of the DPRAM. This version of the system does not contain any arbitration of these
accesses. Control must be realized in software.

2.3 Dual-port RAM

In order to disengage the operation of the visual co-processor from the execution of
the global program by the MCU, a dual-port RAM for the storage of image data has
been implemented. Therefore, the primary port is connected to the system address and
data buses while the secondary port is directly accessed by the operators of the visual
co-processor. In the present version, a 64KB DPRAM has been included in the SOPC.
This permits the storage of up to 16 64x64-pixel images encoded in 8-bit greyscale.
Larger image sizes may require off-chip implementation of the memory, what have a
negative incidence on the system performance that has not been evaluated. In order to
counter these effects, arbitration techniques could be implemented to avoid collisions
in the access to an external memory as proposed in [Díaz, 06].

3 FPGA Implementation

Once the architecture of the vision system has been established, an implementation on
reconfigurable hardware will allow us to conduct different experiments. On one side,
the flexibility of the FPGA implementation permits iterating the design-synthesis-test
loop at zero fabrication cost. On the other side, a selection of tools integrated within
the CAD environment for FPGA design, programming and debugging, will help us
evaluate system performance and limitations once the functionality is tested.

444 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

3.1 Virtex II Pro Development Board and PC Host Interface

For the implementation of the vision SOPC, we have employed a XUPV2P board
fabricated by Digilent Inc. [Xilinx, 05]. It is a development board that hosts a Xilinx
Virtex II Pro FPGA, with several I/O devices and communication circuitry. Its
characteristics can be summarized as follows:

• On-board SDRAM, up to 2GB.
• 100MHz system clock.
• Programmability implemented via USB and PROM.
• Serial port RS232-DB9.
• Different power supply voltages on-board.
• 5 push buttons, 4 switches and 4 LEDs connected to Virtex II Pro I/O pins.
• 1 Virtex II Pro FPGA (version X2CVP30) with 2 PowerPC RISC cores

Table 1 depicts the main features of the Virtex II Pro FPGAs.

Feature XC2VP20 XC2VP30
Slices 9280 13696
Distributed RAM 290Kb 428Kb
Multiplier blocks 88 136
BlockRAM 1584Kb 2448Kb
Power PC RISC Cores 2 2

Table 1: Characteristics of the Virtex II Pro FPGAs

The complete system was described in Verilog and synthesized with the help of
FPGA CAD tools (Xilinx ISE 8.1). As a result of the synthesis, 30% of the available
slices, 6% of the flip-flops, 27% of the LUT’s and 2% of the available multipliers
have been employed. The dual-port RAM has been implemented using the available
BlockRAM. It is 64KB-deep and contains 8-bit-long data. The maximum allowed
clock frequency is 51.618MHz. As the XUPV2P board clock is 100MHz, we will
obtain a 50MHz square signal, by frequency division, to clock the vision system.
Fig. 3 depicts the test and development platform that we are going to use. It contains
the vision SOPC in the FPGA board, which in turn communicates with a host PC
employed for system programming and configuration. Image data are transmitted by
the PC via RS232 and processing results are recovered through the same port. A
graphical user interface (GUI) has been developed for this purpose. Results
concerning system operation, speed and power are obtained from the FPGA hardware
design and configuration tools.

445Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

Figure 3: Conceptual diagram of the test and development platform.

3.2 Sample Application

In order to evaluate the computational cost of image processing in this architecture,
we have to establish a test bench composed by the common operations required for
low-level image processing. For this we will devise a simple application that makes
use of these operators. This is a widely extended methodology in the characterization
of embedded microprocessors [EEMBC, 97], as their peak performance is related to a
vast set of parameters which, in turn, strongly depend on the particular application.

Figure 4: Flow diagram of the global program of the application

446 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

The target of the image processing that we are realizing is robust edge detection
on a greyscale image. It starts with a previously captured image (step (a) in Fig. 4),
stored in the PC memory. It is transmitted to the vision SOPC via the PC serial port,
with the help of the on-chip UART. Then, the first thing will be to eliminate
imperfections due to noise in the capture and/or transmission of the image. We will
employ a lowpass spatial filter based on linear diffusion of the original values of the
pixels [Jähne, 99]. We will implement a discretized version, in space and time, of the
following differential equation:

 0),(),(2 =∇+ yxIk
dt

yxdI (1)

where I(x,y) is the luminance, a function that relates each point of the image plane
with its corresponding brightness. The spatial cut frequency of the lowpass filter is
inversely proportional to the period of time that we allow the diffusion of the pixel
values to evolve. As the diffusion in our purely digital system is discretized both in
space and in time, we will control the diffusion time by the number of iterations that
we realize the convolution of the original image with this spatial mask:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
≅∇

010
141

010
2 (2)

which is a discrete-space approximation of the Laplacian operator. In fact, we are
implementing a Forward-Euler simulation of a discrete-space approximation of the
differential equations that describe linear diffusion (Eq. 1).

The method for obtaining robust edge detection is suppressing all the spatial
frequency components of the image that correspond to elements that are not precisely
the edges of the principal elements of the scene. There are frequency components in
the lower part of the spectrum that correspond to the flat area of the images. They do
not represent change but the dc and near dc values. On the other extreme, there are
high frequency components that correspond to spurious edges and can lead to false
edge detection. In order to eliminate all the components outside a prescribed central
range, bandpass filtering is required.

We are going to combine two lowpass filters in order to realize a spatial bandpass
filter. In the left thread of the diagram in Fig. 4, the convolutions of the Laplacian
mask with the original image is performed once. In the other thread it is realized 35
times. As a result, the original image (Fig. 5(a)) is lowpass filtered with a high cut
frequency (Fig. 5(b)) and with a lower cut frequency (Fig. 5(c)). Subtracting this last
image from the previous, a bandpass filtered version is obtained (Fig. 5(d)). Finally,
all the pixels above a certain threshold are highlighted recognized as edges of the
constitutional elements of the original scene. The resulting image, as well as the
intermediate results, is sent back to the PC, via the serial port. The process can be
monitored, off-line, with the help of a graphical user interface (GUI) developed for
this project (Fig. 5).

447Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

(a) (b)

(c) (d)

(e)

Figure 5: GUI showing initial (a), intermediate (b), (c), (d) and final (e) images.

4 Performance Evaluation and Discussion

4.1 System Characterization: Strengths and Limitations

Once the functionality of the system has been throughout verified, with the help of the
sample application described in the previous section, it is time to address the
maximum ratings of the system. The aim of designing specific hardware for low-level
image processing is to accelerate the execution of these tasks in conventional
architectures. This speedup allows for real-time operation and energy efficient
implementation of artificial vision. Thus, on one side, we are interested in measuring

448 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

the system performance in terms of MOPS, or, indirectly, for the sake of comparison,
in terms of frames per second for a particular image processing algorithm. On the
other side, adaptation of the system architecture to the nature of the stimuli makes the
system more efficient in terms of power consumption. Although the power required to
perform some basic operations onto the image does not depends in the number of
parallel data paths3, the overhead circuitry required for image partitioning and data
retrieval can operate on a much reduced energy budget if carefully designed.

Concerning the maximum achievable computing power, it can be derived from
inspection of the design characteristics. The following table summarizes the number
of clock cycles it takes in the visual co-processor to realize each different operator:

Operator Cycles per pixel

Convolution 14
Subtraction 4
Threshold 3

Table 2: Number of cycles per pixel per operation

These figures correspond to our specific implementation of the operators. It can
be objected that there could be some room for optimization, but, given the current
numbers, the minimum would not be very far from what we have obtained. For
instance, a pipelined implementation of the convolution unit may result in a larger
hardware but can certainly improve the processing speed, at the expense of a little
latency. In this specific implementation, the peak performance is developed when
computing the convolution of the image with a spatial 3x3-pixel mask. This
corresponds to realizing 9 multiplications and 8 additions per pixel. These 17
operations take 14 clock cycles, of 20ns each. When operating at its peak, this system
develops a computing power of 60.71MOPS. The replication of the convolver will
have a direct incidence in this index, boosting the system performance according to:

 MOPS 71.60Power ComputingPeak n= (3)

where n is the number of convolver blocks operating in parallel. This assertion is
valid as long as there is sufficient on-chip RAM and the memory bandwidth does not
generate any bottleneck [Wuytack, 99], i. e. if the limiting factors are introduced by
the co-processor architecture and circuitry and not by the memory access.

In order to better estimate the system limitations, let us examine its performance
at the low-level processing application described in the previous section. Consider
that the sensor size, the CCD or CMOS camera capturing the input image, is QCIF. If
the system is to realize the 36 convolutions followed by a subtraction and a threshold
binarization, it will need 511 clock cycles per pixel. This is 12.63Mcycles per frame.
Using a 50MHz clock, each frame will take 253ms to be processed. The final frame
rate would be 3.96fps. In order to reach a reasonable frame rate, say 25fps, we will

3 For the same frame rate, N operators in parallel can realize the same task as 1, working at 1/N of its speed.
The power consumed by each of the N operators is 1/N that of the individual operator working alone. The
improvement in power efficiency is not in the realization of the operator, but in the overhead circuitry for
image partitioning, data routing and memory access.

449Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

have to replicate the convolver. This will accelerate the operation by processing
several pixels in parallel. The total frame rate will then increase at the expense of
more FPGA resources being used. Table 3 displays an estimation of the enhancement
in system performance and its effect in the use of resources.

No.
convolvers

Slices (% total
no. of slices)

Flip-flop’s
(%) LUT’s (%) Multipliers

(%) fps

1 4133 (30%) 2144 (6%) 7632 (27%) 3 (2%) 3.96
4 5426 (39%) 2855 (10%) 9879 (36%) 6 (4%) 15.19
9 7581 (55%) 4040 (15%) 13624 (50%) 11 (8%) 32.03

16 10598 (77%) 5699 (21%) 18867 (69%) 18 (13%) 52.32
23 13615 (~100%) 7358 (27%) 24110 (88%) 25 (18%) 69.56

Table 3: Estimation of the use of FPGA resources and total frame rate

Observe that the number of multipliers equals the number of convolvers plus two
extra multiplications. Those are required for scaling the image incremental update
after convolution and the result of the subtraction to fit into the 8-bit grayscale. There
are multipliers left to be used that could be employed for parallelizing the operation
inside the convolution block. However, access to image data would easily become the
main limiting factor in the convolver operation. For the current design, the practical
limit occurs when implementing 23 convolvers operating in parallel. This will occupy
the 100% of the FPGA logic slices and end up in a total frame rate of 69.56fps.

Concerning the power consumption, it has been estimated using the Xpower
power analysis tool of the CAD software (it is integrated in Xilinx ISE 8.1). The total
estimated power consumption for this design is 421mW. This means that the vision
SOPC is able of 0.144MOPS/mW. But these figures should be contrasted with direct
measurement because of the limitations of the Xpower tool. This program
overestimates the static power consumption related with leakage [Elleouet, 04], which
in this design is hiding the real consumption that could be assigned to the vision
SOPC. We are not able to compute, by means of this software, the power
consumption of an individual convolver. In fact, synthesizing the convolver alone
leads to quite similar figures that those of the complete system. Let us assume, as a
rough and conservative estimation, that the SOPC with 23 convolvers operating in
parallel, the practical limit with this FPGA, consumes 1W. As the peak computing
power is of 1396.3MOPS, following Eq. (3), the vision SOPC with 23 convolvers will
be capable of 1.40MOPS/mW. This performance index can be compared with that of
the last breed fixed-point DSPs, capable of 5760MIPS employing 2.15W [TI, 06].
They rate 2.68MOPS/mW. It means that our vision SOPC is not far from what is
already available with state-of-the-art digital signal processing, considering that these
operators are not optimized and that there is necessary overhead required for the
FPGA to be configured and running.

As an additional observation, power savings related with the implementation of
an adapted architecture come from the reduction in the effort dedicated to image
partitioning and reordering. An extreme case would be to incorporate a processor at
each memory location, what does not require any data transfers and reordering.

450 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

4.2 Guidelines for the Design of a Vision SoC/SOPC

Several guidelines can be extracted from these experiments and the study on the
limitations of the implementation of a vision system in a programmable chip:

• The addition of specific hardware to realize tedious, highly demanding, low-
level image processing tasks is a must if strict time requirements are to be
met. A simple specialized piece of circuitry is able to outperform general
purpose processors when regular, repetitive operations are required to be
realized upon a massive number of simple data.

• Adaptation of system architecture to the nature of the stimulus, in particular,
by replication the hardware in order to support parallel signal processing
pathways for low-level repetitive operations, can boost performance indexes
by more than one order of magnitude.

• System performance in vision applications can be strongly dependent on the
specific details of the application. For the same architecture, design trade-
offs should be addressed differently depending on which is the critical
operator in the image processing chain.

• Limitations in the access to image data are the main source for performance
degradation at higher parallelization levels. For this, the implementation of
the specific hardware in a programmable chip with sufficient on-chip RAM
is very convenient as tailored image scanning methods can be incorporated at
no extra cost. An alternative is the use of external memories with a
convenient arbitration for access collision.

5 Conclusions

Given the capabilities of reconfigurable computing systems to implement both
conventional and alternative goal-oriented architectures, we have tested the feasibility
of tailoring an FPGA-based system to realize high and low-level vision processing
tasks. The motivation is clear; this can represent a competitive solution for the
development of low cost artificial vision systems. Especially when, the performance
and limitations of this system being characterized, the hardware resources available in
medium size FPGA’s render quite promising figures for processing speed under a
tight power budget. Our conclusions are that, based on the results of these
experiments, the implementation of a complete vision system, excluding the image
sensor, in a reconfigurable/programmable chip is a cost effective alternative to
conventional and DSP-based approaches. On one side, the available computing power
per mW is of the same order, while the flexibility of the hardware permits further
optimization and adaptation to the specific vision application. On the other, the extra
design effort employed in devising an adapted architecture is alleviated by the endless
possibilities of design testing and refining at no fabrication cost.

451Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

Acknowledgements

The authors would like to thank Santiago Sánchez-Solano, Luis Carranza-González
and Carlos Domínguez-Matas for their useful directions in the physical
implementation of the vision system. This work has been partially funded by project
FIT-330100-2005-162 of the Spanish Ministry of Industry, Tourism and Commerce.
The work of F. J. Sánchez-Fernández is supported by a grant of the Spanish Ministry
of Education and Science.

References

[Aarts, 03] Aarts E., Roovers R., “IC Design Challenges for Ambient Intelligence”, Design,
Automation and Test in Europe, pp. 2-7, Munich, Germany, March 2003.

[Aitch, 03] Aitch T., A Pipelined RISC CPU: AQUARIUS. Rev. 1.1, July 2003.

[EEMBC, 97] The Embedded Microprocessor Benchmark Consortium 1997-2006,
http://www.eembc.org

[Elleouet, 04] Elleouet D., Julien N., Houzet D., Cousin J. -G., Martin M., “Power
Consumption Characterization and Modeling of Embedded Memories in XILINX”. Proc. of the
Euromicro Symposium on Digital System Design (DSD 2004), pp.394-401, 31 Aug.-3 Sept.
2004.

[Díaz, 06] Díaz J., Ros E., Mota S. and Rodriguez-Gomez R., “Highly paralellized architecture
for image motion estimation”, Lecture Notes in Computer Science, Springer-Verlag, Vol. 3985,
pp. 75-86, 2006.

[IEEE, 01] IEEE standard Verilog hardware description language, IEEE Std 1364-2001, 2001

[Intel, 04] Intel® Pentium® 4 Processor on 0.13um Process Datasheet. Document No.: 298643-
012, February 2004.

[ITU, 93] Rec. H. 261: Video Codec for Audiovisual Services at p x 64kbit/s. Rec. ITU,
Helsinki, 1993.

[Jähne, 99] Jähne B., Haußecker H., Geißler P. (Eds.), Handbook of Computer Vision and
Applications, Vol. 2. Academic Press, San Diego, 1999.

[Makimoto, 02] Makimoto T., Doi T.T., “Chip Technologies for Entertainment Robots”.
International Electron Devices Meeting, pp. 9-16, December 2002.

[OpenCores, 99] OPENCORES.ORG 1999-2006, http://www.opencores.org

[Peterson, 02] Peterson W.D., Specification for the WISHBONE SoC Interconnection
Architecture for Portable IP Cores. Rev. B. 3. September 2002.

[Renesas, 04] Renesas Technology. SH-1/SH-2/SH-DSP Software Manual, Rev. 5.00, June 30,
2004.

[Stein, 05] Stein G.P. et al., “A Computer Vision SoC: a Case Study from the Automotive
Domain”. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Vol. 3, pp. 130-134, June 2005.

[TI, 06] Texas Instruments, Video and Imaging Solutions Guide, 2Q, 2006.

452 Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

[Wuytack, 99] Wuytack S. et al. “Minimizing the Required Memory Bandwidth in VLSI
System Realizations”, IEEE Transactions on VLSI Systems, Vol. 7, No. 4, pp. 433-441,
December 1999.

[Xilinx, 05] Xilinx University Program, Virtex-II Pro Development Syst. Hardware Ref.,
Ver. 1.0, March 2005.

[Xilinx, 06] MicroBlaze Processor Reference Guide, Embedded Development Kit EDK 8.2i.
UG081, Ver. 6.0, June 2006.

453Fernandez-Perez J., Sanchez-Fernandez F.J., Carmona-Galan R.: Performance ...

