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Abstract: This paper presents a survey of the characteristics of a vision system implemented in 
a reconfigurable/programmable chip (FPGA). System limitations and performance have been 
evaluated in order to derive specifications and constraints for further vision system synthesis. 
The system hereby reported has a conventional architecture. It consists in a central 
microprocessor (CPU) and the necessary peripheral elements for data acquisition, data storage 
and communications. It has been designed to stand alone, but a link to the programming and 
debugging tools running in a digital host (PC) is provided. In order to alleviate the 
computational load of the central microprocessor, we have designed a visual co-processor in 
charge of the low-level image processing tasks. It operates autonomously, commanded by the 
CPU, as another system peripheral. The complete system, without the sensor, has been 
implemented in a single reconfigurable chip as a SOPC. The incorporation of a dedicated visual 
co-processor, with specific circuitry for low-level image processing acceleration, enhances the 
system throughput outperforming conventional processing schemes. However, time-
multiplexing of the dedicated hardware remains a limiting factor for the achievable peak 
computing power. We have quantified this effect and sketched possible solutions, like 
replication of the specific image processing hardware. 

Keywords: image processing, system-on-a-programmable-chip implementation, algorithms 
implemented in hardware [Integrated Circuits], hardware architecture [Computer Graphics]. 
Categories: B.7.1, C.1.4, C.4, C.5.4, I.3.1, I.4.9 

1 Introduction 

High-speed image processing is of crucial importance in applications with critical 
timing. Especially in fields like autonomous robot navigation [Makimoto, 02], cruise 
control and collision alerts in the automotive industry [Stein, 05] and the development 
of ambient intelligence devices based on artificial vision [Aarts, 03]. When 
considering obstacle detection and object tracking in a changing environment, 
systems based in a single general purpose processor are not suitable for an accurate 
and timely response. On one side, serialized data processing is prone to limiting 
bottlenecks. On the other side, the microprocessor, which may not have optimized 
hardware for the realization of the processing tasks, has to deal with lateral tasks like 
communication with the peripheral devices and the execution of a global program. 
Therefore, the implementation of real-time image processing in highly demanding 
applications is not viable with serialized data processing systems. Let us consider an 
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image flow of 25 frames per second (fps). With a QCIF frame size, 176 x 144 pixels 
[ITU, 93], it means a rate of 0.63Mpixels/s. If a particular application requires the 
convolution of the image with 20 3x3-pixel spatial masks —what means 9 products 
and 8 additions of integers, once digitized—, the system should be able to develop a 
peak computing power of 214MOPS1. In addition, in applications like autonomous 
robots and portable smart cameras, strong limitations on the overall system power 
consumption are found. It is practically impossible to achieve, in these conditions, the 
required computing power with a general purpose processor —although being able of 
e. g. 9730MIPS2 [Intel, 04], this is done at the expense of a high clock frequency, 
3.2GHz, and hence a high power consumption, 103W. In order to efficiently realize 
the required computing power, a feasible alternative would be the design of a specific 
piece of hardware. It would have the twofold mission of realizing the low-level image 
processing tasks at a lower cost and, besides, alleviate the central processor load. In 
the end, these tedious and regular tasks are the most computationally demanding part 
of the vision algorithm. As a natural consequence of this partition, the image 
processing throughput will increase. 

In this paper, we will evaluate the performance and limitations of a vision system 
consisting in a central processor, with on-chip peripherals, and a special co-processor 
for low-level image processing tasks. The complete system will be implemented in a 
Xilinx Virtex II Pro FPGA, operating at a 50MHz clock. 

2 Architecture of the Vision SOPC 

The architecture of the vision system developed for this project is depicted in Fig. 1. It 
incorporates, in a single silicon reconfigurable chip, all the components required for 
image processing and transmission, as well as the port for connecting to image 
acquisition devices. Described at the higher level, this vision SOPC is composed of: 
 

• A general-purpose microprocessor. It operates as a microcontroller unit 
(MCU) with the help of some peripherals. Its main functions are to execute a 
global program, to manage the system buses and to exchange data with 
external devices. 

• A visual co-processor (VP) in charge of low-level image processing. It 
contains the appropriate hardware to apply spatial masks and other operators 
specially designed for the manipulation and filtering of images. 

• A dual-port random access memory (DPRAM). It is the place where image 
data are going to be stored. The MCU have access to this area of the memory 
just as it was any other area of the address space. The other port is used by 
the VP for image data I/O. In this form, the MCU continues executing the 
global program without interfering with the work of the visual coprocessor. 

 

                                                           
1 MOPS: Millions of operations per second (additions, multiplications, etc.). 
2 MIPS: Millions of instructions per second. This performance index is not very accurate as some 
instructions may require a variable number of clock cycles and, at the same time, a single arithmetic 
operation may require of several instructions to be completed. 
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Figure 1: Block diagram of the vision system 

2.1 Microcontroller Unit 

The primary processor of the system (CPU) and the peripherals for data storage and 
exchange constitute the microcontroller unit (MCU). For the implementation of the 
MCU we have employed a public domain processor, Aquarius [Aitch, 03], obtained 
from [OpenCores, 99]. In the selection of the MCU, several factors contributed to the 
decision of using Aquarius. Contrarily to Xilinx Microblaze [Xilinx, 06], OpenCores 
offers full access to the microprocessor code. This, at an initial stage, supposes an 
advantage, especially when trying to implement a system that will incorporate non-
conventional peripherals and whose advanced features could be based on the 
implementation of a dedicated architecture. When working with Microblaze, access to 
the internal structure of the MCU is blocked, as it is provided as an encrypted core 
that the CAD tools incorporate to the design as is. Other factors that contributed to the 
selection of Aquarius are that it is fully documented and it complies with a bus 
architecture intended to realize a system-on-a-chip (SoC). And, finally, it was 
described in Verilog [IEEE, 01]. Being part of a larger project concerning the 
development of vision SoC’s, we sought for a processor that we could test on FPGA 
and incorporate later to an ASIC, using tools for IC synthesis accessible for us. 

The main characteristics of the selected MCU are: 
 

• Pipelined architecture with 5 stages 
• A reduced instruction set (RISC), with 16-bit-long instructions, compatible 

with SuperH-2 [Renesas, 04]. 
• 32-bit-wide address and data buses. Able to address up to 4GB of memory. 
• 16KB internal RAM. 
• UART for serial-port communication  
• 32-bit parallel-port (PIO) 
• System controller for handling interrupts 
 
Inside Aquarius, the architecture of the buses follows WISHBONE specifications 

[Peterson, 02]. This allows for feasible device integration into a SoC (System-on-a-
Chip). One of the main features of WISHBONE compatible buses is the standard 
interconnection scheme, which is based in a low number of gates. This will simplify 
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the interconnection between different components of the system. Therefore, the 
design of the interface for the visual coprocessor will be quite straightforward, while 
proper connection to the MCU is granted. 

As depicted in Fig. 1, the original Aquarius MCU contains the CPU and a set of 
peripherals: the system controller, the internal RAM, the parallel port (PIO) and the 
UART. Added to the basic system, another two peripherals have been incorporated to 
build our vision system: the visual co-processor and the DPRAM. Both of them are 
WISHBONE compatible, in order to be seamlessly allocated in the processor’s 
address space. However, a controller for direct memory access (DMA) between the 
visual co-processor and the DPRAM has been implemented, as these data exchanges 
occur separately from the system data bus. Concerning application programming, 
there are cross-compilers that allow developing programs in C and translating them 
into SuperH-2 instructions to be executed by the vision SOPC. In our development 
system, the internal RAM of Aquarius is directly programmed in C. The proper 
initialization is realized by the hardware development tools. In a stand-alone 
production system, this program could be coded in an EEPROM and loaded at system 
boot time. 

2.2 Visual Co-Processor 

The visual co-processor (VP) has been designed to realize low-level processing on 
images stored in the DPRAM. They can be received from a camera or sent by a PC 
via the UART. The parallel I/O can also be employed for this purpose, but it will 
require the incorporation of some glue logic. In this first version of the system, 
images are received through the UART and the CPU allocates them in the image data 
memory (DPRAM). The VP has access to the image data through an additional port, 
in order not to interfere with the operation of the MCU. Fig. 2 depicts a block diagram 
of the internal structure of the visual processor and its main components: 

 
• Convolver: realizes convolutions of the original image with a 3x3-pixel 

spatial mask. The values of the mask elements are programmed by the user 
and passed as parameters during execution. The outcome of the convolution 
is an image in which the value of each pixel depends not only on its original 
value but also on the values of its nearest neighbours. The convolver is in 
turn composed of two different blocks: the data router and the incremental 
modifier. The data router scans the memory, bringing the values of the 
neighbouring pixels that are necessary to carry out the convolution. The 
incremental modifier is employed to update the pixel value in accordance 
with the result of the convolution. It is a dedicated MAC which operates with 
positive and negative numbers, but generates an unsigned 8-bit output, 
appropriate to be stored in the DPRAM. 

• Adder/subtractor: Realizes pixel-wise additions and subtractions between 
two images. The output saturates in order to be represented by an 8-bit 
binary number, suitable for the DPRAM.  

• Thresholder: converts the input image into a binary image according to a 
user-defined threshold. Any pixel above this value is set to 255, while those 
below are set to 0. 
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Figure 2: Internal structure of the co-processor and connections to the DPRAM 

Back to the diagram in Fig. 2, data buses are represented in blue while address 
buses are in red. The processing operators described above share the secondary port 
of the DPRAM. This version of the system does not contain any arbitration of these 
accesses. Control must be realized in software. 

2.3 Dual-port RAM 

In order to disengage the operation of the visual co-processor from the execution of 
the global program by the MCU, a dual-port RAM for the storage of image data has 
been implemented. Therefore, the primary port is connected to the system address and 
data buses while the secondary port is directly accessed by the operators of the visual 
co-processor. In the present version, a 64KB DPRAM has been included in the SOPC. 
This permits the storage of up to 16 64x64-pixel images encoded in 8-bit greyscale. 
Larger image sizes may require off-chip implementation of the memory, what have a 
negative incidence on the system performance that has not been evaluated. In order to 
counter these effects, arbitration techniques could be implemented to avoid collisions 
in the access to an external memory as proposed in [Díaz, 06]. 

3 FPGA Implementation 

Once the architecture of the vision system has been established, an implementation on 
reconfigurable hardware will allow us to conduct different experiments. On one side, 
the flexibility of the FPGA implementation permits iterating the design-synthesis-test 
loop at zero fabrication cost. On the other side, a selection of tools integrated within 
the CAD environment for FPGA design, programming and debugging, will help us 
evaluate system performance and limitations once the functionality is tested. 
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3.1 Virtex II Pro Development Board and PC Host Interface 

For the implementation of the vision SOPC, we have employed a XUPV2P board 
fabricated by Digilent Inc. [Xilinx, 05]. It is a development board that hosts a Xilinx 
Virtex II Pro FPGA, with several I/O devices and communication circuitry. Its 
characteristics can be summarized as follows: 

• On-board SDRAM, up to 2GB. 
• 100MHz system clock. 
• Programmability implemented via USB and PROM. 
• Serial port RS232-DB9. 
• Different power supply voltages on-board. 
• 5 push buttons, 4 switches and 4 LEDs connected to Virtex II Pro I/O pins. 
• 1 Virtex II Pro FPGA (version X2CVP30) with 2 PowerPC RISC cores 

Table 1 depicts the main features of the Virtex II Pro FPGAs. 
 

Feature XC2VP20 XC2VP30 
Slices 9280 13696 
Distributed RAM 290Kb 428Kb 
Multiplier blocks 88 136 
BlockRAM 1584Kb 2448Kb 
Power PC RISC Cores 2 2 

Table 1: Characteristics of the Virtex II Pro FPGAs 

The complete system was described in Verilog and synthesized with the help of 
FPGA CAD tools (Xilinx ISE 8.1). As a result of the synthesis, 30% of the available 
slices, 6% of the flip-flops, 27% of the LUT’s and 2% of the available multipliers 
have been employed. The dual-port RAM has been implemented using the available 
BlockRAM. It is 64KB-deep and contains 8-bit-long data. The maximum allowed 
clock frequency is 51.618MHz. As the XUPV2P board clock is 100MHz, we will 
obtain a 50MHz square signal, by frequency division, to clock the vision system. 
Fig. 3 depicts the test and development platform that we are going to use. It contains 
the vision SOPC in the FPGA board, which in turn communicates with a host PC 
employed for system programming and configuration. Image data are transmitted by 
the PC via RS232 and processing results are recovered through the same port. A 
graphical user interface (GUI) has been developed for this purpose. Results 
concerning system operation, speed and power are obtained from the FPGA hardware 
design and configuration tools. 
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Figure 3: Conceptual diagram of the test and development platform. 

3.2 Sample Application 

In order to evaluate the computational cost of image processing in this architecture, 
we have to establish a test bench composed by the common operations required for 
low-level image processing. For this we will devise a simple application that makes 
use of these operators. This is a widely extended methodology in the characterization 
of embedded microprocessors [EEMBC, 97], as their peak performance is related to a 
vast set of parameters which, in turn, strongly depend on the particular application.  
 

 

Figure 4: Flow diagram of the global program of the application 
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The target of the image processing that we are realizing is robust edge detection 
on a greyscale image. It starts with a previously captured image (step (a) in Fig. 4), 
stored in the PC memory. It is transmitted to the vision SOPC via the PC serial port, 
with the help of the on-chip UART. Then, the first thing will be to eliminate 
imperfections due to noise in the capture and/or transmission of the image. We will 
employ a lowpass spatial filter based on linear diffusion of the original values of the 
pixels [Jähne, 99]. We will implement a discretized version, in space and time, of the 
following differential equation: 

 0),(),( 2 =∇+ yxIk
dt

yxdI  (1) 

where I(x,y) is the luminance, a function that relates each point of the image plane 
with its corresponding brightness. The spatial cut frequency of the lowpass filter is 
inversely proportional to the period of time that we allow the diffusion of the pixel 
values to evolve. As the diffusion in our purely digital system is discretized both in 
space and in time, we will control the diffusion time by the number of iterations that 
we realize the convolution of the original image with this spatial mask: 
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which is a discrete-space approximation of the Laplacian operator. In fact, we are 
implementing a Forward-Euler simulation of a discrete-space approximation of the 
differential equations that describe linear diffusion (Eq. 1). 

The method for obtaining robust edge detection is suppressing all the spatial 
frequency components of the image that correspond to elements that are not precisely 
the edges of the principal elements of the scene. There are frequency components in 
the lower part of the spectrum that correspond to the flat area of the images. They do 
not represent change but the dc and near dc values. On the other extreme, there are 
high frequency components that correspond to spurious edges and can lead to false 
edge detection. In order to eliminate all the components outside a prescribed central 
range, bandpass filtering is required. 

We are going to combine two lowpass filters in order to realize a spatial bandpass 
filter. In the left thread of the diagram in Fig. 4, the convolutions of the Laplacian 
mask with the original image is performed once. In the other thread it is realized 35 
times. As a result, the original image (Fig. 5(a)) is lowpass filtered with a high cut 
frequency (Fig. 5(b)) and with a lower cut frequency (Fig. 5(c)). Subtracting this last 
image from the previous, a bandpass filtered version is obtained (Fig. 5(d)). Finally, 
all the pixels above a certain threshold are highlighted recognized as edges of the 
constitutional elements of the original scene. The resulting image, as well as the 
intermediate results, is sent back to the PC, via the serial port. The process can be 
monitored, off-line, with the help of a graphical user interface (GUI) developed for 
this project (Fig. 5). 
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(a)      (b) 
 

   
(c)      (d) 
 

 
(e)      

Figure 5: GUI showing initial (a), intermediate (b), (c), (d) and final (e) images. 

4 Performance Evaluation and Discussion 

4.1 System Characterization: Strengths and Limitations 

Once the functionality of the system has been throughout verified, with the help of the 
sample application described in the previous section, it is time to address the 
maximum ratings of the system. The aim of designing specific hardware for low-level 
image processing is to accelerate the execution of these tasks in conventional 
architectures. This speedup allows for real-time operation and energy efficient 
implementation of artificial vision. Thus, on one side, we are interested in measuring 
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the system performance in terms of MOPS, or, indirectly, for the sake of comparison, 
in terms of frames per second for a particular image processing algorithm. On the 
other side, adaptation of the system architecture to the nature of the stimuli makes the 
system more efficient in terms of power consumption. Although the power required to 
perform some basic operations onto the image does not depends in the number of 
parallel data paths3, the overhead circuitry required for image partitioning and data 
retrieval can operate on a much reduced energy budget if carefully designed. 

Concerning the maximum achievable computing power, it can be derived from 
inspection of the design characteristics. The following table summarizes the number 
of clock cycles it takes in the visual co-processor to realize each different operator: 

 
Operator Cycles per pixel 

Convolution 14 
Subtraction 4 
Threshold 3 

Table 2: Number of cycles per pixel per operation 

These figures correspond to our specific implementation of the operators. It can 
be objected that there could be some room for optimization, but, given the current 
numbers, the minimum would not be very far from what we have obtained. For 
instance, a pipelined implementation of the convolution unit may result in a larger 
hardware but can certainly improve the processing speed, at the expense of a little 
latency. In this specific implementation, the peak performance is developed when 
computing the convolution of the image with a spatial 3x3-pixel mask. This 
corresponds to realizing 9 multiplications and 8 additions per pixel. These 17 
operations take 14 clock cycles, of 20ns each. When operating at its peak, this system 
develops a computing power of 60.71MOPS. The replication of the convolver will 
have a direct incidence in this index, boosting the system performance according to: 

 
 MOPS 71.60Power ComputingPeak n=  (3) 

 
where n is the number of convolver blocks operating in parallel. This assertion is 
valid as long as there is sufficient on-chip RAM and the memory bandwidth does not 
generate any bottleneck [Wuytack, 99], i. e. if the limiting factors are introduced by 
the co-processor architecture and circuitry and not by the memory access.  

In order to better estimate the system limitations, let us examine its performance 
at the low-level processing application described in the previous section. Consider 
that the sensor size, the CCD or CMOS camera capturing the input image, is QCIF. If 
the system is to realize the 36 convolutions followed by a subtraction and a threshold 
binarization, it will need 511 clock cycles per pixel. This is 12.63Mcycles per frame. 
Using a 50MHz clock, each frame will take 253ms to be processed. The final frame 
rate would be 3.96fps. In order to reach a reasonable frame rate, say 25fps, we will 
                                                           
3 For the same frame rate, N operators in parallel can realize the same task as 1, working at 1/N of its speed. 
The power consumed by each of the N operators is 1/N that of the individual operator working alone. The 
improvement in power efficiency is not in the realization of the operator, but in the overhead circuitry for 
image partitioning, data routing and memory access. 
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have to replicate the convolver. This will accelerate the operation by processing 
several pixels in parallel. The total frame rate will then increase at the expense of 
more FPGA resources being used. Table 3 displays an estimation of the enhancement 
in system performance and its effect in the use of resources.   
 

No. 
convolvers 

Slices  (% total 
no. of slices) 

Flip-flop’s 
(%) LUT’s (%) Multipliers 

(%) fps 

1 4133  (30%) 2144  (6%) 7632  (27%) 3  (2%) 3.96 
4 5426  (39%) 2855  (10%) 9879  (36%) 6  (4%)  15.19 
9 7581  (55%) 4040  (15%) 13624  (50%) 11  (8%) 32.03 

16 10598  (77%) 5699  (21%) 18867  (69%) 18  (13%) 52.32 
23 13615 (~100%) 7358 (27%) 24110 (88%) 25 (18%) 69.56 

Table 3: Estimation of the use of FPGA resources and total frame rate 

Observe that the number of multipliers equals the number of convolvers plus two 
extra multiplications. Those are required for scaling the image incremental update 
after convolution and the result of the subtraction to fit into the 8-bit grayscale. There 
are multipliers left to be used that could be employed for parallelizing the operation 
inside the convolution block. However, access to image data would easily become the 
main limiting factor in the convolver operation. For the current design, the practical 
limit occurs when implementing 23 convolvers operating in parallel. This will occupy 
the 100% of the FPGA logic slices and end up in a total frame rate of 69.56fps.  

Concerning the power consumption, it has been estimated using the Xpower 
power analysis tool of the CAD software (it is integrated in Xilinx ISE 8.1). The total 
estimated power consumption for this design is 421mW. This means that the vision 
SOPC is able of 0.144MOPS/mW. But these figures should be contrasted with direct 
measurement because of the limitations of the Xpower tool. This program 
overestimates the static power consumption related with leakage [Elleouet, 04], which 
in this design is hiding the real consumption that could be assigned to the vision 
SOPC. We are not able to compute, by means of this software, the power 
consumption of an individual convolver. In fact, synthesizing the convolver alone 
leads to quite similar figures that those of the complete system. Let us assume, as a 
rough and conservative estimation, that the SOPC with 23 convolvers operating in 
parallel, the practical limit with this FPGA, consumes 1W. As the peak computing 
power is of 1396.3MOPS, following Eq. (3), the vision SOPC with 23 convolvers will 
be capable of 1.40MOPS/mW. This performance index can be compared with that of 
the last breed fixed-point DSPs, capable of 5760MIPS employing 2.15W [TI, 06]. 
They rate 2.68MOPS/mW. It means that our vision SOPC is not far from what is 
already available with state-of-the-art digital signal processing, considering that these 
operators are not optimized and that there is necessary overhead required for the 
FPGA to be configured and running. 

As an additional observation, power savings related with the implementation of 
an adapted architecture come from the reduction in the effort dedicated to image 
partitioning and reordering. An extreme case would be to incorporate a processor at 
each memory location, what does not require any data transfers and reordering. 
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4.2 Guidelines for the Design of a Vision SoC/SOPC 

Several guidelines can be extracted from these experiments and the study on the 
limitations of the implementation of a vision system in a programmable chip: 
 

• The addition of specific hardware to realize tedious, highly demanding, low-
level image processing tasks is a must if strict time requirements are to be 
met. A simple specialized piece of circuitry is able to outperform general 
purpose processors when regular, repetitive operations are required to be 
realized upon a massive number of simple data.  

• Adaptation of system architecture to the nature of the stimulus, in particular, 
by replication the hardware in order to support parallel signal processing 
pathways for low-level repetitive operations, can boost performance indexes 
by more than one order of magnitude.  

• System performance in vision applications can be strongly dependent on the 
specific details of the application. For the same architecture, design trade-
offs should be addressed differently depending on which is the critical 
operator in the image processing chain.  

• Limitations in the access to image data are the main source for performance 
degradation at higher parallelization levels. For this, the implementation of 
the specific hardware in a programmable chip with sufficient on-chip RAM 
is very convenient as tailored image scanning methods can be incorporated at 
no extra cost. An alternative is the use of external memories with a 
convenient arbitration for access collision. 

5 Conclusions 

Given the capabilities of reconfigurable computing systems to implement both 
conventional and alternative goal-oriented architectures, we have tested the feasibility 
of tailoring an FPGA-based system to realize high and low-level vision processing 
tasks. The motivation is clear; this can represent a competitive solution for the 
development of low cost artificial vision systems. Especially when, the performance 
and limitations of this system being characterized, the hardware resources available in 
medium size FPGA’s render quite promising figures for processing speed under a 
tight power budget. Our conclusions are that, based on the results of these 
experiments, the implementation of a complete vision system, excluding the image 
sensor, in a reconfigurable/programmable chip is a cost effective alternative to 
conventional and DSP-based approaches. On one side, the available computing power 
per mW is of the same order, while the flexibility of the hardware permits further 
optimization and adaptation to the specific vision application. On the other, the extra 
design effort employed in devising an adapted architecture is alleviated by the endless 
possibilities of design testing and refining at no fabrication cost. 
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