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Abstract: System Dependence Graph (SDG) is a graph representation which shows
dependencies among statements / expressions in a design. In this paper, we propose a
new HW/SW co-design methodology based on SDG. In our method, any combination
of C / C++ / SpecC descriptions is acceptable as input designs so that design functions
can be specified flexibly. First, the input descriptions are analyzed and verified with
static but partially dynamic program checking methods by traversing SDG. With those
methods, large descriptions can be processed. Next, those designs are divided into HW
and SW parts. In this step, SDGs are fully utilized to insert parallelism into the designs,
and it enables flexible HW /SW partitioning. The HW parts are further optimized and
then converted into RTL descriptions by existing behavioral synthesis tools. Finally, the
generated RTL descriptions together with the SW parts are compared to the original
descriptions in order to make sure that they are logically equivalent. Also, designer-
specified properties may be model checked with these final design descriptions. Such
formal verifications can be realized by translating those descriptions into Finite State
Machine (FSM) type representations and existing formal verifiers. We show two case
studies with practical examples to demonstrate the usefulness of our approach.
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1 Introduction

Due to the advances in VLSI and System-on-a-Chip (SoC) technology, the com-
plexity of the fabricated chips is growing rapidly. The design and verification
of SoC, however, do not catch up with such the quick growth. This makes the
efficiency gap between the production and design / verification much wider,
which is one of the key problems in today’s SoC design market. Now, new design
methodologies which make the design and verification processes much more pro-
ductive, are highly required. One of the most effective ways to improve design
productivity is to start design from more abstracted levels. Recently, several
system-level design languages which support IP reuse, such as SpecC [SpecC]
or SystemC [SystemC], have been proposed. In system-level design, not only
hardware (HW) development but also software (SW) development is taken care
of.
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Program slicing is a technique which extracts portions related to a specified
portion in a design [Weiser 1984]. It is originally developed in SW field, but also
extended for HW field [Tanabe et al. 2004, Clarke et al. 1999]. This technique
is known to be very useful in various ways for SW and HW development, e.g.
program analysis, maintenance, debugging, test, and reuse. System Dependence
Graph (SDG) is an intermediate graph representation for program slicing, and
represents dependencies among statements / expressions in a design.

In this paper, we propose a HW/SW co-design methodology based on SDG.
We use the SDG proposed in [Tanabe et al. 2004], and it can be created from any
combination of C / C++ / SpecC descriptions. In the proposed methodology,
information of dependencies represented by the SDG is fully utilized for static
(partially dynamic) code checking, parallelism extraction for HW/SW partition-
ing, and formal verification.

This paper is the extended version of [Sasaki et al. 2006], and the following
points were refined from it.

— Deadlock and race condition detection methods were appended.
— The detail of the HW/SW partitioning method was described.
— Sufficient experimental results were appended.

The remainder of this paper is organized as follows. Section 2 introduces
background knowledge on existing techniques used in our method and related
works. In Section 3, we give a proposed co-design methodology based on SDG.
In Section 4, we show case studies of the proposed method by applying it to
HW/SW co-designs of MPEG2 decoder and JPEG2000 encoder and demonstrate
the usefulness of our approach. Finally, we conclude this work in Section 5.

2 Background

2.1 SpecC

SpecC [SpecC] is a system-level design description language, which is an ex-
tension of ANSI-C language to describe HW parts of designs. In this section,
we introduce the three main extensions in SpecC such as structural hierarchy,
concurrency, and synchronization.

2.1.1 Structural Hierarchy

In order to describe structural hierarchies of target systems as classes in C++,
behavior, channel, and interface are introduced in SpecC. A behavior has ports,
component instantiations, private member variables and functions, and a public
main member function. It can communicate with each other behaviors through
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channels. An interface connects behaviors and a channel, and declarations of
communication methods, which will be defined in channels, are described. One
advantage of using SpecC is that designers can describe computation and com-
munication separately.

2.1.2 Concurrency

Generally, statements in SpecC are executed sequentially from the top down
as C / C++. Additionally, concurrent executions can be described in SpecC
with par statements. Statements directly under a par statement are executed as
concurrent processes.

2.1.3 Synchronization

Synchronizations among concurrent processes under a par statement can be rep-
resented by wait / notify statements and event variables. For any event variable
e, an execution of wait(e) suspends the execution of the process until notify(e)
is executed in the other concurrent processes.

2.2 System Dependence Graph (SDG)

An SDG of a program is a graph where each node represents a statement and
each edge represents dependence between two statements. Dependence edges are
mainly classified into data-dependence edges and control-dependence edges. A
data dependence edge is drawn from an assignment node N; to another node Ny
if an assigned variable at N; can be used at Np. On the other hand, a control
dependence edge is drawn from a control point node N; to another node Ny if the
execution of Ny is controlled by N; (e.g. conditional branch). In addition, data
dependence edges are labeled with the related variable, and control dependence
edges are labeled with ”true” or ”false”.

In [Tanabe et al. 2004], Tanabe et al. defined an SDG for SpecC descriptions.
In the rest of this section, we introduce the detailed graph structures of the
SpecC SDG. How concurrency and synchronization are represented in SDGs is
also introduced.

2.2.1 Nodes and Edges

Table 1 shows the nodes and edges in the SpecC SDG. They are defined based
on the SDG for C++ used in CodeSurfer[Grammatech] from Grammatech Inc.
The nodes written in italic in the table were newly defined for SpecC.
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Table 1: Nodes and Edges of SpecC SDG.

Elements(Additional element)

Nodes Entry Function / Behavior / Channel / Interface Entry
Assignment Assignment, Notify
Control Point if, while, for, switch, case, par, wait, fsm
Call Site Function Call, Instance Call

Actual Parameter Actual In, Actual Out, Global Actual In, Global Actual Out
Formal Parameter Formal In, Formal Out, Global Formal in, Global Formal Out

Return Return
Declaration Declaration
Edges Control Control, Call
Datal Data, Paramefer In, Paramefer Out
Declaration Declaration

Statement
par

1

|

:

par{ !
bl.main(); !
b2.main(); !
1

1

1

1

1

1

i

}

——— Control Dependence Edge
- - =4 Data Dependence Edge

Figure 1: Dependence graph of par.
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Figure 2: Dependence graphs of wait and notify.
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2.2.2 Concurrency

Figure 1 gives an example of an SDG including concurrency. A par statement is
represented as a Control Point node, which is similar to if or while statement.
Control dependence edges are drawn from the par node to child nodes. All
control dependence edges from the par node are marked as true.

2.2.3 Synchronization

Figure 2 gives an example of an SDG including synchronization. A wait state-
ment is represented as a Control Point node, and control dependence edges
are drawn from the wait node to all nodes before the next Control Point
node. Also data dependence edges of event variables, which are the arguments
of notify nodes, are drawn to the wait node from a Formal In node. On the
other hand, a notify statement is represented as an assignment node, and a data
dependence edge of the event variable, which is the argument of the notify node,
is drawn to a Formal Out node which corresponds to the output value of the
event variable from the behavior in which the notify node is. If synchronization
is properly taken with wait/notify, a data dependence edge of an event vari-
able used in a notify node always reaches to the corresponding wait node via
Formal In / Out.

2.2.4 Program Slicing

Program slicing is a technique which extracts portions related to a specified
portion in program codes. It is performed with SDG, and mainly there are three
types of slicing techniques.

Backward slicing is a technique which extracts portions which affect a spec-
ified portion in program codes. It is performed by gathering nodes passed while
traversing dependence edges backwardly from the specified nodes.

Forward slicing is a technique which extracts portions affected by a speci-
fied portion in program codes. It is performed by gathering nodes passed while
traversing dependence edges forwardly from the specified nodes.

Chopping is a technique which extracts portions on the dependencies be-
tween two specified portions in program codes. It is performed by extracting the
intersection of forward slicing from one portion and backward slicing from the
other portion.

2.3 Static Checking with Program Checker

For SW programs written in C/C++ , many program checkers have been devel-
oped. To find bugs, data-flow analysis (DFA) is widely implemented in many
tools like FlexeLint [FlexeLint], Coverity [Coverity], Fortify [Fortify], Orion
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[Orion] and UNO [Holzmann 2002]. These tools show suspicious portions in a
source code to programmers as warnings. However, since DFA is static and does
not consider functionalities, many false-negative warnings are reported. This
makes it difficult for programmers to identify real bugs from a large number of
warnings. To reduce false-negative warnings, some tools check feasibilities that
determine whether paths can actually be executed.

Compared with these checkers, our method can cover SpecC language, one
of the system-level description languages, as well as ANSI-C.

2.4 Hardware/Software Partitioning

Partitioning a system into HW and SW is one of the important steps in the
refinement process from system level. This step has been researched as methods
to map tasks into HW and SW, and the complete optimization is known to be
an NP complete problem. Recently, many researches for HW/SW optimization
are done by heuristics [Knerr et al. 2004, Wiangtong et al. 2002].

However, in commercial use, designers usually decide where to be as-
signed to HW based on the results of performance estimation by simulation
[Ueda et al. 2005]. One of the reasons why even though there are a lot of au-
tomatic HW/SW partitioning method, they are not widely used in commercial
use, is that usually descriptions before HW /SW partitioning are not divided into
multiple processes.

Therefore, we propose a method to divide a sequential process into multiple
concurrent processes. Though our method does not change or optimize design
behaviors, after applying our method, existing partitioning methods can be used
more effectively. The detail of this method is described in Section 3.2.

After applying the proposed method, we can apply existing HW/SW parti-
tioning methods to find the best result to assign the concurrent processes into
HW and SW.

2.5 Formal Verification

Formal verification is the act of proving or disproving the correctness of a system
with respect to a certain formal specification or property, using formal methods
which are mathematically based techniques. Formal verification techniques can
be classified into model checking (property checking) and equivalence checking.

Model checking [Clarke et al. 1986, McMillan 1993, Brand 1993] is a tech-
nique to algorithmically verify the model, often derived from a HW or SW
design formally. This is achieved by checking if the model satisfies a logical
specification (property). The property is often written as temporal logic for-
mulae. Equivalence Checking [Brand 1993, Kuehlmann et al. 2002] verifies the
functional equivalence of two designs that are at the same or different abstraction
levels.
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Formal verification methods for high-level HW descriptions or sys-
tem level descriptions are now in study phase. [Sakunkonchak et al. 2005,
Moy et al. 2005, Grobe et al. 2003, Grobe et al. 2004] present model checking
methods that verify SpecC or SystemC descriptions. [Sakunkonchak et al. 2005,
Moy et al. 2005] are targeting on synchronization properties such as dead-
lock. [Grobe et al. 2003, Grobe et al. 2004] check general properties written in
temporal logic. Also, [Semeria et al. 2002, Clarke et al. 2003, Karfa et al. 2006,
Saito et al. 2002, Matsumoto et al. 2006] show equivalence checking methods.

[Semeria et al. 2002, Clarke et al. 2003] check equivalences between behav-
ioral level descriptions (ex. C descriptions) and Register Transfer Level (RTL)
descriptions. In [Semeria et al. 2002], two descriptions are checked by a commer-
cial RTL equivalence checker [Formality] after translating a behavioral descrip-
tion into an RTL description. [Clarke et al. 2003] checks equivalence by using
a model checker as a verification engine. [Karfa et al. 2006, Saito et al. 2002,
Matsumoto et al. 2006] check equivalence between two system level descriptions
by symbolic simulation. Symbolic simulation is a common technique in HW ver-
ification and treats variables in descriptions as symbols rather than bit vectors.

Formal verification methods for RTL descriptions are matured technologies
supported by commercial SW tools [SLEC, Solidify, Formality].

3 Our Method

Figure 3 shows an overview of our method.

Inputs of this method are any combinations of C/C++/SpecC descriptions,
so that designers can specify functions of the HW/SW systems more flexiblely.

As the first step, the input descriptions can be analyzed and verified with
an SDG generated from the input descriptions. We give the details on this step
in Section 3.1. Also, the model checking methods [Sakunkonchak et al. 2005,
Moy et al. 2005, Grobe et al. 2003, Grobe et al. 2004] introduced in Section 2.5
can be applied as well in this step.

After the first step, we divide the systems into HW and SW parts after
introducing parallelism. HW parts are synthesized into RTL descriptions. The
details are given in Section 3.2.

As the last step, the divided and synthesized HW parts and the SW parts are
compared to the original descriptions to check functional equivalence. Designer
specified properties can also be checked by model checkers at this step. The
details are given in Section 3.3.

3.1 Static Program Checking

First of all, we generate SDGs from the input design descriptions to analyze and
verify them. In this section, we show several static program checking methods.
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Figure 3: Overview of Our Method.

Although some checking methods have been proposed for other dependence
graphs[Ferrante et al. 1987], those methods need to be re-discussed in this paper
since our methods use SpecC SDG and can be used for system level designs which
contain both HW and SW.

3.1.1 Detection of Unused Variables or Statements

Usually, each statement in design descriptions should have some influences on
some outputs. Statements which have no effects on outputs include bugs with
high probability. In order to detect such statements, backward slicing can be
used.

The algorithm is as follows:

1. Backward slicing from each output statement is performed.

2. The intersection of the results is computed.
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Figure 4: An example for detecting unused variables.

‘..

3. All nodes NOT included in the intersection have no effects on outputs, hence
these nodes indicate unused variables or statements.

Figure 4 gives an example source code and its SDG with an unused variable
“sxy” and an unused statement “sxy = x * y”. Control dependence edges are
abbreviated for simplicity. This example has an output port “z”. In SpecC lan-
guage, inputs and outputs are clearly indicated as ports. The gray colored nodes
in Figure 4 are included in the result of backward slicing from the output node
“int z”. The node “int sxy” and the node “sxy = x * y” are not included in the
result of backward slicing, so we can detect them as unused variables/statements.

3.1.2 Detection of Uses of Uninitialized Variables

When the value of a variable is used in statements, the variable must be initial-
ized before the executions of those statements. Uses of uninitialized variables are
classified into three types as given in Figure 5. In each case, a variable “a” is
used at a statement “b = a + 5”. However, in (a), there are no nodes initializing
“a”. In (b), though “a = 07 initializes “a”, it may not be executed since it is
under a conditional branch “if(cond)”. In (c), the execution order of “a = 0” and
“b = a + 5” is not decidable when the behavior “B31” and “B32” are running

concurrently. Therefore, “a” can be used before initializations in each case.
Uses of uninitialized variables can be detected by the following procedure.

1. For each variable used in a node, nodes where the variable is initialized are
collected by traversing data dependence edges backwardly.

2. Whether at least one of the initializing nodes is always executed before the
using node, is checked.

For example, a node “b = a + 5”7 in Figure 5 (b) is checked as follows.

1. A variable “a” is used in the node.
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Behavior B1(){

void main(){
int a, b;

b =a+ 5;

Behavior B2(){ Behavior B31(int a){
void main(){ void main(){
int a, b; a=0;
bool cond; }
if(cond) a = 0; };
b =a+ 5;

Behavior B32(int a){
void main(){
int b;
b =a+ 5;

Statement
b =a+5

(b)
——— Control Dependence Edge
- — =4 Data Dependence Edge

Statement
b=a+5

Figure 5: Classification of uses of uninitialized variables

2. Whether “a” is always initialized is checked.

(a) Data dependence edges about “a”are traversed backwardly from “b = a
+ 57, and “a = 0” which initializes “a” is found.

(b) Whether “a = 07 is always executed is checked.

i. Control dependence edges are traversed backwardly from “b = a +

5”7 and “a = 0” to find the lowest common control node.

ii. Entry node “B2.main()” is found.

ili. “b=a+ 5” is reachable from “B2.main()” along control dependence

edges.

iv. “a = 07 is NOT reachable from “B2.main()” without passing the
control node “if(cond)”.

v. Therefore, it is not guaranteed that “a = 07 is always executed.

(c) It is decided that “a” may be uninitialized.

Figure 6 gives the algorithm of this process with SDG.

However, since the method described above does not interpret conditional

expressions in each node and decide that all paths are executable, some false
warnings (which are actually not bugs) could be reported. Figure 7 gives ex-
amples of false warnings. In (a), “b = a + 57 can be detected as an use of

uninitialized variables since “a = 0” is under a control node “if(1)”, although
“a = 0" is always executed. On the other hand, in (b), ‘b = a + 5” also can be
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N1, N2, N : nodes in SDG
V : a variable in SDG
foreach N1 in assignment nodes {
foreach V in variables used in N1 {
foreach N2 in assignment nodes such that (
(N2 is reachable from N1 only with data dependence edge) and
(V is defined at N2) ){

if exist N such that (
(N is not ‘‘par’’ nor ‘‘if’’) and
(N1 is reachable from N only with control dependence edge) and
(N2 is reachable from N only with control dependence edge without
passing control node) ){

// variable V at N1 is initialized at N2
next V
}
}

display warning message

Figure 6: Pseudo-code of uninitialized variable checking algorithm.

detected as an use of uninitialized variables since “a = 0” and “a = 1” are under
a control node “if(cond)”, although always either “a = 0” or “a = 1" is executed.
Such false warning problems are solved by interpreting conditional expressions in
control nodes and checking reachablities of initializing nodes formally by validity
checkers.

Figure 8 gives an algorithm to get a conditional expression to judge whether
the target node is reachable (which means really executed). This method works
as follows :

1. Control / call edges are traversed backwardly until reaching a call-site of
“main” function.

2. All conditional expressions of control nodes passed through are gathered,
and their product is computed. (A control node “IF / ELSE” is considered
as “IF” when it reaches the node via control edge of “True”, in the other
case that reaches via “False”, it is considered as “ELSE”).

3. The satisfiability of the product is checked with a validity checker such as
CVC[Stump et al. 2002].

The validity checker statically decides whether the condition is feasible by
decision procedure. If the condition is feasible, the node is judged to be reach-
able, and it means that there are some input patterns with which a statement
corresponding to the node is executed. If the condition is not feasible, it is proved
that there are no input patterns with which the statement is executed. The re-
sult is the same as that of trying all input patterns by simulation. Though the
method consumes more time than one simulation run, completeness of the result
is a big advantage.
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Behavior B1(){ Behavior B2(){
void main(){ void main(){
int a, b; int a, b;
if(1) a = 0; bool cond;
b=a+b5; if(cond) a = 0;
} else a = 1;
}; b=a+5;
}
};

—— Control Dependence Edge (true)
------------ » Control Dependence Edge (false)
- — =9 Data Dependence Edge

Figure 7: Examples of false warnings

With this method, the algorithm to detect uninitialized variables will be
improved. Figure 9 gives the pseudo-code of the algorithm. In this pseudo-code,
a function “eval()” means “evaluates the argument predicate, and returns true
if the predicate is always satisfied”. In our implementation, we used a validity
checker CVC[Stump et al. 2002] to perform the function.

3.1.3 Detection of Null Pointer Dereferences

Null pointer dereferences happen when a pointer variable pointing nothing is
dereferenced. Normally, pointer variables are used after initializations which as-
sign addresses of something. Null pointer dereferences are classified into three
types as given in Figure 10. In each case, a pointer variable “p” is used at “b
= *p + 5”. However, in (a), there are no nodes initializing “p” except for “p =
NULL”. In (b), though “p = &a” initializes “p”, it may not be executed since
it is under a conditional branch “if(cond)”. In (c), the execution order of “p =
&a” and “b = *p + 5” is not decidable when behaviors “B31” and “B32” are
running concurrently. Therefore, “p” can be dereferenced as null pointer in each
case.

Null pointer dereferences can be detected by the following procedure.

1. For each pointer variable used in nodes, nodes which initialize the pointer
are collected by traversing data dependence edges backwardly.

2. Whether there are no nodes initializing to null is checked.
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expression GetReachableCondition_Local(node V){
expression result = "true";
bool reach_end = false;

while(!'reach_end){
/* Traverse Control Dependence Edge Backwards */
switch(getNodeType (V = ParentViaControlEdge(V))){
case ENTRY: // If it reaches to ENTRY node, finish.
reach_end = true; break;
case IF:
case WHILE:
case FOR:
/* Add the expression of the node to the result */
result = (result && getExpr(V)); break;
case ELSE:
/* Add negation of the expression of the node to the result x/
result = (result && !'getExpr(V)); break;
case PAR:
/* do nothing */
result = result; break;
}
}
return result;

}

expression GetReachableCondition(node V){
expression result = "true";
bool reach_end = false;

while(!'reach_end){
/* Traverse Control Edge or Call Edge Backwards */
switch(getNodeType (V)){
case MAIN_CALL_SITE: /% finish if call-site node of main() */
reach_end = true; break;
default:
result = (result && LocalReachability(V)); break;

}
V = GetCaller(GetEntry(V)); /* Find caller of current function */
}

return result;

Figure 8: Pseudo-code of an algorithm to get a conditional ex-
pression.

For example, a node “b = *p + 5”7 in Figure 10 (b) is checked as follows.
1. A pointer variable “p” is used in the node.

2. Whether “p” can be null at the node is checked.

(a) Dependence edges about “p” are traversed backwardly from “b = *p +
57 and “p = NULL” and “p = &a” are found as nodes initializing “p”

(b) Since there is a node where “p” is defined to null, “p” is found to have
a possibility to be null.

Figure 11 gives an algorithm of this procedure with SDG.

In the null pointer dereferencing detection, the false warning problem men-
tioned in Section 3.1.2 may happen. Then, the reachability analysis technique
proposed in Section 3.1.2 also can be applied to solve the problem.
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N1, N2, N : nodes in SDG
V : a variable in SDG
foreach N1 in assignment nodes {
foreach V in variables used in N1 {
foreach N2 in assignment nodes such that (
(N1 is reachable from N2 only with data dependence edge) and
(V is defined at N2) ){

if exist N such that (
(N is not ‘‘par’’ nor ‘‘if’’) and
(eval(GetReachableCondition(N2)
-> GetReachableCondition(N1)) == true)
){

// variable V at N1 is initialized at N2
next V
}
}

display warning message

Figure 9: Pseudo-code of uninitialized variable checking algo-
rithm using conditions of control nodes.

3.1.4 Detection of Deadlocks

Deadlocks occur when all concurrent processes are suspended and their execu-
tions cannot proceed any more. In SpecC designs, deadlocks are caused in the
condition that a suspended process by a wait node is not resumed by at least
one of the notify nodes connected with the wait node through data dependence
edges. Therefore, deadlocks are detected by checking whether at least one of the
corresponding notify nodes is executed for each wait node.

Figure 12 gives an example source code and its SDG for the deadlock detec-
tion. For simple introduction, several nodes and edges such as Formal In/Out
nodes and edges connected with them are removed. In the example, there is a
wait node “wait(e)” in a behavior “B2”. The deadlock checking for “wait(e)”
starts from collecting corresponding notify nodes by backwardly traversing data
dependence edges about “e”, and then a corresponding notify node “notify(e)” in
a behavior “B1” is found. Next, whether “notify(e)” nodes exist in each path of
“B1” is checked. In the example a “notify(e)” is in the “then” path of “if(cond)”,
and no “notify(e)”
that deadlocks may occur in this case.

Figure 13 gives the algorithm to detect deadlocks with SDG.

exists in the “else” path of “if(cond)”. Therefore, we can say

3.1.5 Detection of Race Conditions

Race conditions occur if shared variables are accessed by concurrent processes
without proper synchronizations and the computation results are dependent on
the execution orders of the accesses. Race conditions can be detected by checking
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Behavior B1(){
void main(){

Behavior B2(){

void main(){
int a, b;
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Behavior B31(int* p){

void main(){

Behavior B32(int* p){

void main(){

int a; int b;

int b; int* p = NULL; DS C e .

int* p = NULL; bool cond; g ; g?LL’ 3 b =*p +5;

b = *p 5; a = 0; _ &; 3.

¥ if(cond) p = &a; } P ’
; b = *p + 5;
3 P };
};
H
1
1
L N e NS
1 r [
1 1 1
1 1 1
1 1 1
1 1 1
| 1 1
1 1 1
: : !
! ! Statement Statement 1
i 1 \@ = NUL a=0 i
1 1 '
: : = ———-- ]
i i -1 .
1 1 H 1
1 ] I 1
i i B31 [
(c)
——— Control Dependence Edge
- - =9 Data Dependence Edge
Figure 10: Classification of null-pointer dereferences

N1, N2 : nodes in SDG
p : a pointer variable in SDG
foreach N1 in assignment nodes using pointer variables {
foreach p in pointer variables dereferenced in N1 {
foreach N2 in assignment nodes such that (
(N1 is reachable from N2 only with data dependence edge of p)
and
(p is defined at N2)
At
if ( p is defined NULL at N2 ){
// pointer variable p at N1 has the possibility to be NULL
display warning message
}
}
}
}

Figure 11: Pseudo-code of null pointer dereference checking al-
gorithm.
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Behavior Bi(int x, event e){
void main(){

i

if (cond) notify(e);

wait(e);

X =2 % x; o

} N\
}; E\
1.

\ (

Behavior B2(int x, event e){ 'Y:

bool cond; : |

void main(){ [

1

x = 0; [

:

1

1

——p Control Dependence Edge
------------ % Control Flow Edge (true)
———- Control Flow Edge (false)

— - —p Data Dependence Edge

— .. = Declaration Dependence Edge

Figure 12: An example for deadlock detection

whether each execution order of two nodes connected by data dependence edges
between concurrent processes is decidable or not.

In the race condition detection, we have to decide whether the execution
order of two nodes in concurrent processes is decidable or not. Here, we can
assume that deadlocks do not occur, since we can find them by the deadlock
detection method proposed in Section 3.1.4. The conditions that a node “a” in
a process “B1” must be executed before a node “b” in a process “B2” are as
follows (See Figure 14):

There are notify nodes “n”s after “a” for all paths in “B1”.

There are wait nodes “w” s before “b” for all paths in “B2”.
— All pairs of an “n” and a “w” are connected through data dependence edges.

— There are no notify nodes except for those “n”s connected to those “w”s by
data dependence edges. It guarantees that “B2” suspended by the °

IS

resumed only by the “n”s.

‘w”s is

Figure 15 gives an example source code and its SDG for the race condition
detection. In this case, there is a data dependence edge from “x = 0” in “B1”
to “x =2 * x”7 in “B2”. The race condition checking for the two nodes is carried
out as follows. First, with assuming that “x = 0” is always executed before “x
= 2 * x”, whether at least one notify node exists in all paths of “B1” is checked.
However, this assumption is found false since notify nodes do not exist in the
path after “x = 0”. Similarly, the assumption that “x = 2 * x” is always executed
before “x = 0” is found false. Therefore, since the execution order of the two
nodes is not decidable, we can say they are in race condition.
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N1, N2, N3, N4, N5 : nodes in SDG
e : a event variable in SDG
foreach N1 in ‘‘wait’’ nodes {
foreach e in event variables used in N1 {
foreach N2 such that(
(N2 is ‘‘notify’’ node) and
(N1 is reachable from N2 only with data dependence edge of e)
RS
if (N2 does not exist){
display warning message
Next e
}
if(
(exist N3 such that
(N3 is ‘‘par’’ node) and
(N1 is reachable from N3 only with control dependence edge) and
(N2 is reachable from N3 only with control dependence edge) and
not (exist N4 such that
(N1 is reachable from N4 only with control dependence edge) and
(N2 is reachable from N4 only with control dependence edge) and
(N4 is reachable from N3 only with control dependence edge)
)
)
and
(exist N5 such that
(N5 is “‘if’’, ‘‘while’’ or ‘‘for’’ node) and
(N5 is reachable from N3 only with control dependence edge) and
(N2 is reachable from N5 only with control dependence edge)
)
RS
display warning message
Next e
}
}
}
}

Figure 13: Pseudo-code of deadlock checking algorithm.

— Control Flow Edge
----% Data Dependence Edge

@ Wait Node
@ Notify Node

Figure 14: An example SDG for race condition detection
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Behavior B1(int x, event e){
void main(){
wait(e);
X = 2 % X;
}
};

o

Statement’
x=0

Behavior B2(int x, event e){
bool cond;
void main(){
notify(e);
x = 0;
}
}; —— Control Dependence Edge
------------ » Control Flow Edge (true)
—— -9 Control Flow Edge (false)
— . —p Data Dependence Edge

— .. = Declaration Dependence Edge

Figure 15: An example for race condition detection

Figure 16 gives the algorithm to detect race conditions with SDG.

3.2 Hardware / Software Partitioning

After applying static checking methods to input descriptions, HW/SW parti-
tioning is performed. As we mentioned in Section 2.4, though there are a lot
of existing partitioning methods using heuristics, those methods can be applied
only when designs have been divided into tasks(multiple procedures). Those
tasks can be considered as behaviors in SpecC descriptions. To apply such par-
titioning methods flexibly, it is important to divide the designs into multiple
behaviors executed concurrently.

In this section, we propose a method to divide a behavior into multiple con-
current behaviors by dependence analysis with SDG. In this method, parallelism
is extracted via SDGs in a way such that two nodes can be executed in parallel
wherever they don’t depend on each other. Also, even if two nodes depend on
each other, they can be assigned to separate concurrent behaviors by adding syn-
chronization statements. This method can be applied to any sequential execution
in a design.

Figure 17, 18 and 19 give an example. In this example, lines 9 to 14 in Figure
17 are the target to be divided. Figure 18 gives the SDG of this code (control
edges are abbreviated).

We divide this code into two behaviors. Suppose “x8 = WT*(x4+4x5);”, “x5
= x8 - (WI+W7)*x5;”,and “x6 = x8 - (W3-W5)*x6;” are assigned to one be-
havior, and others are assigned to another (This partitioning is very inefficient,
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N1, N2, N3, N4, N5, N6, N7: nodes in SDG
V : a variable in SDG
foreach N1 in declaration nodes of shared variables {
foreach V in variables declared in N1 {
foreach N2 and N3 in assignment nodes{
if (
(N2 and N3 are not the same node) and
(N2 and N3 has a data dependence about V) and
(exist N4 such that
(N4 is ‘‘par’’ node) and
(N2 is reachable from N4 only with control dependence edge) and
(N3 is reachable from N4 only with control dependence edge) and
not (exist N5 such that
(N2 is reachable from N5 only with control dependence edge) and
(N2 is reachable from N5 only with control dependence edge) and
(N5 is reachable from N4 only with control dependence edge)
)
)
and not
(
((exist N6 such that
(N6 is ‘‘wait’’ node) and
(N2 is reachable from N6 only with control dependence edge)
)
and
(exist N7 such that
(N7 is ‘‘notify’’ node) and
(Argument in N7 is the same as that in N6) and
(N7 is reachable form N3 only with control flow edge)
)
or
((exist N6 such that
(N6 is ‘‘wait’’ node) and
(N3 is reachable from N6 only with control dependence edge)
)
and
(exist N7 such that
(N7 is ‘‘notify’’ node) and
(Argument in N7 is the same as that in N6) and
(N7 is reachable form N2 only with control flow edge)
)
)
)4
display warning message
Next pair of N2 and N3

}
}
}
}
Figure 16: Pseudo-code of race condition checking algorithm.
const int W1,W2,W3,W4, 10 x4 = x8 + (W1-W7)*x4;
) W5,W6,W7,W8; 11 x5 = x8 - (W1+WT7)*x5;
(snip) 12 X8 = W3*(x6+x7);
beh?‘s’;g;)mcﬁ){ 13 X6 = x8 - (W3-W5)*x6;
void idct_row(void){ 14 x7 =_X8 - (W3+W5)*xT;
int x4,x5,x6,x7,x8; 15 (snip)
(snip) 16 }
X8 = WT*(x4+x5); 17 ¥

Figure 17: Example of partitioning.
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Figure 18: An example SDG of partitioning.

const int W1,W2,W3,W4,

W5,W6,W7,W8;

behavior B1(
int x4,int x5,int x6,
int x7,int x8,
event el,event e2){

};

void main(void){

int x8_local;

x8_local = W7*(x4+x5);

x8 = x8_local;

notify el;

x5 = x8_local-(W1+W7)*x5;

wait e2;

x8_local = x8;

x6 = x8_local-(W3-W5)*x6;
}

behavior B2(
int x4,int x5,int x6,
int x7,int x8,
event el,event e2){

void main(void){
int x8_local;
wait el;
x8_local = x8;
x4 = x8_local+(W1-W7)*x4;
x8_local = W3*(x6+x7);
x8 = x8_local;
notify e2;
x7 = x8_local-(W3+W5) *x7;

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

(snip)

behavior IDCT(){
int x4_b,x5_b,x6_b,x7_b,x8_b;

};

event el,e2;

B1 bi1(x4_b,x5_b,x6_b,
x7_b,x8_b,el,e2);

B2 b2(x4_b,x5_b,x6_b,
x7_b,x8_b,el,e2);

(snip)

void idct_row(void){

int x4,x5,x6,x7,x8;

(snip)

x4 _b=x4;
x5_b=x5;
x6_b=x6;
X7 _b=x7;
x8_b=x8;
par{
bl.main();
b2.main();
}
x4=x4_b;
x5=x5_b;
x6=x6_b;
X7=x7_b;
x8=x8_b;

(snip)

}

Figure 19: Example of partitioning (Result).

1991
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but just an example). Since “x6=x8-(W3-W5)*x6” in Behaviorl depends on
“x8=W3*(x6+x7)” in Behavior2, and “x4=x8+(W1-W7)*x4” in Behavior2 de-
pends on “x8=WT7*(x4+x5)”in Behaviorl, synchronization statements should be
inserted. Also, variable “x8” is used in both behaviors, so this variable should
be copied in each behavior (This problem will easily resolved with static single
assignment representation and is just a minor problem). As a result, we get a
code shown in figure 19. This code is generated automatically with the following
algorithm.

1. New behaviors By, Ba, ..., B, are created (n is a preset maximum number
of concurrent processes)

2. The selected statements are distributed to each behavior.

— Some of the selected statements are added to the function main of Bj.

— Some of the other selected statements are added to the function main of
Bs.

— The other selected statements are added to the function main of B,,.
3. Behaviors to which no statements are added are removed.

4. For each combination of i and j (1 <:<n-—r,1<j<n-—r,i<j, where
r is the number of removed behaviors), the following procedure is applied.

— For each data dependence edge from a node Nj in B; to a node Ny in
Bj, the following procedure is applied.

e A variable V defined at node N7 is renamed to V _local in B; and
Bj. A declaration of V _local is added to B1 and B2.

e A declaration of a new event variable e_k is added to the original
behavior for the synchronization about V.

e Statements “V =V _local;” and “notify(e_k);” are added before Nj.
o “wait(e_k);” and “V _local = V3’ are added before Nj.

— For each data dependence edge from Ny to N; the same procedure is
applied.

— For each variable V used in B; or Bj, a declaration of a variable V _b is
added to the original behavior.

— Instantiations of B; and B; is added to the original behavior. Their
arguments are the event variables (e_n) and behavior variables (V' _b).

5. In the original behavior, the selected statements are replaced with:
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— Assignments such as “V_b = V;” for each V_b

— Function calls of new behaviors’ main functions under a par statement
such as “par{bl.main();b2.main()}’.

— Assignments such as “V = V_b;” for each V_b

We apply this process to each assignment candidate exhaustively. Let [ be
the number of statements in the target description, and n be the maximum
number of concurrent behaviors to be generated. Then the number of generated
descriptions become [ — [ (—I are the case when no statement is assigned to one
of the behaviors). In the example given in Figure 17, since the target include 6
statements and each statement is assigned to one of the two behaviors, 26 —2 = 62
descriptions are generated.

When the target code has a lot of statements or the maximum number of
concurrent behaviors is set to a large number, the number of generated descrip-
tions becomes huge. However, those descriptions include meaningless cases. For
example, the case that a large numbers of data transitions and synchronizations
are added. In such a case, the performance must be bad. We can exclude them
by restricting the numbers of data transitions and synchronizations.

The generated descriptions can be partitioned into HW and SW, and evalu-
ated with existing methods [Ueda et al. 2005] or tools such as SCE [SCE]. Our
code generation and those evaluations can be performed automatically. There-
fore designers can try many patterns of partitioning and can choose the proper
one.

After the partitioning we may have to merge the behaviors assigned to SW
or HW. For example, in the case when we do not execute SW on a multi task
OS, we have to merge concurrent behaviors assigned to SW into a single behav-
ior. This process can be performed with a sequentialization method proposed in
[Sakunkonchak et al. 2007]. In the method, after applying synchronization veri-
fication, concurrent behaviors are converted into one sequential behavior.

The parts assigned to HW can be optimized more, and then synthesized into
RTL by existing behavioral synthesis tools.

3.3 Formal Checking with FSM

Further to HW behavioral synthesis, we must ensure logical equivalences between
original descriptions and descriptions after HW synthesis. Also, designers may
want to statically verify the latter descriptions. However, the latter descriptions
are different from the original ones in two points. One is that HW parts and SW
parts in the latter descriptions are described in the different levels (behavioral
level and RTL). The other is that they communicate through Memory-mapped
I/O or by Interrupt-driven I/O. These points make verification difficult. Usu-
ally, such co-designs are verified by HW/SW co-simulation [Seamless]|, but it is
impossible to test all input patterns.
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Figure 20: Formal checking with FSM

We therefore propose a method to verify the descriptions after HW synthesis
by formal verification. Currently, formal methods introduced in Section 2.5 can-
not be directly applied to the descriptions, since the descriptions have the two
features mentioned above. Then, we resolve this problem by converting HW /SW
descriptions into communication abstracted FSMs. In the FSMs, HW parts and
SW parts in each design are combined into a single FSM and verified together.
We apply model checking, and also equivalence checking between the original
descriptions to them.

There are two reasons to translate those descriptions into FSMs. Firstly, for-
mal verification for FSMs (and RTL descriptions) is a matured technique, and
there are many stable model checkers and equivalence checkers for them. Sec-
ondly, HW descriptions are normally written in RTL which is the same abstrac-
tion level as FSM. By identifying registers with state variables, RTL descriptions
can be easily translated into FSMs.

Here we restrict the verification target to designs whose HW parts and SW
parts communicate through Memory-mapped I/0. Interfaces generated by our
methods have corresponding variables in the HW parts and the SW parts. In
Memory-mapped I/O, HW registers are assigned to particular addresses in a SW
address space, and the correspondences between HW registers and SW addresses
are already known. Pointer accesses are used to send and receive data in the SW.

Figure 20 gives the main steps of our formal checking process.

First, SW descriptions in the designs after HW synthesis are translated into
FSMs as shown in the left-hand side in Figure 21. This example is the SW part
of Figure 19 when the behavior Bl is assigned to SW. The SW descriptions
are converted into descriptions only composed of assignments, ”if”, and ”while”
statements. Namely, replacements of local pointers with variables, ”for” state-
ments with ”while” statements, ”case” statements with ”if” statements, decom-
positions of structures, and so on, have been performed. Then, the descriptions
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xg_locsal |: WI7_*(X 44x5); 5o):X8_local = W7*(x4+x5); :x8_local = w7*(x4+x5); El =0
P E> $y)X8 = x8_local; E> (s,):X8 = x8_local; (S)X4 = XB+(W1-W7)*X4;
x5 = x8_local-(w1*w7)*x5; . r L X8 = W3*(X6+X');
while(e2==0); sp)el=1 (sE1=1; :e2 =1
local = x8;
ig_:xcga Io::li(w3 - W5)*X6; 53):x5 = x8_local-pa1+w7)*x5; :x5 = x8_local-(W1+w7)*x5; :X7 = X8-(W3+W5)*X7;
= . e2==0 E2==0
(a) C Description
e2~=0 E2==0
SW pointer | HW register $5)>@_local = x8; x8_local = X8;
x8 X8 5):x6 = x8_local-(W3-W5)*x6; 5):x6 = x8_local-(w3-w5)*x6;
et El (b) SW FSM (c) SW FSM whose pointers (d) HW FSM
2 E2 are replaced with HW resources

Figure 21: Translation from C to FSM

are translated into FSMs as one assignment is mapped to one state. Conditional
expressions in ”if” and ”while” statements become conditions of state transition
branches. Additionally, pointers to addresses to where HW registers are assigned
are replaced with corresponding HW registers.

Next, HW descriptions in the designs after HW synthesis are translated into
FSMs. As previously mentioned, RTL descriptions can be easily translated into
FSMs by identifying registers with state variables. Also, a part of HW where data
from the bus is assigned to the registers corresponding to the SW addresses, are
separated from the entire HW parts. The separated part can be independently
verified because it is not directly associated with the original design. This verifi-
cation is easy, since the part is usually small and simple. If it has been verified in
advance, then The correctness of the communications through Memory-mapped
I/0 is guaranteed. An example of HW FSMs is shown at the right-hand side in
Figure 21. This example is the HW part of Figure 19 when the behavior B2 is
assigned to HW.

As a result, the HW/SW descriptions are translated into pairs of concurrent
FSMs communicating through HW registers as shared variables.

Then, we convert them into sets of sequential FSMs. As there can be two or
more execution orders in the concurrent FSMs, for each execution order, states
in a pair of concurrent FSMs are sorted out, and combined to a single sequential
FSM. We must do this procedure for all possible execution orders to make the
verification exhaustive. However, we do not have to consider all execution orders
of states where

— there are no data transitions between HW and SW.
— their execution orders can be statically determined by synchronizations.

For example, in Figure 21 (¢) and (d), we do not have to consider the execution
order of states sg and sg4, since the results are the same. Also, s; must be exe-
cuted before sy, since there is synchronization with a variable E1. Therefore, we
can convert concurrent FSMs to a practical number of sequential FSMs. Such
data transitions or synchronization between HW and SW can be found as data
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X8 = WT*(X4+X5); (59):x8_local = W7*(x4+x5);

x4 = x8+(W1-W7)*x4; ;xe =x8_local;

6 = X6-(WLHW1)S; x5 = x8_local-(wl+w7)*x5;

%8 = X . SAD = AD_ : '

X8 = W36 x7); 39'X4 = XB+OWL-W7)*Xd:

X6 = x8-(W3-W5)*x6; :x6 = x8_local-(w3-w5)*x6;

X7 = x8-(W3+W5)*x7; :X7 = X8-(W3+WB5)*X7;
FSM generated from Sequential FSM of HW+SW translated
the original description from the concurrent FSMs

Figure 22: FSMs at the final step

dependence edges or control dependence edges, respectively among concurrent
processes in the SDGs of the original descriptions.

Besides, we can merge assignment statements among which there are no
data dependencies, and eliminate states for synchronizations since sequential
executions do not have to synchronize any more. The data dependencies can
also be found as data dependence edges in the SDGs of original descriptions.
The generated FSMs are not much complicated because these are essentially
sequential. Also, the numbers of states in them are relatively not large after
merging states. These can formally be verified with existing model checkers after
describing it in the model checkers’ input language. An example is given in Figure
22. The right FSM is generated from the FSMs (c) and (d) in Figure 21. When
more than one FSM is generated, all of them should be model checked, and only
if all of them passed the checks, the correctness of the design is guaranteed.

Additional translations are required to equivalence check with the original
descriptions and the descriptions after HW synthesis. The original descriptions
are translated into FSMs in the same way as the previously mentioned C-to-FSM
translation methods. The left FSM in Figure 22 is the example from the lines 39-
14 in Figure 17. Then, the problems have been reduced to equivalence checking of
two different designs described in the same representation. Equivalence checking
must be performed with all pairs of two designs’ FSMs.

4 Case Study and Experimental Result

In this section, we show how to apply the proposed methodology to HW/SW
co-designs of an MPEG2 decoder and a JPEG2000 encoder to demonstrate the
usefulness of our approach. Experimental results of each step are also reported
to show the performances of them. These experiments have been executed on a
workstation with two 3.2Hz processors and 4GB memory.

4.1 Examples

We used an MPEG2 decoder(MPEG2)[mssg], and a JPEG2000 encoder[j2000]
as examples. Both examples are written in C and their numbers of lines are
shown in the second column of Table 2.
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Table 2: Information of the original C codes

Example |# of lines in C|SDG generation time by [Grammatech]

MPEG2 7600 11.541 sec
JPEG2000 4300 5.827 sec

Table 3: Information of SpecC test-case codes.

Example|# of lines in SpecC|# of nodes in SDG|SDG gen. time|# of nodes in HW

IDCT 135 389 1.685 sec 312
DWT 202 1474 3.312 sec 1451

4.2 Code Extraction

First, we tried to extract codes as candidates of HW/SW co-designs. We found
that heavy calculations are processed at Inverse Discrete Cosine Transform
(IDCT) in MPEG2 and Discrete Wavelet Transform (DWT) in JPEG2000. We
therefore extracted the codes which process those calculations from the entire
codes. This process was done by chopping, and we successfully extracted codes
related to the IDCT functions and DWT functions with a commercial program
slicer CodeSurfer[Grammatech]. We applied chopping as follows.

— First, backward slicing from the output of the function Fast IDCT(), and
forward slicing from the input of the same function is applied. Next, the
product of those results is extracted.

— First, backward slicing from the output of the function dwt_encode(), and
forward slicing from the input of the same function is applied. Next, the
product of those results is extracted.

The SDG generation times are shown in the third column of Table 2. In both
cases, chopping finished within 1 second.

Next, we translated the IDCT and DWT codes into SpecC descriptions. In
this process, parallelism was introduced to the IDCT code. We created SDGs of
those SpecC descriptions by the method proposed in [Tanabe et al. 2004]. The
sizes of the descriptions and SDGs are shown in Table 3. These descriptions are
treated as original descriptions in the subsequent steps.

4.3 Static Program Checking

As the flow given in Figure 3, we first applied the static program checking meth-
ods proposed in Section 3.1. Each checking method was performed by a tool we
had developed. The results are shown in Table 4. Whether the detected warn-
ings are real ones was confirmed by the authors. These results show, (1) node
interpretation makes false-warnings less, and, (2) The number of CVC calling
affects directly on processing time.

We modified the detected errors for the further steps.
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Table 4: Experimental results of program checking

Type of Check Use validity|Test-case|Warnings Real  False Miss|Time # of CVC
checker errors warnings (sec) callings

Unused No IDCT 4 4 0 [0.068 -
DWT 11 1 10 0 [0.176 -
Uninitialized No IDCT 48 2 46 0 [0.082 -
DWT 28 T 27 0 [0.228 -
Yes IDCT 3 2 T 0 [1.341 7
DWT 11 1 10 0 [I.119 56
Null Pointer No IDCT 3 2 1 0 [0.067 -
DWT 2 T T 0 [0.169 -
Yes IDCT 2 2 0 0 [0.103 2
DWT 1 1 0 0 [0.207 2
Deadlock No IDCT 9 9 0 0 [0.168 -
Race Condition No IDCT 144 144 0 0 [0.279 -

4.4 HW/SW Partitioning

As the second step, we applied the HW/SW partitioning methods proposed in
Section 3.2.

First, we tried to extract parallelism for each example. For this purpose,
we developed a parallelism extraction tool. It can automatically generate par-
allelized codes exhaustively under preset conditions. Currently, we can set the
number of parallel processes and the maximum number of output descriptions.
The code generations were performed in quite a short time. For example, 256
codes were generated from IDCT in a second. We selected the codes whose
amount of data transitions are minimum.

Next, we partitioned each parallel process (behavior) to HW or SW. In IDCT,
16 processes were assigned to HW, and 1 was assigned to SW. In DWT, 1 process
was assigned to HW, and 1 process was assigned to SW. These partitionings were
done by hand. The numbers of nodes in the SDGs assigned to HW are shown in
the fifth column in Table 3. The other nodes were assigned to SW.

After the partitioning, the HW parts were synthesized into RTL Verilog de-
scriptions. Though this could be done with existing behavioral synthesis tools,
we did it by hand.

4.5 Formal Verification

As the last step, we applied the formal verification method proposed in Section
3.3.

First, we converted those examples into FSMs as given in Figure 20 and tried
to verify by a model checker NuSMV [Cimatti et al. 2002] directly. However, the
examples are so large that we could not even estimate the number of states.

Therefore, we abstracted the FSMs by changing the bit-width of each data
register to 1. The sizes of the abstracted FSMs are shown in Table 5. The second
column shows the numbers of states in the abstracted FSMs. It does not show the
number of states in Kripke structure, since multi-bit variables (registers) have
not been decomposed. The numbers of states variables (flip-flops) and states
in Kripke structure are shown in the third and fourth columns, respectively.
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Table 5: Verification results of formal verification

Example| # of # of state variables # of states in verification verification
states in Kripke structure Kripke structure  bound time
IDCT | 17 579 1.98 x 10" 30 cycles 72 sec
DWT | 15 812 2.73 x 102** 100 cycles 369 sec

The numbers showing states in Kripke structure are just estimations, since the
abstracted FSMs are still too large to analyze reachable states exhaustively.

Finally, we applied Bounded Model Checking(BMC)[Biere et al. 1999] to the
abstracted FSMs with a property “The calculation eventually finishes” by
NuSMV . Each abstracted FSM has a state variable which shows the current
state. Let s be the state variable and n be the value of the final state, then the
property can be written as “F(s = n)” in Linear Temporal Logic (LTL). The
results of this property are not different in the FSMs and the abstracted FSMs,
since it is only related to the control-flow and not to the data-flow. We applied
BMC instead of normal symbolic model checking[McMillan 1993], since it can
handle larger designs.

The bounds of BMC and verification times are shown in the fifth and sixth
column, respectively in Table 5. The results show that the method proposed in
Section 3.3 can verify practical designs within practical times.

5 Conclusion

In this paper, we proposed a HW/SW co-design methodology based on SDG.

In the method, input C / C4++ / SpecC descriptions are checked by program
checking, partitioned into HW and SW, and formally verified after HW synthesis.

In the program checking, five types of typical design errors are detected by
traversing dependence edges in SpecC SDGs. In the HW/SW partitioning, par-
allelism extraction is performed in statement granularity by analyzing data de-
pendencies with the SDGs. This means that each statement may independently
be partitioned into HW or SW, and more flexible than existing methods. Also,
in the formal verification, HW and SW parts are translated and integrated to
sequential FSMs to verify them with existing formal verifiers. Number of states
and sequential FSMs are reduced by analyzing data and control dependencies
with the SDGs.

In the case studies of an MPEG2 encoder and a JPEG2000 encoder, each
step was processed in a short time. It shows the usefulness of the proposed
methodology.

The proposed methodology places an emphasis on verification and parallelism
extraction in a fine granularity. These points have been received low priorities
in existing design methodologies or tools such as SCE[SCE], and the proposed
methodology can supplement the weaknesses. Therefore, we can archive more
secure and flexible SoC design systems by integrating the proposed methodology
with the existing design methodologies.
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