Journal of Universal Computer Science, vol. 13, no. 13 (2007), 2035-2075
submitted: 30/9/06, accepted: 15/11/07, appeared: 28/12/07 © J.UCS

From Theoretical e-Barter Models to Two Alternative
Implementations Based on Web Services

Mario Bravetti, Adalberto Casalboni
(Universita di Bologna, Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
e-mail: bravetti@cs.unibo.it)

Manuel Nunez, Ismael Rodriguez
(Dpt. Sistemas Informaticos y Computacion, Universidad Complutense Madrid
C/ Profesor José Garcia Santesmases s/n, 28040 Madrid, Spain
e-mail: {mn,isrodrig}@sip.ucm.es)

Abstract: An e-barter system is an e-commerce environment where transactions do
not necessarily involve money. They are multi-agent systems where agents perform
exchanges of resources on behalf of their respective users. Besides, their structure is
based on a tree of markets. In this paper we show how to develop suitable designs for
this kind of systems by means of web services by using WS-BPEL. Since the formal
specification abstracts most practical details, the development of such design definition
requires to face several challenges. We present two alternative designs that both comply
with the formal specification.

Key Words: formal methods, e-barter, web services.
Category: D.2.1, F.3.1, K4.4

1 Introduction

Among those areas where the development of Computer Science has changed
our society during the last years, the relevance of e-commerce technologies is
remarkable. New mechanisms to perform transactions have appeared and they
entail new challenges. Since e-commerce systems dramatically affect user’s pos-
sessions, their reliability is specially important for their success. Similarly to
other domains, formal specifications allow to predict relevant properties of e-
commerce systems and they provide a reference of ideal behavior for developing
an implementation. In order to provide handleable and unambiguous models,
formal languages abstract from some low level details that are considered irrele-
vant for the system description. In spite of the gap between specification models
and final implementations, specifications provide a developer with a model of
ideal behavior of the system that may be useful not only in the analysis phase
of a project but also during the whole development process.

Among existing applications of formal methods to the area of e-commerce (e.g.
[Rao, 1996, Hindriks et al., 1998, Probert et al., 2003, Cavalli and Maag, 2004,

2036 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

Nufiez et al., 2005b]), here we consider the formal definition of e-barter systems
formerly introduced in [Lopez et al., 2002] and extended in [Lopez et al., 2003,
Nufiez et al., 2005a]. This kind of systems are characterized because transac-
tions do not necessarily involve money. Actually, they provide a generalization
of the classical e-commerce model because they can represent systems where
exchanges may or may not involve the use of money. Users connected to the
system exchange goods according to their respective preferences. Exchanges are
performed until the system reaches a kind of optimal distribution of resources
with respect to the user requests. In order to avoid critical bottlenecks in the
system performance, a single global market is replaced by a hierarchical tree-like
structure of markets, where parallelism can be exploited allowing local markets
to progress independently to each other. Following this structure, users are con-
nected to different local markets in the leaves of the tree according to proximity
reasons. Exchanges are performed inside each local market until it reaches an
optimal distribution. Then, the market becomes an agent that acts as represen-
tative of the users that traded inside it. This agent exchanges resources on behalf
of its users with other (representative) agents in a higher level market until this
higher order market reaches an optimum. The mechanism is repeated until the
global market, that is the one at the top of the hierarchy, reaches an optimum.
The behavior of this system is formally defined in terms of a process algebraic
notation. This notation allows us to speak about a specification that is para-
metrical on the market structure: Depending on the term constructed to define
the actual system, a different stratification of markets into levels is created. The
system definition allows to formally reason about the behavior of the system
and predict some relevant theoretical results. In particular, as it is shown in
[Nufiez et al., 2005a], if an adequate amount of information is exchanged among
the different levels, the final distribution of resources is optimal from the point
of view of the users. That is, the hierarchical system reaches the same kind of
distribution that can be reached by a non-hierarchical system where a single
central market would embrace all the agents (i.e. the economic efficiency of a
hierarchical market matches that of a non-hierarchical market).

In this paper we face the problem of developing a design of the e-barter sys-
tem which may constitute the basis for an efficient implementation.! The idea of
our e-barter system is to be a world-wide system structured in geographical sub-
levels. Communicating geographically spread participants in any system (in this
case, an e-barter system) requires a communication network, so Internet is the
natural choice. Distributing markets world-wide in servers as services (inside the
related geographic area) is motivated by the improvement in the communication
efficiency (closeness to service clients) as well as the benefits of distributing the

! This paper is an extended and revised version of the FSEN'05 pa-
per [Bravetti et al., 2006].

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2037

computation on servers: Markets are executed on different servers thus exploiting
the inherent parallelism in the system structure.

Web services related technologies are a set of middle-ware technologies for
supporting Service Oriented Computing [Huhns and Singh, 2005]. One of the
main goals of this paradigm consists in enabling the construction of a network of
integrated collaborative applications regardless of the platform and the develop-
ment language. Moreover, web Services and the related notion of orchestration
of services constitute a suitable conceptualization semi-formal model allowing to
move from an abstract model to an implementable distributed model. Orchestra-
tion of web services is supported e.g. by WS-BPEL [Andrews and Curbera, 2004]
(Business Processes for Web Services), which is a language for describing web-
service behavior (workflow) in terms of invokations to other web-services. Or-
chestration technologies like WS-BPEL can be used for the design of systems,
by defining web-services in terms of composition of other web-services. They,
at the same time, constitute an adequate tool for the design of service oriented
systems (and the analysis of the relationship with the specification) and make it
possible to produce models directly usable in the implementation (since they are
executable by means of engines or compilable). On the other hand, they allow
to define communicating partners in the Internet in a modular, structured, and
semi-formal way. In particular, a web service is identified by a URI, and public
interfaces and bindings are defined by using XML so that their definition can be
discovered by other software systems [W3C, 2006]. Web services allow to publish
services on the internet by means of a naming service called UDDI [UDDI, 2006]
(Universal Description, Discovery and Integration). XML based WSDL tech-
nology [Christenses et al., 2001] (Web Services Description Language) is used to
describe services inside UDDI naming servers and making them accessible at a
certain location by means of an XML based protocol called SOAP [SOAP, 2006]
(Simple Object Access Protocol).

Concerning exploitation of modular capabilities of web-services, in the pa-
per we show that, by using local UDDI servers, thus defining an independent
namespace for each market environment (that includes agents trading in it and
also clients for markets at the lowest level), we can give a single uniform de-
sign for all clients (and similarly for all markets and all agents): Once deployed
on servers and “executed”, these designs will correctly interact with each other
according to a tree structure because the same names in different local UDDI
services are linked to different physical addresses (the system structure, e.g. the
connection among markets, is defined by adequately binding names in each local
UDDI service).

The representation of the e-barter system as orchestration of web services re-
quires to address several practical challenges and forces the developer to define
more in the detail the system architecture and behavior: The entities involved

2038 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

(which as we will see can be both concrete, i.e. real services on the internet, or
abstract, i.e. just representing activities made by human beings), the flow of in-
teraction among these entities, the kinds of data exchanged, the time for message
exchange, timeout for receiving requests, etc. Starting from the formal system
specification we will develop two alternative designs of a possible implementa-
tion, where entities and flow interactions are defined in such a way as to obtain
an efficient implementation which exploits system parallelism of different local
markets expressed as distributed services (instead of using a single centralized
market). The first proposed design permits to reach distributions of resources
that are optimal for the clients of the system (more precisely, Pareto optimal
distributions) provided that all agents willing to participate in a market connect
to the market before a given timeout is reached. This is achieved by making the
design to fulfill some requirements that are known to be sufficient to provide
optimal distributions. As we commented before, these requirements were identi-
fied as a property of the specification in [Nunez et al., 2005a]. Hence, this is an
example of how we can take advantage of a formal model of the specification and
its known properties to construct better designs. The second design allows to
improve the system performance at the price of not fulfilling these requirements,
that is, at the price of losing optimality of the solution in certain cases.

The relation between the specification, defined by means of a process algebra,
and each design, defined via web services, is twofold. On the one hand, the spec-
ification provides us with an abstract model that allows to construct the design
in an unambiguous way. Moreover, non-trivial formal properties, that are easier
to find in a simple model such as the specification, allow the designer to know
the consequences of different design choices (in our case, optimality of distribu-
tions vs performance). On the other hand, practical issues found during the con-
struction of the design lead to reconsider some aspects of the specification itself.
Since the specification model presented in [Lopez et al., 2002, Lopez et al., 2003,
Nufez et al., 2005a] implicitly assumed the requirements leading to optimal dis-
tributions, it was not a suitable specification of our second alternative design,
which does not fulfill them. Moreover, it was not for the first one either, be-
cause all agents were assumed to get connected to higher markets and this does
not conform to this design. Hence, a new specification, adapted to the feedback
provided during the design phase, was required. In this paper, a generalized
specification that is suitable for both alternative designs is proposed. In particu-
lar, requirements leading to optimality are removed, thus leaving freedom to the
design to either fulfill them or not. In technical terms, the new operational rules
of the specification produce more non-determinism at some points. This leaves
the task of fixing a criterion to choose among the several available choices to the
design. In this way, several designs (in particular, those presented in this paper)
may particularize the specification in different directions. In addition, this speci-

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2039

fication is extended to include additional aspects that actually are needed in both
target designs. In particular, the fact that agents do not participate in a market
is recorded, in such a way that they may participate in the next execution of the
system and the structure of markets is kept, is explicitly represented in the new
specification. Hence, in this paper the specification is defined in higher detail in
such a way that it is closer to the behavior considered in the designs; it actually
particularizes the former specification.

This is an example of how specifications and designs can successively influ-
ence each other during the development process of a system in such a way that,
after each iteration, new designs that comply with the new specifications are
constructed. This process of mutual discovery implicitly assumes that specifica-
tions and designs are flexible entities that may evolve as long as the developer
understanding of the target system improves. Thus, instead of an automatic
process, in this paper we must speak about a manual redefinition process.

The rest of the paper is structured as follows. In Section 2 we sketch the
formal model defining e-barter systems. In Section 3 we present the main con-
cepts on which the design with web services is based and we discuss how it is
obtained from the specification. In Section 4 we present the web-service design
of the e-barter system that yields global optimality if some requirements hold. In
Section 5 we present the alternative more efficient design. Finally, in Section 6
we present our conclusions.

2 Formal specification of multi-level e-barter systems

In this section we briefly describe e-barter systems and introduce their formal
specification. An e-barter system is a multi-agent system where agents exchange
resources on behalf of their respective users. Since agents must perform ex-
changes according to the preferences of users, we need a suitable notation to
denote preferences. We use utility functions. The input of a utility function is a
basket of resources and the output is a numerical value denoting the preference
on this basket. Let f4 be the utility function of an agent A. Let Z be a basket
with 2 apples and 1 euro, and y be another basket with 1 apple and 2 euros. If
fa(@) > fa(y) then A prefers T to §. A possible utility function showing that
behavior is fa(apples, euros) = 2 - apples + 1 - euros. Let us suppose there is an-
other agent B whose utility function is fg(apples, euros) = 2-apples+ 3 - euros.
Then, if the agents A and B perform an exchange where agent A gives 1 euro
to B and B gives 1 apple to A, then both utility functions return higher values
after the exchange, that is, both agents improve.

An e-barter system performs fair exchanges, that is, exchanges where at least
one agent improves and none of them worsens. When no more fair exchanges
are available, the market is completed, that is, it reaches a configuration that

2040 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

e,

Cities trading

Countries trading
States trading

Figure 1: The hierarchical structure of markets.

cannot, be improved. Instead of using a single market where all agents in the
system exchange resources, agents will be grouped in local markets according
to proximity reasons. For example, agents belonging to the same city are put
together until their markets are completed. Then, they use some representatives
to exchange resources in a higher order market involving several cities. After
these are completed, new representatives exchange resources in a higher market,
and so on. The general structure of the system is depicted in Figure 1. This
scheme has several advantages. On the one hand, it promotes that exchanges
are performed as near as possible, which reduces shipping costs. On the other
hand, the hierarchical structure improves the computational efficiency of the
system by exploiting the parallelism of the structure (several markets, instead
of a single market, work in parallel) and increasing the system robustness (if a
market is temporarily out of service, the rest of the structure is still operative).

Initially, customers willing to participate in an e-barter system are repre-
sented by (electronic) agents. These agents are provided with two parameters:
The basket of resources that the customer is willing to exchange and a wutility
function. Such agents trade in the most local market whose area includes the
location of the the related customers.

Then the e-barter system works according to the following algorithm:

(1) Agents exchange goods inside their local market. A multilateral exchange will
be made if (at least) one of the involved agents improves its utility and none
of them decreases its utility. This is repeated until no more exchanges are
possible. In this case we say that the local market is completed (or saturated).

(2) Once a market is completed, their agents are combined to create a new agent
which will trade in the higher level market whose area include the location of
the current market (this happens unless we are in the top-level market). This
agent behaves as a representative of the combined agents. The new agent will

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2041

have as basket of resources the union of the baskets corresponding to each
agent. Its utility function will encode the utilities of the combined agents.
This utility function imposes that resources obtained by the representative
are such that they can delivered among its users in such a way that no user
worsens with respect to the previous distribution. If this condition holds, it
returns the addition of utilities of each represented user. The construction of
this utility function will be formally defined in the forthcoming Section 2.2.
The higher order agent participates in a higher level market.

(3) The exchanges performed in the higher level market are performed starting
again from (1), unless we are in the top-level market. In this case the process
is finished and the distribution of goods obtained is the final one.

Note that during the whole process, after the completion of any market, the
formal model keeps track of distribution of goods to the several customers by
propagating such information in a top-down way through the tree of markets
until it arrives to the leaves of the tree (i.e. to the agents directly representing
customers).

As we will see in Section 3, the design of the e-barter system will address
several practical issues that are beyond the detail level considered in the previous
description. Some of these issues will make us to reconsider the previous scheme.
For example, requiring that all subagents are connected to a market before it
becomes completed is actually needed to provide final optimal distributions, but
this requirement might not be feasible in practice. For instance, if an agent is
temporally out, then it may block the rest of agents. So, when a market becomes a
new higher order agent (see step (2)), in some situations it will be able to become
a representative of only some agents. These changes will affect the operational
semantics of the formal language (presented in Section 2.2). In order to endow
the design(s) with enough freedom to choose which agents are represented by
new agents, according to their own criteria, operational rules of the specification
will be non-deterministic, i.e., the specification will allow any choice at his point.
Note that these changes show that the relation between the formal specification
(i-e., the model of the analysis of the system) and the web services definition we
construct from it (i.e., the design and implementation) is two-fold.

2.1 A brief introduction to the formal model

Next we briefly introduce the formal representation of e-barter systems. The for-
mal definition of an e-barter system is made by means of a specification language
that was explicitly developed to define this kind of systems. An e-barter system
is formally given by a syntactical term in the syntax of this language. Moreover,
this term explicitly defines the structure of the tree of markets, i.e., how agents

2042 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

and markets are connected to higher order markets. The semantics of the lan-
guage implicitly define the behavior of an e-barter system in a formal fashion.
The operational semantics can be found in the next section. Even though this
language uses a process algebraic notation (mainly when defining the operational
rules) it does not need the usual operators appearing in this kind of languages
(choice, restriction, etc). In fact, our constructions remind a parallel operator as
the one presented, for example, in the process algebra CCS [Milner, 1989].

Definition 1. A market system is given by the following EBNF:

MS ::=ms(M)

M = A|uncomp(M,...,M)
A = (id, S, T,u,T)

S a=[]][4,...,4]

T ==][]|[M,...,M]

where for all terms of the form A, u is a utility function, T is a basket of re-
sources, and id € {idy,ids,ids, ...} is an identification symbol. We assume that
the identification symbol of each term of the form A is unique. O

First, in order to avoid ambiguity of the grammar, we annotate market sys-
tems with the terminal symbol ms. Intuitively, the market M = (id, S, T, u,T)
(that is, M = A) represents a completed market, that is, a market where no more
exchanges can be performed among its agents. Let us note that in this case the
market represents an agent that will be able to make transactions with other
agents in a higher market. In the previous expression, id denotes the unique
identification symbol of the agent denoted by M, u denotes the utility func-
tion of M, and T represents the basket of resources owned by M. We consider
that there are p different commodities,? that is T €]Rﬂ’_, and that the amount
of money is placed in the last component of the tuple. We will assume that
UtilFuncs denotes the set of all utility functions, that is, functions with the
form RY. — R.

Regarding the first two arguments of M, that is S and T, they denote those
markets/agents that are below the agent in the hierarchical tree. S represents
those agents that are actually represented by the agent (that is, it can exchange
their resources in order to reach better baskets for them), while T represents
those lower markets/agents that are not. As we commented before, sometimes
agents will represent only a subset of the agents that are below them for efficiency
reasons; the lists S and T allow to clearly separate them (only S was used
2 We are assuming that all the items are goods. Nevertheless, agents could also trade

bads. For example, a customer would be willing to give an apple pie if he receives
minus s brown leaves in his garden. However, bads are usually not considered in

microeconomic theory, as they can be easily turned into goods: Instead of considering
the amount of leaves, one may consider the absence of them.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2043

in definition of the language given in [Nufez et al., 2005a]). Depending on the
values of S and T we consider two possibilities. Either both S and T are empty
lists or either of them is not. In the first case we have that M represents an
original agent, that is, a direct representative of a customer (note that a single
agent is trivially completed since there is nobody to deal with). In the second
case, that is, if either S = [A1,...,4,] withn > 1 or T = [A],...,A]] with
m > 1, then we have that M represents an agent associated with the (possible
higher order) agents Ai,..., A, belonging to a completed market. Let us note
that if S =[] and T # [] then the agent will idle.

The second possible syntactic form of M, uncomp(Ma,..., M,), represents
an uncompleted market consisting of the markets M, ..., M,,. Let us remark
that in this case some of the sub-markets may be completed.

Next we present an example showing how an e-barter system may be con-
structed. In this example we will also (informally) introduce the operational
transitions of the language.

Ezxample 1. Let us consider a system including six agents 4; = (id;, [], [], ui, T7),
for 1 <7 < 6. We suppose that these agents are grouped into three different
markets. Initially, these markets are uncompleted, so we make the following

definitions:
M, = uncomp(Aj, As)

My = uncomp(Asz, Ay)
M3 = uncomp(As, Ag)

Let us consider that the first two markets are linked, and the resulting mar-
ket is also linked with the remaining market Mj3. We should add the following

definitions:
My = uncomp(Mj, Ms)

M5 = uncomp(My, Ms)

Finally, the global market is defined as M = ms(Ms5). This hierarchical structure
is graphically presented in Figure 2, top-left (uncompleted markets are repre-
sented by a single square).

Following the philosophy explained in the previous section, transactions will
be made within a market only among completed sub-markets. So, initially only
My, My, and M3 are allowed to perform transactions (as we remarked before,
original agents are trivially completed).

We will use the symbol ~~ to denote exchange of resources. Let us suppose
that, after some exchanges, M; gets completed. That is, there exists a sequence
of exchanges My ~» M{ ~» M?--- ~» M = Mj such that M| /. In this case,
the market grouping the first two agents should be labeled as completed. So, the
agents effectively perform all the achieved transactions becoming A} and Aj,
respectively. Then, the first market becomes (id’, [A], A5], [], f (w1, u2), T1 + T2),
where id’ is a fresh identification symbol and f is a function combining utility

2044 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

Ms Ms

(P T

I@ @] | E-E = |@ =] ._:
a

Figure 2: A market system and some operational transitions.

functions which works as described in the algorithm presented in the previous
section (step 2); the construction of this function is formally defined in the next
section. In parallel, My will have a similar behavior.

Once both M; and M, get completed, transactions between them will be
allowed. Note that these transactions (inside the market My) will be performed
according to the new utility functions, f(u1,u2) and f(us,us), and to the new
baskets of resources, T1 + T2 and T3 + T3.

The process will iterate until M5 gets completed. At this point, the whole
process finishes. |

Note that if we assume that markets can become completed even if not all
the submarkets are completed yet and that new higher order agents can rep-
resent only a subset of agents, then other sequences of interaction may oc-
cur in the previous example. Despite the presentation of the formal model
in [Lopez et al., 2002, Lopez et al., 2003] does not consider these features, the
formal model considered in this paper includes them. As we said before, the goal
of adding them to the system is to take into account some efficiency issues that
will be addressed in the design phase.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2045

2.2 Operational semantics of the specification model

Next we present a brief description of the operational semantics of the specifica-
tion language used to specify e-barter systems. A full description can be found
in [Nufiez et al., 2005a], though a few details have been changed to properly rep-
resent some practical requirements that were discovered during the construction
of the system design.

In order to simplify forthcoming operational rules we introduce the following
notation to deal with utility functions. Utility functions associated with original
agents (that is, A = (id,[],[],u,T)) will behave as explained before: Given a
basket of resources, a single value denoting the utility of the basket is returned.
That is, u(Z) indicates the relative preference shown by A towards the basket of
resources Z. Nevertheless, if A = (id, [A1, ..., A,], T, u,T) then we will consider
that, in addition to its usual meaning, the utility function also keeps track of
how a basket of resources is distributed among the (possible higher order) agents
Ai,...,A,. That is, u(z) = (r,71,...,%n), where r still represents the utility,
while >>%z; = 7z and % denotes the portion of the basket Zz assigned to A,.
Overloading the notation, if we simply write u(%Z) we are referring to the first
component of the tuple, while u(z).i denotes the (i+1)-th component of the tuple.
Later we will see how the utility functions following this pattern are actually
constructed.

In the next definition we present the anchor case of our operational semantics.
In order to perform complex exchanges, agents should first indicate the barters
they are willing to accept.

Definition 2. Let A = (id,S,T,u,T) be a completed market. The ezchanges
the agent A would perform are given by the following operational rules:
u(@+y)>u(@) A (@+3)>0
(id,S,T,u,)—(id,S, Tu,7+7)

w(T@+G)>u(T) A (T+7)>0
(id,S,Tu,z)~ (id,S,T,u,7+7)

where 77 € RP, being p the number of different commodities. O

Let us remark that 3 may have negative components. Actually, these tuples
will contain the barters offered by the agent. For example, if § = (1,—1,0,—3)
fulfills the premise then the agent would accept a barter where it is offered one
unit of the first product in exchange of one unit of the second good and three
units of money. Regarding the rules, the first premise simply indicates that the
agent would not decrease (resp. would increase) its utility. The second premise
indicates that the agent does not run into red numbers, that is, an agent cannot
offer a quantity of an item if it does not own it. Thus, a transition as — denotes

2046 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

that the agent does not worsen; a transition — denotes that the agent does
improve. Next we show how offers are combined.

Jkel: M2 M, AYiel M; 25 M A valid(M,E)
Mguncomp(M{,...,Mfz)

where @ M = uncomp(Mi, ..., M,) and M; = (id;, S;, T;, u;,@T;) forall 1 < i <mn
e Ec(RY)™ ™ and I = {s1,...,s-} C{1,...,n}
M i1
° M; _{ (id;, Si,wi, T7 + ;) otherwise

o yi=>_;&i—) ;j, forany i€l

Figure 3: Operational rule for the exchange of resources in uncompleted markets.

Definition 3. Let M = uncomp(Mi,...,M,) be an uncompleted market and
I={s1,...,8} C{1,...,n} be aset of indexes denoting the completed markets
belonging to M (that is, for any i € I we have that M; = (id;, S;, T;, u;, T;)). We
say that the matrix £ € (R})"*" is a valid exchange matriz for M, denoted by
valid(M, &), if the following conditions hold:

— Foranylgignwehavezj&-j <7,
— for any 1 < i < n we have &; =0, and
— for any 1 < i,k < n such that & & I we have &; =0 and &;, = 0.

O

First, let us note that the notion of walid matrix is considered only in the
context of uncompleted markets: If a market is already completed then no more
exchanges can be performed. Second, only completed markets belonging to an
uncompleted one may perform exchanges among them. This restriction allows
to give priority to transactions performed by closer agents belonging to uncom-
pleted sub-markets. Regarding the definition of valid matrix, the components of
matrixes € are baskets of resources (that is, elements belonging to R’). Thus,
&;;j represents the basket of resources that the market M; would give to M;. The
condition ; €ij < T indicates that the total amount of resources given by the
market M; must be less than or equal to the basket of resources owned by that
market. Let us also comment that an exchange does not need to include all of
the completed markets. That is, if we have an exchange where only ' markets
participate, then the rows and columns corresponding to the remaining r — 7’

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2047

completed markets will be filled with 0. Besides, the rows and columns corre-
sponding to the n — r uncompleted markets will be also filled with 0. Finally,
let us note that the validity of an exchange matrix must be checked when the
exchange defined by the matrix is to be performed, i.e., we consider the current
state. Obviously, the validity of a given matrix remains unchanged as long as no
exchange is performed.

Next we introduce the rules defining the exchange of resources. Intuitively,
if we have a valid exchange matrix where at least one of the involved agents
improves and no one worsens then the corresponding exchange can be performed.

Definition 4. Let M = uncomp(Mi,...,M,) be an uncompleted market and
I={s1,...,8:-} C{1,...,n} be aset of indexes denoting the completed markets
belonging to M (that is, for any i € I we have that M; = (id;, S;, T, u;, ;). The
operational transitions denoting the exchange of resources that M may perform
are given by the rule shown in Figure 3. We say that M is a local optimum,

denoted by M +, if there do not exist M’ and £ such that M & O

The operational rule presented in Figure 3 is applied under the same con-
ditions appearing in the definition of a valid exchange matrix: It is applied to
uncompleted markets and the exchange is made among a subset of the completed
sub-markets. The premises indicate that at least one completed market improves
after the exchange and that none deteriorates. Let us remind that, in general, a
market may generate both M; — M/ and M; AN M. So, the previous rule also
considers situations where more than one market improves (we only require that

at least one improves). Besides, let us remark that M; SN M always holds. So,
a market not involved in the current exchange does not disallow the exchange.
Regarding the conclusion, sub-markets belonging to M are modified according
to the corresponding exchange matrix, while uncompleted sub-markets do not
change.

For completeness reasons, some other minor rules concerning the propagation
of the operator £, must be added. Following the typical compositional style of
process algebras, they show how the behavior of a part influences the behavior
of the whole.

My % M
uncomp(My, ..., Mg, ... ,Mn)«iuncomp(Ml, LML M)

M &M
ms(M) % ms(M')

If a market reaches an optimum then we need to modify the attribute of

the market by replacing a term such as uncomp(Mi,...,M,) by a term such

2048 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

as (id, S,T,u,T). Once a market is completed, resources are recursively moved
from the corresponding agents to the leaves of the tree. Let us remark that,
according to the scheme presented before and following [Nufez et al., 2005a], a
market gets completed when all of its sub-markets are completed. However, in the
following we will consider it in a different way. In particular, the rule defining
how a market becomes a higher order market will differ from the rule given
in [Nufiez et al., 2005a]. As we said before, in order to allow the construction of
a more practical design, the behavior originally described by the formal model is
slightly modified in this paper. In particular, we adapt some aspects of the formal
model to the feedback provided during the development of the system design.
Concretely, we allow a market to become completed even if only a subset of agents
is completed. Moreover, we allow the new higher order agent to be composed
from only a subset of the agents it contains. By doing so, the formal model can
also represent a situation where some agents are not considered because they try
to join the new higher order market after the timeout was reached. Moreover, it
can also represent an alternative approach where only those agents that do not
increment their utility in the current level participate in the higher level. As we
will see in the next section, this alternative will be motivated by efficiency issues
during the development of the e-barter system in terms of web services.

These alternative behaviors were not be considered in the original formal
model because they are motivated by low level details that are beyond the ab-
straction level of the specification. However, these issues turned out to be relevant
to accurately describe the overall behavior of the e-barter system accordingly to
the design presented in the next section. This is an example of the two-fold re-
lation existing between the formal model and the web services oriented design,
and how both can be used to adapt each other.

Note that the modification of the former formal model will consist, on the one
hand, in enabling new behaviors that were not considered in the former model
and, on the other hand, in removing some features that were not considered
relevant for the implementation of the system by means of web services. Re-
garding the former, let us note that the model presented in [Nufiez et al., 2005a]
does not allow a market to become completed until all submarkets do so, and
all submarkets are always included in the new agent. So, in this sense, the new
specification can be regarded as a generalization of the previous one: According
to the new specification, more behaviors are possible, so the former specification
is a refinement of the new one (which, unfortunately, diverges from our current
necessities). Regarding the latter, that is removing unnecessary functionalities
from the model, let us note that the model in [Nufiez et al., 2005a] allowed to
explicitly consider the payment of transaction and shipping costs to the owner
of the system. Concerning this, for the sake of simplicity we adopted the follow-
ing design decision: Features devoted to representing the e-barter system as a

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2049

Generalized specification
(less restrictive completion of markets)

Original specification Refined specification
(given in [Nunez et al., 2005a]) (no lucrative payments)

Design/Implementation
(defined via web services)

N—_——— ——

Figure 4: Generalization and refinement of the specification given
in [Nunez et al., 2005a].

lucrative commercial activity for the owner of the system would not be regarded
in the design. Hence, the previous costs were not considered. In this sense, the
new model refines the previous one as described in [Nufiez et al., 2005a]. In fact,
the new model presented in this paper is created to enable the consistent con-
struction of an implementation where some practical issues are dealt as we need.
Note that the implementation is also a kind of (lower level) refinement. Thus, in
this paper the model in [Nufiez et al., 2005a] is both generalized and refined to
allow a new (low level) refinement in a different direction. Figure 4 depicts this
relation.

Let us present the rule allowing a market to become complete, which en-
capsulates the new capabilities commented before. The rule uses two auxiliary
notions: Deliver and CreateUtility. Function Deliver distributes a basket of
resources among the original agents that are located in the leaves of the tree that
is provided. On the other hand, function CreateUtility computes a combined
utility function from the ones provided as arguments as it is described in the
algorithm shown in Section 2, step 3. These concepts will be formally defined
afterwards in Definition 6. In the next definition, A, ..., A, represent the com-
pleted markets that will be represented by the new agent, while By, ..., B; are

2050 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

the completed/uncompleted markets that will not. Their indexes in the market
are identified by I and I’, respectively. In both cases, the resources obtained by
completed markets (i.e. agents) must be delivered to the original agents. Hence,
the Deliver function is applied in both cases to completed markets. Finally,
let us note that the formal specification must give enough freedom to allow dif-
ferent alternative ways to choose which submarkets will be represented by the
new agent. In order to do it, the following rule actually allows any combination,
that is, it introduces non-determinism. The responsibility to fix a criterion to
make this selection will be given to the design(s), as we will see in the following
sections.

Definition 5. Let M = uncomp(My,...,M,) be an uncompleted market. Let
I={s1,...,8} C{1,...,n} where for any i € I we have M; = (id;, S;, T}, u;, ;).
Besides, let I' = {t1,...,ti} = {1,...,n} — I. The following rule modifies the
market from uncompleted to completed:

M 4
MW (Zd7 [A17"'7A7‘]7[Bl7"'aBlLu?ZieIm_i)

where

— id is a fresh identification symbol,

— u = CreateUtility(us,,...,Us,,Toyy---, L5,)s
—foralll <i<r, A; = (ids,, S, Ts,, Us,, Ts,) with S} = Deliver(Ss,, us,,Ts,),
— for all 1 < ¢ <[we have that

o if Mt,', = (Zdt77 St,', s Tt,', y Ut s J)_u) for some Zdt1 s St,', s Tt,;7 (T .23_]57 (i.e., Mt,; is
completed) then B; = (idy,, S}, Ty, wi,, Ty,) and S} =Deliver(Sy,, u,, Ty,),

e if My, = uncomp(M} ..., Mf) for some M}, ..., Mf (ie., M; is uncom-
pleted) then B; = M;,.

O

The previous definition differs from the definition of the same rule given
in [Nufiez et al., 20053] in that it does not require that all submarkets are com-
pleted. Instead, a set of completed markets (not necessarily involving all com-
pleted markets) is identified, and the new agent is created in such a way that
only markets in this set are regarded.

Let us remark that in the previous rule the transition ~» is not labelled.
These transitions play a role similar to internal transitions in classical process
algebras. In order to propagate the transformations given by a ~- transition to
the context of different constructors, other minor rules have to be added.

My, ~ MIQ
uncomp(My, ..., My, ..., My)~uncomp(My,...,Mj, ..., My,)

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2051

M ~ M’
ms(M) ~ ms(M')

The next definition formally presents some concepts used in Definition 5.

Definition 6. Let A = (id, S, T, u, T) be an agent. The allocation of the basket of
resources T among the agents belonging to S with respect to the utility function
u, denoted by Deliver(S,u,T), is recursively defined as:

- N if S=1]
Dellver(S,u,fc){[M{w“’MylL] if S$=[My,...,M,]

where for any 1 < ¢ < n we have that if M; = (id;, S;, T, u;, T;) then we have
Mz, = (id;,Deliver(S;, u;, u(T).i), T;, u;, u(T).).

Let us consider n pairs (u;,Z;). The utility function constructed from the
utility functions w1, ...,u, with respect to the baskets of resources 77, ..., %T,,
denoted by CreateUtility(us,...,un,Z1,...,Tn), is defined as:

max{ (X ui()), af, ... 27) | i =T A V1<i <nui(ef) > wi(@)}

We consider that the previous maximization is performed over the first argument
(representing the utility) and we assume max () = (0,0,...,0). O

In [Nufiez et al., 2005a] it is shown that if uncomplete markets become com-
plete only after (a) all submarkets are completed and (b) no more fair exchanges
are possible in the market then, when the top market is completed, the distri-
bution of resources is Pareto optimal. This means that there does not exist an
exchange among original agents such that, by performing it, the utility of at
least one agent improves and no agent worsens. Let us note that this property
is trivially met in a market where all agents are connected to a single market,
because any fair exchange involving any group of agents is allowed in this mar-
ket. However, it is more interesting if we consider other non-trivial structures
of markets, because in these structures direct exchanges among original agents
are not allowed. That is, in spite of the fact that several levels of representa-
tive agents are required to connect two distant agents in these structures, final
distributions are Pareto optimal as well.

However, let us note that the rule given in this paper to turn an uncompleted
market into a completed one (see Definition 5) requires neither (a) nor (b). As
we commented before, these requirements were removed in this specification due
to efficiency issues detected in the design given in the next section. Let us note
that if these properties do not hold then the optimality of distributions is not
met in general. We illustrate this with the following example.

2052 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

Ezxample 2. For 1 <i <5, let A; = (id;, [],[], ui, T7) where
ui(z,y,2) =2z +y+ 3z 71 = (0,1,0)
u2(x7yaz):x+2y x_2:(17070)
us(z,y,2) =2z + 3y Z3 = (0,0,0)
ua(z,y,2) =3z +2 7z = (0,0,1)
us(z,y,2) = 3z + 2z T5 = (0,0,0)

Besides, let M; = uncomp(A;, Az, A3), Mz = uncomp(Ay4, As), and Mz =
uncomp(M7, Ms). Finally, let M = ms(Ms3).

Let us suppose that agents A; and As exchange one unit of good y by one
unit of good z (within market Afy). This allows both agents to improve their
utility. At this point, no more exchanges are allowed in My, so M; gets completed
and becomes itself an agent A}. Let us suppose that, when a market becomes
an agent, only those agents of the market that did not improve their utility are
represented by the new agent in the upper level. According to this approach,
only Aj is represented by the new agent Af.

In parallel, My gets completed as well (no exchange is possible within this
market). Since neither A4 nor As improved their utility, both are represented
by a new agent A}. According to this configuration of agents, no exchange will
be possible in Mjs: Since A} owns nothing and A} gives a positive utility to its
unique belonging (one unit of good z), M3 is trivially completed.

Next, goods are delivered top down to original agents in such a way that As,
Ay, and As remain the same (because no exchange was made in M3). In addition,
A; and As, previously removed from the structure of (active) markets, stay the
same since they performed the exchange commented before. For 1 < i < n, let
J:_; represent the current basket of agent A;. We have:

This distribution of goods is not optimal: If A; and As exchange one unit of x
by one unit of z then both agents improve. That is, the distribution obtained by
the e-barter system under the assumption that only some agents are represented
in upper levels is not Pareto optimal. O

In spite of the loss of optimality, we create utility functions of representative
agents as it is defined in [Nufiez et al., 2005a] because this provides an ideal limit
of optimality. We know that, as long as all agents are actually completed and
participate in higher order markets, the system tends to the optimality.

The last rules of the operational semantics are shown in Figure 5. They are
used to reset the whole market structure when the top market is completed. The
term o denotes that a completed market must be reset, that is, turned back

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2053

into uncompleted market. This symbol disappears when the market is actually
reset, which might require to propagate it to the markets in the lower level.
In fact, the rules shown in Figure 5 recursively traverse the market structure
top down from the top market up to final agents denoting users. Resetting the
system of markets prepares it for a possible new use. Moreover, when the reset
process reaches basic agents (i.e., agents following the form (id,[],[|, u,T),
thus representing end-users) agents may change their utility functions and their
baskets of resources, according to their users preferences (see the second rule in
Figure 5). A new execution of the system may be useful even if utility functions
and baskets do not change. Let us note that if the final distribution of resources
of the previous execution is Pareto optimal then, if utility functions do not
change, it is pointless to execute the system one more time because no additional
exchanges will be performed. However, since the rule denoting the completion
of markets presented in Definition 5 does not guarantees the optimality of final
distributions, a new execution might still improve the utility of some users. Let
us note that, when a market is completed, the Deliver function is not applied to
uncompleted markets below the market: Since these markets were not completed
on time, the exchanges performed inside them were not made effective to final
users. In this case, a new execution of the whole system of markets may be used
to continue the evolution of these markets. In order to do so, the reset rules
shown in Figure 5 do not reset uncompleted markets (see the fourth rule). In
this way, the evolution of these markets can continue from the point they reached
before on, in the next execution.

3 Design of multi-level e-barter Systems via web services

The specification defined in the previous section, which is a modification of the
specification described in [Lopez et al., 2002, Lopez et al., 2003] and analyzed
in [Nufiez et al., 2005a|, presents e-barter systems in terms of what can be done,
for example, in terms of constraints on exchanges (they must satisfy the require-
ments imposed by utility functions). In the design phase, instead, we have to
define the precise structure (architecture) of the system, the entities which play
a role in it, the order in which things have to be done, and the temporal be-
haviour of such entities. For example, it has to be taken into account the location
of the instances of such entities as well as which instances communicate with each
other, the kind of interactions that the entities may perform, the kind of data
exchanged, and the workflow of such interactions. Temporal issues are related
to the system efficiency, which is important for a good design. For example, let
us suppose that a market is temporaly out of service. If the higher level market
is not allowed to complete until all submarkets get completed then the higher
level will have to wait for a very long time until its submarket is recovered. It is
preferable that the systems goes on (by using a timeout mechanism), ignoring

2054 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

ms((id, S, T, u,T)) — ms(o((id, S, T, u,T)))

u' € UtilFuncs A T’ € RE
o((id,[],[},u, 7)) = (id,[],[], v, T)

S:[Al,...,An] A\ TZ[Bl,,Bm] An+m>0
o((id, S, T,u,T)) — uncomp(c(A41),...,0(A4n),0(B1),...,0(Bm))

o(uncomp(My, ..., My,)) — uncomp(My, ..., M,)

Mk — M]g
uncomp(Mjy, ..., My, ..., M,)—uncomp(My,...,Mj,..., M,)

M — M’
ms(M) — ms(M')

Figure 5: Rules to reset a global market.

the damaged market by now. Afterwards, a new execution of the whole tree of
markets will give this market a new chance to participate.

When producing the WS-BPEL description of the e-barter system the first
thing to do is to identify the different entities (which in the WS-BPEL specifi-
cation will be denoted by so-called portTypes) that are involved in the system.
In particular, not only concrete entities (that will be actually designed via web-
services) but also abstract entities which just correspond to human actions. Of
course, abstract entities are assumed to be endowed with some electronic inter-
face (e.g. a client PC) to interact with concrete entities (real web-services). In
the case of the e-barter system we have three main entities: Clients, agents and
markets. Each client belongs to a certain market of level 0 (the most local level
in the hierarchy of markets). Agents in charge of making exchanges for clients
belong to a certain market at level 0, while agents in charge of making exchanges
for markets of level n > 0 belong to a certain market of level n+ 1. It also works
the other way around, that is, if a particular market is located at level 0 then it
determines a set of clients (we suppose that they are numbered from 1 on) and
a set of agents.® On the contrary, if the market is located at a level n > 0 then it
determines a set of agents only (numbered from 1 on) where each agent makes
exchanges for a given market of level n — 1.

3 These agents are numbered as well and we suppose, for the sake of simplicity, that
the agent ¢ makes exchanges for client :.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2055

In order to represent the architecture of a single market, the operations
needed to manage the market have to be effectively provided by the system.
What can be seen as a set of operations to manage the data involved in the
market becomes an entity to support the behavior and evolution of the market.
This entity is called the manager of the exchange matrix.

3.1 Behavior of the WS-BPEL design

The behavior of the three main entities is defined via orchestration with the
semi-formal (XML based) workflow language WS-BPEL in such a way that is
consistent with the formal model given in the previous section.

Conceptually, the design defined in WS-BPEL explicitly represents the com-
munication between the entities, that in the formal model are simply included
syntactically one inside each other. More precisely, according to the formal
model, a market uncomp(Mj, ..., M,) that starts performing exchanges includes
syntactically all the agents that trade in it, i.e. given I = {s1,...,8,} C {1,...,n}
such that {Ms,,..., M, } is the set of submarkets represented by trading agents,
we have that, for all i € I, M; follows the agent form (id;, S;, T;, u;, T;). The cor-
responding market entity in the WS-BPEL design will first communicate with

all the agent entities corresponding to My, ..., M, in order to get their util-
ity functions us,, ..., us, and baskets T5,,...,Z,,, and then it will perform ex-
changes according to the internal behavior of uncomp(My, ..., M,) in the formal

model until it saturates. * When this happens, in the formal model we have that
uncomp(Mj, ..., My,) can be turned into A = (id, [A1, ..., A.],[B1,...,Bi],u,T).
Supposing that we are not in the top level market, A represents the agent
which is in charge for trading for this market in the upper level, where: Ay, ..., A,
are the agents represented at the upper level by the new agent, By, ..., B; are
all the other submarkets, and u and T are the aggregated utility function and
the overall basket of resources. In the same way, in the design the market en-
tity will simply transmit the same aggregated information to the agent entity
(of the higher level) corresponding to A. The behaviour of the agent entity in
the WS-BPEL design is defined in such a way that it checks the information re-
ceived, and connects to its local market to deliver them and start trading (so the
described flow repeats). In particular the execution of the transition that turns
uncomp(Mj, ..., M,) into the agent A in the formal model represents the whole
procedure above, i.e. also successful connection of the agent corresponding to A
to its local market (in the design a market accepts connection from agents only
before a given timeout, hence an attempt of connection can get stuck if such a
timeout is expired).
* The WS-BPEL design abstracts from computation inside atomic services such as the
evaluation of the exchanges to be made (the saturation of the matrix of exchanges).

Therefore a legal implementation of such services must be made in such a way that
it conforms with the formal model behavior.

2056 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

On the contrary, if we are in the top level market, the execution of the
transition that turns uncomp(Mi,..., M,) into the agent A is just an abstract
representation of the completion of the e-barter system and obviously does not
correspond to a real activity of agent aggregation and communication with the
upper level in the design.

In addition to the formal model, the WS-BPEL design includes also an ex-
plicit phase of transmission of results of the exchange performed to the clients
(that in the formal design is just represented statically by applying the Deliver
function to the syntactical tree of agents upon completion of markets). Such a
transmission is started when the top-level market is completed and it is propa-
gated top-down by markets and agents until the client entities are reached and
notified. Note that, in the formal specification, the Deliver function is applied to
agents that are aggregated for the upper level at the completion of each market
(not just for the top-level market as in the design). This is just an abstract rep-
resentation that is done for algebraic compositional reasons: Anyway top-down
propagations of this kind at upper levels replace the previous propagations at
lower levels. Therefore the design behavior is correct in this respect.

3.2 An alternative design choice

As already mentioned, we can also adopt an alternative design choice. In order
to improve the efficiency of the system and to keep the structure of the utility
functions (obtained by aggregation after the saturation of markets) as simple
as possible, we can decide to propagate upwards only requests of agents who
did not improve their utility in the current market. On the contrary, baskets of
agents that improved their utility can be immediately distributed top-down to
the clients. By following this strategy, the number of agents effectively partic-
ipating in each market is reduced. This allows to reduce the time required to
get all of them connected, as well as the time spent to perform exchanges upon
completion.

Note that such an alternative design is still compliant with the formal specifi-
cation: When uncomp(Mj, ..., M) is turned into the agent A the formal model
allows us to consider just a subset of the agents that traded in the market
(and not necessarily all) for aggregation and deliver to the agent A of the up-
per level market. In particular in the formal representation of such an agent
A= (id,[A1,..., A, [B1, ..., Bi],u,T) we have that: A;,..., A, are the agents
that are to be represented at the upper level (a subset of the agents that traded);
By, ..., B are all the other agents (to which the Deliver function is applied)
and all the uncompleted markets in M, ..., M,; and v and T are the aggre-
gated utility function and the overall basket of resources. In the same way, in
the alternative design the market entity will first deliver baskets to the agent
entities corresponding to the agents (in By,..., B;) that will not participate in

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2057

trading at the upper level (because they already improved their utility), then it
will evaluate and transmit the aggregated information about remaining agents
(in Ay,...,A,) to the agent entity of the higher level corresponding to A as
described in the previous section.

As explained in Section 2, the price for the improved efficiency is the loss of
global optimality of exchanges in general. In particular in Example 2 we showed
a situation where the optimality is lost by following the behavior proposed in
this section. More generally, the loss of optimality may be high in the worst
case. For instance, if an agent performs only a tiny exchange at a certain market
(e.g., 0.001 of good z by 0.001 of good y) that (slightly) improves its utility
then, according to the alternative design, such agent will not be allowed to
participate in the higher level market. In general, if the utility of some agents
is only slightly improved inside a market then the improvement of the utility
for the related users upon termination of the whole system will be negligible.
Moreover, an agent that strongly increments its utility at a given market may
also lose some utility because participating in higher markets could allow it to
increase its utility even more.

However, there are several usual scenarios where the loss of generality may
be very low. For example, let us suppose that the utility function of a user
denotes that he is interested in exchanging a single unit of some good. Assume
that he succeeds in this goal (e.g. because the only way for his market to reach
completion is to perform the exchange of the whole unit he seeks). In this case,
he has no reason to participate in the market anymore. In this case, blocking
him from participating in higher levels does not lead to losing any optimality.

3.3 Local naming definition for each market

In this section we describe the mechanism to provide a uniform specification of
the markets in our e-barter system by means of local naming and the technique
based on UDDI to connect markets to agents of higher level and vice-versa
(thus defining the structure of the system: This was done correspondingly by
syntactical inclusion of markets in the formal model).

In order to invoke a service, other services must know where the first one is
located. This mechanism is implemented through the binding of the names of
the services to a physical address by using a UDDI server. In the case of our
e-barter systems, following a hierarchical architecture, the structure of the UDDI
service is depicted in Figure 6. In this graphic we can observe that there exists
a different local UDDI server for every market.

Thus, we adopt the idea that each single market of the market system has
its own namespace, defined just through a service of a UDDI. In each of these
namespaces, every portType comes associated/bound to a specific web service.
Thus, if one invokes a service appearing with the same name (same portType) in

2058 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

MPTog
DDl T
T e Global Market
PFTes x
PToer g\ y T
yr y

(o

g
T' aPT,
AT | ix
2 b » v
T T }
il aPT,
&
e
’
S/ aPT,
- - MPTre
E uooI
T Market at
L™ Level 1
#Top .
meT
S
rrPT’L ™._mFT
T, I s
3T,
ﬂT_‘ i 4 v N mPT mPT o
‘ CEEL L LR N
T,
A aFT, 4 ‘
A K
r
e £
B 51 @T, o
T »)
T, AT, Y
i‘ =

Figure 6: Scheme to bind names.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2059

two different markets then the called service is the one determined by the UDDI
associated with the market in which the invocation was performed. In this way,
the specific hierarchical structure of e-barter systems can be uniform, that is,
the same WS-BPEL process can be used for equal entities (regardless, e.g., of
the level where they are located). The only difference is that the client portType
is available only in the first level since instances of this type can communicate
only with agents located in the first level.

If we are working in a market at a certain level, it is possible to refer to the
agent aPT; of the associated market at the immediately higher level by using
the aPTsup; portType (it is assumed that the UDDI of the market is defined
in such a way that aPTgyp; binds to the i-th agent of the market at the higher
level). Similarly, given a market at a certain non-zero level, it is possible to refer
to the the market mPT at the immediately lower level for which the i-th agent
of the market is in charge, by using the mPTnxg; portType.

4 Web Service design yielding global optimality

In this section we present a web-service design of the e-barter system formally
specified in section 2. This design is developed in such a way that, supposing
that for each market all agents connect to the market before the timeout, global
optimatility of exchanges is guaranteed for the clients of the e-barter system.

4.1 WSDL definition of ports and partner links

In Figure 7 we present the WSDL graphical notation that we will use in this
paper. In the following, we describe the meaning of port-types (i.e. types of
services) that we use and their operations. In general names of operations are
quite self-explaining: The name of the operation expresses the meaning of the
action performed from the viewpoint of the port-type that offers it (not from
the viewpoint of the user of the operation). As we already explained, port-types
are used in our design to represent both “concrete” entities, i.e. real services
that are bound at some location in the internet and “abstract” entities, i.e. the
behaviour that a human must have to play this role and interact successfully
with the real services. Port-types corresponding to abstract entities are listed in
Figure 9, while concrete port-types are listed in Figure 10. Partnerlink-types are
listed in Figure 8. Parnerlink-types in WS-BPEL express the kind of interactions
that port-types may have: A pair denotes a kind of interaction where the port-
types interact by invoking each other, a standalone port-type denotes a kind of
interaction where such a port-type is just invoked by others.

In the following we give a brief explanation of concrete and abstract port-
types and their operations. A more precise meaning and behavior of operations
will be made clear when we will describe workflows in the next section.

2060 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

WSDL GRAPHICAL NOTATION

namePT.operation (Input one-way operation)

OPERATION namePT.aperation (1/0 two-way operation)
namePT (shorthand) namePT (shorthand)
Abstract portType

1. OPERATION description 1. OPERATION

2. OPERATION 2. OPERATION

2t Concrete portType ok o

description
partnerLinkType
description
nameParinerLinkType
role = nameRolel role = nameRole2
PortType1 PortType2
- 4

Figure 7: WSDL graphical notation.

— clientPTj, agentPT; and marketPT correspond to the three main entities
whose behavior is specified with WS-BPEL in the following.

— agentPTgyp; is a portType identical to agentPT;. It contains the same op-
erations of a the agent agentPT; and it has the same behavior. The only
difference is that it is bound by the UDDI service of a given market to a
different location: The location of the agent agentPT; (in the immediately
higher level market) associated to such a market.

— marketPTinF; is, similarly, a portType identical to marketPT. It contains
the same operations of a market marketPT and it has the same behavior. The
only difference is that it is bound by the UDDI service of a given market to a
different location: The location of the market marketPT (in the immediately
lower level) associated to the i-th agent of such a market.

— actionsClientPT; represents the decisions that a customer takes.

— actionsAgentPT; is a concrete entity representing an electronic support ser-
vice for agents. In particular it contains a concrete service for controlling the
validity of utility functions.

— actionsMarket is a concrete entity representing actions of markets not di-
rectly representable in the WS-BPEL workflow for markets. It contains: A

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

communicationClientAgentLT

Role = dientServiceCA

Role = agentServiceCA

clientPT,

agentPT;

|

ccommunicationAgentMarketLT

Role = agentServiceAM

Role = marketServiceAM

2061

agentPT, marketPT
actionsClientLT actionsAgentLT actionsMarkelLT
Role = actionsClientService Role = agentActionsService Role = anctionsMarketService
actionsClientPT, actionsAgentPT, actionsMarketPT
managerErrorsLT managerExchangeMatrixLT

Role = managerErrorsService
managerErrorsPT

Role = managerErrorsService
managerExchangeMatrixPT

Figure 8: List of Partner-link Types.

clientPT; (cPT;) actionsClientPT; (acPT;) agentPT; (aPT;) agentPTsyp (aPTsum)
1. start 1. start
1. enterTheSystem ; ﬁmﬁsﬁ . 2. receivelLevel 2. receivelLevel
2. receiveApprovall 3' s s 3. receiveBasket 3. receiveBasket
3. receiveBasket g 4. receiveUtilityFunction 4. receiveUtilityFunction
5. receiveNewBasket 5. receiveNewBasket
6. receiveApprovalExchanges| | 6. receiveApprovalExchanges

Figure 9: List of abstract portTypes.

service that returns the index ¢ of the agent in charge of the current market
in the higher level (0 if the current market is the top-level market) and a
service that evaluates the next time deadline for connection of agents.

— managerErrorsPT is an entity used for notification of errors.

— managerExchangeMatrixPT is the entity that offers more services to the
system. It is used to store the matrix of exchanges for a given market (and
related information) and to manage it in an efficient way. It includes oper-
ation for the updating, modification and reading of such a matrix. In par-
ticular, saturateMarket saturates the matrix evaluating an optimal solution
in an unspecified way; mazimizeU and sumBaskets compute the aggregated

2062 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...
marketPT (mPT) marketPTig (MPTg) actionsMarket (amPT)
1. start 1. start . findAgentSup
2. receivelnfoAgent 2. receiveInfoAgent . evaluateDeadline
3. receiveBasket 3. receiveBasket
4. receiveUtilityFunction 4. receiveUtilityFunction

actionsAgentPT, (aaPT;) managerExchangeMatrixPT (mmPT)), managerErrorsPT (mePT)

. saturateMarket

. maximizell

. sumBaskets
assignBaskets
sendBasket
sendUtilityFunction
sendAgentList
receiveBasket
receiveUltilityFunction

1. checkl! 1. wrongLevel

LENO LA WN

Figure 10: List of concrete portTypes.

utility function and the union of baskets after saturation, respectively; as-
signBaskets distributes an updated basket of resources received from the
higher level to the agents trading in this market; and sendAgentList and
sendBasket return an array with the list of indexes of agents trading in the
current market and return the basket of resources assigned to the specified
agent, respectively.

Note that the classification of the port-types above into concrete and abstract
ones is based on the following assumptions. Clients and their actions are assumed
to be just the representation of human behaviors. Agents are assumed to be
human but we assume that they perform their actions in a computer-supported
way (i.e. by means of a concrete service). Markets are assumed to be totally
electronic.

4.2 WS-BPEL workflows for the entities of the e-barter system

In this section we present the WS-BPEL workflows defining the behavior of the
clients, agents, and markets portTypes. In Figure 11 we present the WS-BPEL
graphical notation that we will use in this paper. For the sake of simplicity we
do not include the semi-formal behavioral representation in terms of XML code
for each of the entities, but we give a graphical representation of the workflows
(which is correspondent to the XML and more readable than the XML code). To
be precise, in the workflow representation we assume invoke statements that do

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2063

(BPEL GRAPHICAL NOTATION h
RECEIVE: operation RECEIVE
operation pestatement choice statement
REPLY: operation REPLY
Operation statement

Declarations and
initializations of variables

operation INVOKE

operation statement
FLOW concurrency
RECEIVE: X PICK statement between construct
operation p onMessage (RECEIVE)
and onAlarm
Refinemet construct
v sequence statement

LN P

Figure 11: BPEL graphical notation.

not succeed (because the invoked web-service is not waiting in the correspond-
ing receive statement) to keep trying, possibly via a timeout-based exception
handling mechanism, until the invoke is successful. In this graphical representa-
tion, we will also assume that usual basic types of programming languages are
mapped into corresponding XML Schema type descriptions (e.g. we make use of
arrays for variables).

Finally, in the presentation of the workflows we use a refinement construct
which allows us to express an entire workflow as a single box in a larger workflow
including it. Such a construct simply stands for replacement of the box with the
content of the refinement and is used for clarity of presentation.

4.3 Business process for clients

The workflow that represents the (human) behavior of the client identified as
i-th in the namespace of its local (0-level) market is represented in Figure 12.
The interaction of the client with the e-barter system (to exchange goods with
other clients that may be located anywhere else in the world and to obtain in
this way a satisfactory new basket of resources) is abstractly represented by the
operation “enterTheSystem”. First of all he contacts its corresponding i-th agent
in the local namespace and he communicates him that he is working at level 0
(this is needed for technical reasons to maintain the description of the agent’s
behavior independent of the namespace). Then he performs the refined workflow
presented in the lefthand side of Figure 13: He builds a basket of resources (pos-

2064 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

RECEIVE:
cPT,.enterTheSysteny);

A J

boolean goodU;
boolean goodBasket;
int x[M], newBasket[M]=null;
UF u;

v

aPT,.receivelLevel(0);

i
¥

BUILD & SEND BASKET

v
BUILD & SEND UTILITY FUNCTION

v

RECEIVE:
cPT.receiveBasket(newBasket);

v
goodBasket =
acPT,.evaluateCurrentBasket(newBasket);

v

aPT,.receiveApprovalExchanges(goodBasket);

v

false

goodBasket

true

v

REPLY:
cPT,.enterTheSysterm = NULL;

Figure 12: Workflow of the i-th client (port-type “clientPT,”)

sibly determined on the basis of the “newBasket” basket of resources obtained
from a previous interaction with the e-barter system) to be entered into the
e-barter system via an abstract call to the operation “createResources” of the
“actionsClient” port-type and sends it to the agent via its “receiveBasket” oper-
ation. Similarly, as defined by the workflow in the righthand side of Figure 13
he builds a utility function and he sends it to the agent: The created utility

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2065

>
h 4

u=acPT,. createUtilityFunctiorn);

v
v aPT,.receiveUtilityFunction{u);
x = acPT,.createResources newBasket); T
A4
v RECEIVE:
aPT, receiveBasket(x); cPT,.receiveApprovalU(goodU);
v
' false goo du
true
v

Figure 13: Refinements of the client workflow: Refinement of Build € Send Basket
(left) and refinement of Build & Send Utility Function (right).

function is subject to approval by the agent (who must give an approval ver-
dict to the client by invoking its “receiveApprovalU” operation), hence the client
must cycle until approval is positive. Once this happens, the client just waits
for the outcome of the e-barter system execution: A new basket of resources
that the agent sends to the client by invoking its “receiveBasket” operation. The
received basket is then evaluated (operation “evaluateCurrentBasket” of the ab-
stract “actionsClient” port-type) and the verdict is sent to the agent by invoking
its “receiveApprovalExchanges” operation. If the verdict is not positive the in-
teraction with the agent continues in a cycling way: Another basket of resources
to be entered into the e-barter system is built.

4.4 Business process for agents

The workflow that represents the (human) behavior of the agent identified as
i-th in the namespace of its associated market is represented in Figure 14. The
initial event (that happens once and for all) of the agent becoming operational
is abstractly represented by the operation “start”. The agent may directly be a
representative of a client of the e-barter system or of a lower-level market de-

2066 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

RECEIVE:

aPT,.start();
v
boolean appr, goodU;
int x[M];
UF u;
int level;
< v
‘ false level = 0
RECEIVE:
aPT.receiveLevel(level);
true
< v
v cPT,.receiveBasket{x);
RECEIVE:
aPT, receiveBasket{x); v
RECEIVE:
b'-' aPT, receiveApprovalExchanges{appr);
RECEIVE:
aPT,.receiveltilityFunction(u); Y
false
v appr
fevel = 0 fakse Tue
>
true
A4
goodU = aaPT.checki{u); > MPTyg recelveBasket(x);

v
cPT.receiveApprovalU(goodU);

DELIVER DATA TO THE MARKET

Figure 14: Workflow of the i-th agent (port-type “agentPT,”).

pending on the level of its namespace (i.e. of its associated market). He initially
needs to be informed about the level at which he operates: He expects his op-
eration “receiveLevel” to be invoked (by the client or the lower level market).
Then he expects to receive a basket of resources (via its operations “receiveBas-
ket” and “receiveUtilityFunction”) and a utility function: He will use them to
participate in the exchanges with other agents in its associated market. In the
case the level is “0”, i.e. he is directly operating on behalf of a client, the util-
ityFunction is checked for consistency by invoking the “check” operation of the
“actionsAgentPT,;” port-type and the verdict is sent to the client. The refined

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2067

\ 4

mPT.receivelnfoAgent(level,i);

v

mPT.receiveBasket(x);

\ 4

mPT.receiveUtilityFunction(u);

v

RECEIVE:
aPT,.receiveNewBasket(x);

v

Figure 15: Refinements of the agent entity: Refinement of Deliver Data to the
Market.

workflow presented in Figure 15 defines how the above collected data is deliv-
ered to the market by invoking the operations of the market “receivelnfoAgent”
(which provides information about the identity “i” of the agent and the level at
which operates), “receiveBasket” and “receiveUtilityFunction”. Moreover accord-
ing to the refined workflow, the agent waits for the outcome of the exchange
activity at the associated market (which also involves performing exchanges at
upper level markets): A new basket of resources that the market sends to the
agent by invoking its ‘receiveNewBasket” operation. In the case the agent is op-
erating at level 0, such a basket is then delivered to the client and an approval
verdict is expected (operation “receiveAprrovalExchanges” of the agent): If the
verdict is negative a new basket will be received from the client and the be-
haviour above is repeated. Similarly, if the agent is instead operating at upper
levels, it will deliver the basket to the associated lower level market (port-type
“marketPTINpi”) .

4.5 Business process for markets

The workflow that represents the behavior of a market is represented in Fig-
ure 16. The initial event (that happens once and for all) of the market becoming
operational is abstractly represented by the operation “start”. The system first
establishes a timeout deadline for the connection of agents (operation “evalu-

2068 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

RECEIVE:
mPT.start();

v
int level, precLevel, newBasket[M],
basket[M], i, agentList[];

UF u, newU;
DateTime conTO; h J
> mmPT. saturateMarkel();
v
conTO = amPT. evaluateDeadline(); h 4
i = amPT. findAgentSu();
v 1
RECEIVE: b 4
mPT.receivelnfoAgent(level,i); = true
precLe\r: = level fakse
B v
CONSTRUNCTION OF DATA FOR
AT AGENT OF UPPER LEVEL
RECEIVE: 8 UNTIL
P mPT.receivelnfoAgent(level,i); g _ v
DELIVERY OF DATA TO AGENT OF
UPPER LEVEL
v :
precLevel = RECEVE'
jevel mPT.receiveBasket(newBasket);
false
Y v
mePT.wrongLevel(); mmPT. assignBaskets(newBasket);
-
< v
A DISTRIBUTION OF BASKETS TO
REMAINING AGENTS

RECEIVING DATA FROM AGENT

Figure 16: Workflow of the market (port-type “marketPT”)

ateDeadline” of the port-type “actionsMarket”) and stores it in the “conTO”
variable. Then it waits for the connection of at least one agent: Its data is used
to establish the level at which the market operates and every agent connect-
ing afterwards is expected to consistently communicate the same level (if this
does not happen the system stops by invoking the “wrongLevel” operation of the
“managerErrors” port-type indicating a wrong configuration of the UDDI servers
of the e-barter system). Every time a new agent connects the refined workflow
presented in the righthand part of Figure 18 is executed. A basket of resources
and a utility function is received from the agent (via the operations “receive-

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2069

v
mmPT.maximizelf); v
\ 4 aPTsyp.reiceivelevel(level+1);
. newl = mmPT. sedeff?ftyFuncrfon(); v
v aPTsyp.receiveBasket(newBasket);
mmPT.su@Baskefs(); v
v aPTsyg.receiveUtilityFunction(newl);
newBasket = mmPT.sendBaskel();
v

v

Figure 17: Refinements of the market entity: Refinement of Construction of Data
for Agent of Upper Level (left) and refinement of Delivery of Data to Agent of
Upper Level (right).

Basket” and “receiveUtilityFunction” of the market): Both information are then
forwarded (together with the identity “i” of the agent) to the “managerEchange-
Matrix” entity by invoking its ‘receiveBasket” and “receiveUtilityFunction” op-
erations. Connections from agents are accepted until the time deadline “conTO”
is reached. When such a time deadline is reached the market (possibly after the
amount of time needed for finishing the management of a previously connected
agent) executes the workflow in the righthand side of Figure 16. First of all
the market is “saturated” (goods are exchanged between agents until no further
exchange is possible) by invoking the operation “saturateMarket” of the “man-
agerEchangeMatrix” entity. Then the operation “findAgentSup” of the port-type
“actionsMarket” is invoked to determine the index ¢ of the agent that represents
the current market at the upper level. This operation is assumed to just re-
turn the special value “0” in the namespace of the top level market. In the case
the market is not at the top level it behaves as follows. The lefthand part of
the refined workflow presented in Figure 17 is performed: We invoke operations
of the “managerEchangeMatrix” to compute and receive the aggregated utility
function (which maximizes individual utility functions) and to compute and re-
ceive the aggregated basket of resources (the “sum” of all individual baskets).
Once the data for the agent “agentPTgsyp,”
in this way, the refined workflow presented in the righthand part of Figure 18
performs the actual delivery: The agent is informed he will work at one level

of the upper level is constructed

2070 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

v
agentList = mmPT.senddgentlisk();

i=0;
<4
v v
e RECEIVE:
i = agentListlength mPT.receiveBasket(basket);
v
false mmPT. receiveBasket{basket,i);
v :
newBasket = h 4
mmPT.sendBaskef{agentList[i]); RECEIVE:
I mPT.receiveUtilityFunction(u);
v -
aPTagemusqi], v
receiveNewBasket(newBasket); mmPT. receivelltilityFunction(u,i);
h 4 :
i++; v
v

Figure 18: Refinements of the market process: Refinement of Distribution of
Baskets to Agents (left) and refinement of Receiving data from Agent (right).

more than the level of the market and is assigned the aggregated basket and
utility function. The market then waits for the outcome of the e-barter sys-
tem at the upper levels: A new basket of resources that the agent sends to the
market by invoking its “receiveBasket” operation. The received basket is then
redistributed among agents registered at the market (operation “assignBasket”
of the “managerEchangeMatrix” port-type). The workflow then continues in the
same way no matter if the market is at the top level or not. The individual bas-
kets are delivered to the agents by executing the refined workflow presented in
the lefthand part of Figure 18. First of all this refined worflow receives from the
“managerEchangeMatrix” an array containing all indexes of registered agents.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2071

Then for every index (identifying an agent in the namespace of the market)
recorded in such an array, the individual basket for the agent is received from
the “managerEchangeMatrix” and is delivered to the agent.

RECEIVE:
mPT.start();

v
int level, precLevel, newBasket[M],
basket[M], i, agentList[];

UF u, newU;
DateTime conTO; Y
> mmPT.saturateMarkel();
v
conTO = amPT. evaluateDeadline); : 2
DISTRIBUTION OF BASKETS TO
\ 4 AGENTS WITH AUGMENTED UTILITY
RECEIVE: v
mPT.receivelnfoAgent(level,i);
i = amPT. finddgentSuX);
v
precLevel = level 4
true
i=0
WAIT
RECEIVE: U""% false
P~ mPT.receivelnfoAgent(level,i); - v
CONSTRUNCTION OF DATA FOR
v AGENT OF UPPER LEVEL
precLevel = : s 2
level DELIVERY OF DATA TO AGENT OF
UPPER LEVEL
false 2
y v
mePT.wronglLevel(); RECEIVE:
mPT.receiveBasket{newBasket);
< v
Y mmPT.assignBaskets(newBasket);
RECEIVING DATA FROM AGENT <
: v
DISTRIBUTION OF BASKETS TO
AGENTS

Figure 19: Alternative workflow of the market (port-type “marketPT”)

5 Alternative web service design

In this section we present an alternative design that still complies with the formal
specification we have seen in Sect. 2. The idea is to improve the efficiency of the

2072 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

v
agentList = mmPT. sendAugUtAgentLis);

0;
<
v

true

i = agentList.length

false

Y
newBasket =
mmPT. sendBaskel{agentList{i]);

v

AP Tagentiistiy-
receiveNewBasket(newBasket);

v

i++;

[

v

Figure 20: Refinements of the alternative market entity: Refinement of Distribu-
tion of Baskets to Agents with Augmented Utility.

system and to keep the structure of the aggregated utility functions (obtained
by aggregation after the saturation of markets) as simple as possible at the
price of loosing global optimality of the exchanges in general. This is done by
modifying the behaviour of markets in such a way that they propagate upwards
only requests of agents who did not improve their utility after the exchanges.
On the contrary, baskets of agents that improved their utility are immediately
distributed top-down to the clients. Here the idea is that, if a client is not satisfied
by the exchanges performed, he can re-enter the system so to try to get a further
improvement, if possible.

The new design is obtained from the one presented in the previous section
by: (i) adding the operation “sendAugUtAgentList” to the “managerExchange-
MatrixPT” port-type, that returns an array with the indexes of agents that
augmented their utility functions during exchanges; (i¢) assuming that the old

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2073

operations “sendAgentList”, “maximizeU”, “sendUtilityFunction”, “sumBaskets”

and “sendBasket” of the same port-type now just deal with agents that did not
augment their utility functions during exchanges; and (¢i¢) by modifying the be-
havior of markets as shown in Figure 19. With respect to the previous workflow
in Figure 16, now the market immediately distributes the baskets to the agents
that augmented their utility functions during exchanges (before creating and de-
livering data to the upper level) by means of the refined workflow “Distribution
of Baskets to Agents with Augmented Utility” presented in Figure 20. Its behav-
ior is similar as that of the “Distribution of Baskets to Agents” refined workflow
(previously presented in the lefthand part of Figure 18): The only difference is
that the array containing agent indexes is receives from the “managerEchange-
Matrix” by means of the new “sendAugUtAgentList” operation instead of the
“send AgentList” operation.

6 Conclusions

An e-barter system is an e-commerce environment where agents exchange re-
sources on behalf of their respective users, exchanges do not necessarily involve
money, and agents and markets are structured in a hierarchical fashion in such
a way that markets may become higher order (representative) agents. This kind
of systems were formally specified in [Lopez et al., 2002, Lopez et al., 2003]. Un-
fortunately, there is a gap between the formal specification and a suitable design
for the system. While the formal specification level turns out to be fundamental
in defining the functional ideal behavior of the system, several practical issues
were not addressed in the formal specification. In this paper we have developed
two alternative designs of an e-barter system in terms of web services. Web ser-
vices provide a suitable and well-supported model (a number of related standard
and tools have been developed) for defining the behavior of e-barter systems in
a distributed way. Tasks like conceptual decomposition and parallel execution of
independent activities by means of different entities are implicitly performed as
a result of the definition of the system as a set of web service orchestrations. In
doing this, the formal specification represents the ideal behavior of the system
which is to be realized by adopting adequate design (architectural) choices at the
level of Web Service orchestration. By developing this case study we experienced:
Need of local naming technique via multiple UDDI services, introduction of new
entities (such as the manager of the exchange matrix), design decisions about
synchronization of re-start of cycles of exchanges in different markets, design
decisions in structure of data exchanged and consequent tradeoff between opti-
mality of exchanges and efficiency of the system, etc. Besides, let us note that a
definition of the system in terms of web services does not only provide a suitable
design, but also (partially) an implementation, since web service orchestrations
defined with WS-BPEL are executable by ad-hoc interpreters.

2074 Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ...

We have also explored how a formal specification and a web services design
can influence each other. Though the influence of the specification in the design
is very clear, the way in which the design allows to refine the specification it-
self is remarkable. In fact, it allowed us to address one of the main problems of
formal methods: The loss of information due to the abstraction. Since models
must be simple and usable, they must abstract some details, but these details
may turn out to be relevant to the specification afterwards (even if they are still
abstracted). For example, in spite of the fact that our process algebraic specifi-
cation does not represent the passing of time (time is abstracted in it), temporal
issues detected during the development of the design motivated a change in the
specification: Since agents can be delayed in the design, it is not feasible that
all agents are connected on time. Thus, the specification rule for completing a
market was changed to permit that not all agents connect to the market. That
is, a detail that is abstracted in the specification (the time) motivates a change
in another detail that is not (the completion of markets). Thus, the development
of a design may be critical to produce a useful model.

Acknowledgements

Research partially funded by the EU Integrated Project Sensoria (contract num-
ber 016004), by the Spanish Ministerio de Educaciéon y Ciencia projects MAS-
TER/TERMAS (TIC2003-07848-C02-01) and WEST/FAST (TIN2006-15578-
C02-01), the Junta de Castilla-La Mancha project PAC06-0008-6995, and the
Marie Curie Research and Training Network TAROT (MRTN-CT-2004-505121).

References

[Andrews and Curbera, 2004] Andrews, T. and Curbera, F. (2004). "Web Service
Business Process Execution Language, Working Draft”. Version 2.0, 1.

[Bravetti et al., 2006] Bravetti, M.; Casalboni, A.; Nuiiez, M.; and Rodriguez, I.
(2006). "From theoretical e-barter models to an implementation based on web ser-
vices”. In IPM Int. Workshop on Foundations of Software Engineering (FSEN’05),
pages 241-264. Electronic Notes in Theoretical Computer Science 159, Elsevier.

[Cavalli and Maag, 2004] Cavalli, A. and Maag, S. (2004). "Automated Test Scenarios
Generation for an e-barter System”. In 19th ACM Symposium on Applied Computing,
SAC’04, pages 795-799. ACM Press.

[Christenses et al., 2001] Christenses, E.; Curbera, F.; Meredith, G.; and Weer-
awarana, S. (2001). ”Web Services Description Language (WSDL 1.1)”. Note 15,
http://www.w3.org/TR/wsdl.

[Hindriks et al., 1998] Hindriks, K.; de Boer, F.; van der Hoek, W.; and Meyer, J.-
J. (1998). "Formal Semantics for an Abstract Agent Programming Language”. In
Intelligent Agents IV, LNAI 1365, pages 215—229. Springer.

[Huhns and Singh, 2005] Huhns, M. and Singh, M. (2005). "Service-Oriented Comput-
ing: Key Concepts and Principles”. In IEEE Internet Computing, pages 75-81. IEEE
Computer Society Press.

Bravetti M., Casalboni A., Nunez M., Rodriguez |.: From Theoretical ... 2075

[Lopez et al., 2002] Lopez, N.; Nuiiez, M.; Rodriguez, I.; and Rubio, F. (2002). A For-
mal Framework for e-barter based on Microeconomic Theory and Process Algebras”.
In Innovative Internet Computer Systems, LNCS 2346, pages 217-228. Springer.

[Lopez et al., 2003] Loépez, N.; Nuiiez, M.; Rodriguez, I.; and Rubio, F. (2003). "A
Multi-Agent System for e-barter including Transaction and Shipping Costs”. In 18th
ACM Symposium on Applied Computing, SAC’03, pages 587-594. ACM Press.

[Milner, 1989] Milner, R. (1989). Communication and Concurrency. Prentice Hall.

[Ntiiez et al., 2005a] Nuiiez, M.; Rodriguez, I.; and Rubio, F. (2005a). “Formal Spec-
ification of multi-agent e-barter systems”. Science of Computer Programming (to
appear). in press.

[Nuiiez et al., 2005b] Ntiez, M.; Rodriguez, I.; and Rubio, F. (2005b). "Specification
and Testing of Autonomous Agents in e-commerce systems”. Software Testing, Ver-
ification and Reliability, 15(4). in press.

[Probert et al., 2003] Probert, R.; Chen, Y.; Ghazizadeh, B.; Sims, P.; and Cappa,
M. (2003). ”Formal Verification and Validation for e-commerce: Theory and best
Practices”. Journal of Information and Software Technology, 45(11), pp. 763-777.

[Rao, 1996] Rao, A. (1996). "AgentSpeak(L): BDI agents speak out in a logical com-
putable language”. In Agents Breaking Away, LNAI 1038, pages 42-55. Springer.

[SOAP, 2006] SOAP (2006). ”Simple Object Access Protocol”.
http://www.w3.org/TR/soap.

[UDDI, 2006] UDDI (2006). "Universal Description, Discovery and Integration of Web
Services”. http://www.uddi.org/specification.html.

[W3C, 2006] W3C (2006). "World Wide Web Consortium”. http://www.w3.org.

