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Abstract: The distribution of overlaps of solutions of a random constraint satisfaction
problem (CSP) is an indicator of the overall geometry of its solution space. For random
k-SAT, nonrigorous methods from Statistical Physics support the validity of the one
step replica symmetry breaking approach. Some of these predictions were rigorously
confirmed in [Mézard et al. 2005a] [Mézard et al. 2005b]. There it is proved that the
overlap distribution of random k-SAT, k ≥ 9, has discontinuous support. Furthermore,
Achlioptas and Ricci-Tersenghi [Achlioptas and Ricci-Tersenghi 2006] proved that, for
random k-SAT, k ≥ 8, and constraint densities close enough to the phase transition:

– there exists an exponential number of clusters of satisfying assignments.

– the distance between satisfying assignments in different clusters is linear.

We aim to understand the structural properties of random CSP that lead to solution
clustering. To this end, we prove two results on the cluster structure of solutions for
binary CSP under the random model from [Molloy 2002]:

1. For all constraint sets S (described in [Creignou and Daudé 2004, Istrate 2005])
such that SAT (S) has a sharp threshold and all q ∈ (0, 1], q-overlap-SAT (S) has a
sharp threshold. In other words the first step of the approach in [Mézard et al. 2005a]
works in all nontrivial cases.

2. For any constraint density value c < 1, the set of solutions of a random instance
of 2-SAT form with high probability a single cluster. Also, for and any q ∈ (0, 1]
such an instance has with high probability two satisfying assignment of overlap
∼ q. Thus, as expected from Statistical Physics predictions, the second step of the
approach in [Mézard et al. 2005a] fails for 2-SAT.
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1 Introduction

A great deal of insight in the complexity of random constraint satisfaction prob-
lems has come from studying phase transitions [Monasson and Zecchina 1997].
Concepts from Statistical Physics, such as first-order phase transitions, back-
bones, or replica symmetry breaking have helped to refine (and understand the
limitations of) the empirical observation that the “hardest” instances are located
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at the transition point. In some cases the connection predicted by Statistical
Physics can be made explicit in purely combinatorial terms. For instance Monas-
son et al. [Monasson et al. 1999b, Monasson et al. 1999a] have suggested that
first-order phase transitions are correlated with exponential complexity of Davis-
Putnam algorithms on random unsatisfiable instances at the phase transition.
This has been rigorously confirmed to a certain extent [Achlioptas et al. 2001b,
Achlioptas et al. 2004, Istrate et al. 2005]. For instances in the satisfiable phase,
much of the intuition on the complexity of such instances comes again from Sta-
tistical Physics, via the so-called one step replica symmetry breaking (1-RSB)
approach. The 1-RSB approach provides predictions on the geometric structure
of the set of satisfying assignments of a random formula on n variables. The set
of such assignments can be naturally viewed as a subgraph of the hypercube of
dimension n, where two satisfying assignments are neighbors if they only differ
in the value of one variable. Physics considerations imply that for small values of
the constraint density c the set of satisfying assignments forms a single cluster.
The distribution of overlaps is peaked around a certain constant value. The range
of possible overlaps (even those that are exponentially infrequent) is a continuous
interval. In the presence of 1-RSB, for constraint density values higher than a
critical value cRSB (smaller than the unsatisfiability threshold cUNSAT ) the set
of satisfying assignments splits into several clusters such that: (i) assignments in
the same cluster all agree on a set of variables having linear size. The distribu-
tion of overlaps of assignments in the same cluster is still concentrated around a
constant; (ii) assignments in different clusters differ in Ω(n) variables; (iii) the
distribution of all overlaps has discontinuous support (see Fig. 1 (a); note that
recent studies [Krzakala et al. 2007] suggest the existence of further phases be-
low cRSB, omitted for simplicity from discussion and the figure). The geometry
of satisfying assignments outlined above has implications for the complexity of
heuristics such as local search, algorithms such as belief propagation, or Davis-
Putnam. The 1-RSB approach provides (nonrigorous) values for the location of
the phase transition in random k-SAT [Mertens et al. 2006] that seems to match
the experimental evidence. Algorithms that take advantage of the geometry of
solution space predicted by 1-RSB (e.g. the celebrated survey propagation al-
gorithm [Braunstein et al. 2005]) have greatly extended the range of instances
that can be solved in practice.
Rigorous results on the cluster structure of solutions of random CSP are emerg-
ing: Mézard et al. [Mézard et al. 2005a] have developed an ingenious method for
proving that the distribution of overlap values of random k-SAT, with k ≥ 9
indeed has discontinuous support. Their approach is based on the following con-
cepts:

Definition 1. The overlap of two assignments A and B for a formula Φ on n

variables, denoted by overlap(A, B), is the fraction of variables on which the
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Figure 1: (a) Structure of solution space according to 1RSB predictions.(b) Graphical

description of the method used in [Mézard et al. 2005a] to prove the discontinuity of

support of the overlap distribution.

two assignments agree (this is similar to [Mézard et al. 2005a] and linearly re-
lated to the notion of overlap from the statistical physics literature, where truth
values are modeled by +1 and −1, instead of 0/1). Formally overlap(A, B) =
|{i:A(xi)=B(xi)}|

n .

The distribution of overlaps is, indeed, the original order parameter that was
originally used to study the phase transition in random k-SAT, see the paper
[Monasson and Zecchina 1997].

Definition 2. q-overlap-k-SAT: Given a k-CNF formula Φ on n variables, de-
cide whether Φ has two satisfying assignments A and B such that overlap(A, B) ∈
[q − 1/

√
n, q + 1/

√
n] (following the suggestion in [Mézard et al. 2005a], we will

use the function 1/
√

n for the the width of the possible overlap around q; as dis-
cussed there, similar results are obtained with any ”reasonably large” function
b(n) = o(n)). We will refer to this event as A and B have overlap approximately
equal to q.

For every value of q, the probability that a random k-SAT formula has two
assignments with overlap ∼ q is monotonically decreasing with constraint den-
sity, and is empirically changing from 1 to 0 around a critical value ck,q of the
constraint density. If one can show that the function W : q → ck,q is not mono-
tonic then there exists a critical value c∗ such that the horizontal line at c∗ will
intersect the graph of function W at multiple points. Therefore (Figure 1 (b)) the
distribution of overlaps in a random k-SAT formula of constraint density c∗ has
discontinuous support (these results were further extended, for k-SAT, k ≥ 9, by
Achlioptas and Ricci-Tersenghi [Achlioptas and Ricci-Tersenghi 2006]).
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Our ultimate goal is to obtain an understanding of the underlying reasons
for the emergence of clustering in random CSP, with an attempt at a precise
classification. We investigate the nature of overlap distributions of CSP under
the random model defined and investigated by Molloy [Molloy 2002]. We cannot
obtain a complete classification (whether the results in [Mézard et al. 2005a,
Achlioptas and Ricci-Tersenghi 2006] extend to random 3-SAT is a more subtle
problem; see [Maneva and Sinclair 2007]). Instead, we prove two partial results:
Theorem 8 shows that the first step of Mézard’s approach can be applied to all
random CSP problems with a sharp threshold. In contrast, in Theorem 9 we
show that satisfying assignments of random instances of 2-SAT in the satisfiable
phase form a single cluster, and can yield all possible values of the overlap. This
confirms the prediction [Monasson and Zecchina 1997] that the solutions space
of 2-SAT has a different nature, describes by the so-called ”replica symmetric”
approach. The two results above are also naturally related to results of Gopalan
et al. [Gopalan et al. 2006]. They proved a dichotomy theorem for the complexity
of deciding whether the set of satisfying assignments of a CSP is connected
(under the usual notion of adjacent assignments). One ingredient of the result
is a restriction (called tightness) on the nature of constraints involved. Theorem
2 provides a natural examples of CSP with tight constraints for which there
is evidence (the continuity of the overlap distribution) that symmetry breaking
does not take place. It also shows that, to be really meaningful, the definition of
adjacent assignments from [Gopalan et al. 2006] should be somewhat modified.

2 Preliminaries

Throughout the paper we will assume familiarity with the general concepts of
phase transitions in combinatorial problems (see e.g. [Martin et al. 2001]) and
random structures. One paper whose concepts and methods we use in detail (and
we assume greater familiarity with) is [Friedgut 1999].

Consider a monotonically increasing problem A = (An) under the constant
probability model Γ (n, p). For ε > 0 let pε = pε(n) define the canonical probability
such that Prx∈Γ (n,pε(n))[x ∈ A] = ε. The probability that a random sample x

satisfies property A (i.e. x ∈ A) is a monotonically increasing function of p.

Definition 3. Problem A has a sharp threshold iff for every 0 < ε < 1/2, we
have

limn→∞
p1−ε(n) − pε(n)

p1/2(n)
= 0.

A has a coarse threshold if for some ε > 0 it holds that

limn→∞
p1−ε(n) − pε(n)

p1/2(n)
> 0.
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Related definitions can be given for the other two models for generating
random structures, the counting model and the multiset model [Bollobás 1985].
Under reasonable conditions [Bollobás 1985] these models are equivalent, and
we will liberally switch between them. In particular, for satisfiability problem
A, and an instance Φ of A, cA(Φ) will denote its constraint density, the ratio
between the number of clauses and the number of variables of Φ. To specify the
random model in this latter cases we have to specify the constraint density as
a function of n, the number of variables. We will use cA to denote the value of
the constraint density cA(Φ) (in the counting/multiset models) corresponding
to taking p = p1/2 in the constant probability model. cA is a function on n

that is believed to tend to a constant as n → ∞. However, Friedgut’s proof
[Friedgut 1999] of a sharp threshold in k-SAT (and our results) leave this issue
open.

Definition 4. Let D = {0, 1, . . . , t − 1}, t ≥ 2 be a fixed set. Consider the set
of all 2tk − 1 potential nonempty binary constraints on k variables X1, . . . , Xk.
We fix a set of constraints C and define the random model CSP (C). A random
formula from CSPn,p(C) is specified by the following procedure:

(i) n is the number of variables.
(ii) for each k-tuple of ordered distinct variables (x1, . . . , xk) and each C ∈ C

add constraint C(x1, . . . , xk) independently with probability p.
We will write SAT (C) instead of CSP (C) for boolean constraint satisfaction

problems (i.e. t = 2).

Definition 5. Let D = {0, 1, . . . , t−1}, t ≥ 2 be a fixed set. Let q be a real num-
ber in the range [0,1]. The problem q-overlap-CSP (C) is the decision problem
specified as follows:

(i) The input is an instance Φ of CSPn,p(C).
(ii) The decision problem is whether Φ has two satisfying assignments A, B

such that overlap(A, B) ∈ [q−1/
√

n, q+1/
√

n] (following [Mézard et al. 2005b],
we will informally refer to the property as “Φ is q-satisfiable”).

The random model for q-overlap-CSP (C) is simply the one for CSPn,p(C).
We will refer to this class of problems as fixed-overlap CSP.

The notion of adjacent satisfying assignments used by Achlioptas and Ricci-
Tersenghi in [Achlioptas and Ricci-Tersenghi 2006], while adequate for random
k-SAT, is not suited for other random CSP. For instance, it is impossible to
flip exactly one bit in a satisfying assignment of an instance of 1-in-k SAT
[Achlioptas et al. 2001a] and still obtain a satisfying assignment (except for the
case when that variable does not appear in the formula). Thus we will use the
following setup: let f(n) = o(n) be a suitably large function; we will assume
that lim f(n)/ logn = ∞. Two satisfying assignments that differ on at most
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f(n) variables will be called adjacent. A cluster is a connected component of the
set of satisfying assignments.

3 Results

In this section we study the sharpness of the threshold for random generalized
constraint satisfaction problem defined by Molloy [Molloy 2002]. Creignou and
Daudé [Creignou and Daudé 2004] (and independently the author of this paper
[Istrate 2005]) have characterized the boolean CSP problems SAT (C) with a
sharp threshold:

Definition 6. A set of constraints C is interesting if there exist constraints
C0, C1 ∈ C with C0(0) = C1(1) = 0, where 0, 1 are the ”all zeros” (”all ones”)
assignments. Constraint C2 is an implicate of C1 iff every satisfying assignment
for C1 satisfies C2. A boolean constraint C strongly depends on a literal if it has
an unit clause as an implicate. A boolean constraint C strongly depends on a 2-
XOR relation if ∃i, j ∈ {1, . . . , k} such that constraint “xi 	= xj” is an implicate
of C.

Proposition7. [Creignou and Daudé 2004, Istrate 2005] Consider a general-
ized satisfiability problem SAT (C) with C interesting. (i) If some constraint in C
strongly depends on one literal then SAT (C) has a coarse threshold; (ii) If some
constraint in C strongly depends on a 2XOR-relation then SAT (C) has a coarse
threshold; (iii) In all other cases SAT (C) has a sharp threshold.

Mora et. al [Mézard et al. 2005b] proved that all problems q-overlap-k-SAT,
k ≥ 2 have a sharp threshold. We extend this result by showing that for all CSP
with a sharp threshold, their fixed-overlap versions also have a sharp threshold:

Theorem 8. Consider a generalized satisfiability problem SAT (C) such that (i)
C is interesting (ii) No constraint in C strongly depends on a literal; (iii) No
constraint in C strongly depends on a 2XOR-relation. Then for all values q ∈
(0, 1] the problem q-overlap-SAT (C) has a sharp threshold.

The previous result does not yet rigorously prove the existence of curve W

since it does not prove fact that the phase transition in the q-overlap versions
happens at some constant constraint density cq .

Given the previous result, how can a problem SAT (C) have an overlap distri-
bution with continuous support ? Obviously, the second step of the approach in
[Mézard et al. 2005a] must fail. This happens when the location cq of the transi-
tion for the q-overlap version of SAT (C) is a monotonic function of the overlap
q. The next result shows gives a natural problem for which this is indeed the
case:
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Theorem 9. The following are true:

(i) Let c < 1. Then with probability 1 − o(1) the satisfying assignments of a
random instance of 2-SAT of constraint density c form a single cluster.

(ii) Also, let q ∈ (0, 1]. Let c < 1. Then with probability 1 − o(1) a random
instance of 2-SAT of constraint density c is q-satisfiable.

4 Proof of Theorem 8

Before presenting the proof, let us remark that for boolean constraints, the hy-
pothesis of the Theorem 8 implies that the set of constraints C is well-behaved.
That is[Molloy 2002], every formula whose hypergraph is tree-like or unicyclic
is satisfiable. This is, for instance, an easy consequence of conditions (D0),(D1),
Theorem 4.1 in [Creignou and Daudé 2004]. Also, since C is interesting there
exist constraints Γ0, Γ1 ∈ C such that Γ0(x1, . . . , xk) |= x1 ∨ . . . ∨ xk and
Γ1(x1, . . . , xk) |= x1 ∨ . . . ∨ xk.

We will employ the Friedgut-Bourgain criterion for the existence of a sharp
threshold of a monotonic property A. Note that any problem q-overlap-SAT(C)
is indeed monotone, since adding clauses can only reduce the set of satisfying
assignments, in particular decreasing the probability of q-satisfiability. The start-
ing point of all applications of the Friedgut-Bourgain criterion is noting that if
a monotone property A has a coarse threshold then there exists 0 < ε < 1/2,
p∗ = p∗(n) ∈ [p1−ε, pε] and C > 0 such that p · dμp(A)

dp |p=p∗(n) < C. Bourgain
and Friedgut have shown that the following holds:

Proposition10. Suppose p = o(1) is such that p · dμp(A)
dp |p=p∗(n) < C. Then

there is δ = δ(C) > 0 such that either μp(x ∈ {0, 1}n| x contains x′ ∈ A of size
|x′| ≤ 10C} > δ, or there exists x′ 	∈ A of size |x′| ≤ 10C such that μp(x ∈
A|x ⊃ x′) > μp(A) + δ.

(In fact, in [Friedgut 1999] the proposition is stated assuming for convenience
that p = p1/2, but this is not needed. We give here the general statement). We
will need, in fact, an enhancement to the Bourgain-Friedgut result that was
given by Friedgut in [Friedgut 2005]: For a finite set of words W define the filter
generated by W , F (W ) as F (W ) = {x | (∃y ∈ W ) with x ⊇ y}. Friedgut noted
([Friedgut 2005], remarks on pages 5-6 of that paper) that the set W of “booster”
sets x′ in the second conditions satisfies μp(F (W )) = Ω(1).

Consider now a set of constraints C satisfying the conditions the Theorem,
and let A = q-overlap-SAT(C). Applying Proposition 10 enhanced by the previ-
ous observation, and taking into account the fact that the number of isomorphism
types of formulas of size at most 10C is finite, we infer that we can assume that
formula x′ in the second condition appears with probability Ω(1) as a subformula
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in a random formula in q-overlap-SATp(C). Furthermore, instead on conditioning
on the presence of x′ as a subset of x one can, instead, add it. Finally, note that
for random constraint satisfaction problems, because of the invariance of such
problems under variable renaming, one only needs to add a random copy of x′.
Putting all these observations together, the following version of Proposition 10
holds:

Proposition11. Suppose p = o(1) is such that p · dμp(A)
dp |p=p∗(n) < C. Then

there is δ = δ(C) > 0 such that either

μp(x ∈ {0, 1}n| x contains x′ ∈ A of size |x′| ≤ 10C} > δ (1)

or there exists F 	∈ A of size |F | ≤ 10C, such that

– Formula F appears with probability Ω(1) as a subformula in a random for-
mula in CSPp(C).

– If Ξ denotes the formula obtained by creating a copy of x′ on a random set
of variables, then

μp(x ∪ Ξ ∈ A) > μp(A) + δ. (2)

To show that random q-overlap-SAT(C) has a sharp threshold, we will reason
by contradiction. Assuming this is not the case, one needs to prove that the two
conditions in Proposition 11 do not hold.

Suppose, indeed, that condition (1) was true. That is, with positive proba-
bility it is true that a random formula Φ ∈ CSP (C) contains some subformula
Φ′ ∈ q-overlap-SAT(C) of size at most 10C. With high probability all subformu-
las of a random formula Φ of size at most 10C are either tree-like or unicyclic.
But because the set of constraints C is well-behaved (this is the point where
the hypothesis on the constraint set C is used), all formulas in CSP (C) that are
tree-like or unicyclic are satisfiable. Since the formula contains a finite number
of variables, one can set the other variables not appearing in Φ in a way that
will create two satisfying assignments with overlap approximately q. Therefore
the first condition in Proposition 11 cannot be true.

Assume, now, that condition (2) is true. The condition means there exists
F ∈ q-overlap-SAT(C), a formula of size at most 10C, such that adding F to
a random formula Φ ∈ CSPp(C) diminishes the probability that the resulting
formula has two assignments of overlap� q by at least a constant δ. As discussed,
we assume that F occurs with probability Ω(1) in a random formula in CSPp(C).
Therefore F is tree-like or unicyclic.

Definition 12. A unit clause is a constraint (not necessarily part of the con-
straint set C) specified by a condition X = δ, with X being a variable and
δ ∈ {0, 1}.
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Lemma13. If F satisfies condition (2) then there exists another formula G that
is specified by a finite conjunction of unit clauses G ≡ (X1 = δ1)∧. . .∧(Xp = δp),
that also satisfies condition (2).

Proof. Formula F appears with constant probability in a random CSP (C)
formula with probability p and has constant size. Therefore F is either tree-like
or unicyclic. The result follows easily by replacing F with formula G consisting
of the conjunction of unit constraints corresponding to a satisfying assignment
of F . Indeed, G is tighter than F , so adding a random copy of G instead of a
random copy of F can only increase the probability that the resulting formula
is unsatisfiable. �

The key to refuting condition (2) is to show that, if it did hold then, for
every monotonically increasing function f(n) that tends to infinity, we could
also increase the probability of unsatisfiability by a positive constant if, instead
of conditioning on x containing a copy of F , we add f(n) random constraints
from set C. We first prove:

Lemma14. Let 0 < τ < 1 be a constant and let p be such that μp(q−overlap−
SAT (C)) ≥ τ . Assume that r ≥ 1 and that g1, g2, . . . gr are elements of {0, 1}
such that, when (X1, X2, . . . , Xr) is a random r-tuple of different variables

Pr(Φ has sat. assign. A, B of overlap � q with X1 = g1, . . . , Xr = gr) ≤ τ

2
.

(3)
Then there exists constant m ≥ 1 (that only depends on k, r, τ) such that,

if η denotes a formula from CSP (C) obtained by adding, for each x ∈ {0, 1},
m · r · 2kr

random copies of Γx, then

Pr(Φ ∪ η ∈ q-overlap-SAT(C)) ≤ τ

2
(4)

Proof.
For i ∈ {1, . . . , r} define Ai to be the event that the formula Φ has a pair

of satisfying assignments of overlap � q with X1 = g1, . . . , Xi = gi. Also define
A0 to be the event that Φ ∈ q-overlap-SAT(C). The hypothesis translates as the
fact that both inequalities Pr(A0) ≥ τ and Pr(Ar) ≤ τ

2 are true. Therefore
Pr(Ar |A0) = Pr(Ar∧A0)

Pr(A0)
≤ τ/2

τ = 1
2 . Since Ar−1 ⇒ Ar we have

μr := Pr[Ar |A0] = Pr[Ar−1|A0] + Pr[Ar |Ar−1 ∧ A0] · Pr[Ar−1|A0] ≥ 1
2

(5)

But Pr[Ar|Ar−1 ∧ A0] = Pr[Ar |Ar−1] is the fraction of variables in formula
Φ ∧ (X1 = g1) ∧ . . . ∧ (Xr−1 = gr−1) that have to receive values different from
gr in order for the resulting formula to still have two satisfying assignments
of overlap ∼ q; let Cr be the set of such variables. If instead of the last unit
constraint we add a random copy of constraint Γgr , the resulting formula is in
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q-overlap-SAT(C) when all the variables appearing in the new constraint are
in the set Cr. Denoting λr = Pr[Ar |Ar−1], the probability of this last event
happening is λk

r/(1 − o(1)) (we choose a k-tuple of distinct variables from a set
of density λr); Thus the probability that the new formula is in q-overlap-SAT(C)
is at least νr := Pr[Ar−1|A0]+

λk
r

1−o(1) ·Pr[Ar−1|A0]. Applying Jensen’s inequality
to the convex function f(x) = xk and using inequality (5), we infer

1
2k

≤ μk
r = (Pr[Ar−1|A0] · 1 + Pr[Ar|Ar−1] · Pr[Ar−1|A0])k ≤

≤ Pr[Ar−1|A0] · 1k + Pr[Ar|Ar−1]k · Pr[Ar−1|A0] =

= (Pr[Ar−1|A0] + λk
r · Pr[Ar−1|A0]) = νr · (1 + o(1)).

Thus νr ≥ 1
2k ·(1−o(1)). The conclusion of this long argument is that adding

one random copy of Γbr instead of the r-th constraint lowers the probability of
membership to q-overlap-SAT(C) to no less than 1

2k · (1−o(1)). Adding the copy
of the constraint before the first r−1 unit constraints and repeating the argument
recursively implies the fact that, if instead of adding the r unit constraints to
Φ we add r random copies of Γb1 , . . . , Γbr that the resulting formula belongs to
q-overlap-SAT(C), given that Φ ∈ q-overlap-SAT(C), is at least γr = 1

2kr (1−o(1))
.

Since the values b1, . . . , br can repeat themselves, the same is true if we add r

random copies of Γx for every x.
Suppose now that we add r ·m · 2kr

copies of each Γx (that is, we repeat the
random experiment m · 2kr

times, for some integer m ≥ 1). The probability that
none of the experiments will make the resulting formula unsatisfiable is at most
(1−γr)m·2kr

. For some constant m this is going to be at most 1− τ
2 . This means

that Pr(Φ ∪ η is satisfiable) ≤ τ
2 . �

We can refute condition (4) directly, thus obtaining a contradiction. To do so,
we employ the following result (Lemma 3.1 in [Achlioptas and Friedgut 1999]):

Lemma15. For a monotone property 2 A let μ(p) = Pr[G ∈ Γ (n, p) has prop-
erty A], and let μ+(p, M) = Pr[G1 ∪ G2 | G1 ∈ Γ (n, p), G2 ∈ Γ (n, M) has
property A]. Let A = A(n) ⊆ {0, 1}n be a monotone property and M = M(n)
such that M = o(

√
np). Then |μ(p) − μ+(p, M)| = o(1).

We obtain a contradiction in the following way: consider a random formula
η with f(n) clauses, for some f(n) → ∞. It is easy to show that the probability
that η contains, for some x, less than r·m·2kr

copies of Γx (with r, m as in Lemma
2) is o(1). So adding η (instead of the random formula in Lemma 14) decreases
the probability of q-satisfiability by at least δ − o(1). But this contradicts the
conclusion of Lemma 15. �

2 Achlioptas and Friedgut assume A to be a monotone graph property, but this fact is
not used anywhere in their proof.
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5 Proof of Theorem 9

We will use the well-known graph-theoretic interpretation of 2-CNF formulas,
that associates to a given formula Φ on n variables a directed graph GΦ with
2n vertices {x1, . . . , xn, x1, . . . , xn}, and for every clause C = α ∨ β of Φ it adds
directed edges α → β and β → α to GΦ. We will need a number of results
from [Rozenthal et al. 1999] concerning the structure of graph GΦ when Φ is a
random formula of constraint density c < 1.

Definition 16. A cycle is a set l1 → l2, l2 → l3, . . . , ls → l1 of directed edges.
Two cycles C1, C2 are overlapping if they share at least an edge. Two cycles
C1, C2 are connected by a path if there exist vertices x ∈ C1, y ∈ C2 and a path
(possibly of length zero, i.e. x = y) from x to y.

Lemma17. Let t = t(n) such that 1 = o(t). Let Φ be a random 2-CNF formula
of constraint density c < 1 and GΦ be its associated digraph. With probability
1 − o(1) the following are true: (i) GΦ contains no cycles connected by a path.
(ii) GΦ contains no overlapping cycles. (ii) the sum of all the cycle lengths is
less than t.

To these results we add the following claim (whose proof is similar to that of
Claim 17 (i) from [Rozenthal et al. 1999]): With probability 1 − o(1) no literal
implies literals in two different cycles.

We can thus divide the literals of the formula into four classes: (i) those that
are on a cycle. (ii) those that are not on a cycle, but imply a literal on a cycle.
(iii) those that are not on a cycle, but are implied by a literal on a cycle. (iv)
those that are not on a cycle and neither imply nor are implied by a literal on a
cycle.

Definition 18. A literal x is bad if there exists y such that x
∗→ y, x

∗→ y.

We first claim that there is a function h(n) = o(n) such that with probability
1 − o(1) the number of bad literals is at most h(n). Indeed, all bad literals can
only be set to false in any satisfying assignment of the formula. This means that
a bad literal belongs to the spine of the formula [Bollobás et al. 2001]. But a
standard argument (see e.g. [Istrate et al. 2005]) shows that the size of the spine
is o(n).

Bad literals (and their negations) are assigned fixed values in all satisfying
assignments. This property guarantees that such literals do not influence the
value of the overlap between any two satisfying assignments. Let B be the set of
such literals.

Theorem 9(i): Let A and B be two satisfying assignments of a formula Φ,
such that d(A, B) > log n (i.e. A and B are not adjacent). We will prove the
following result:
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Lemma19. There exists a satisfying assignment C such that d(A, C) = O(log n)
and d(C, B) < d(A, B). That is, C is adjacent to A and closer to B than A.

An iterative application of the lemma proves the Theorem 9(i).

Proof: Let x be a variable such that A(x) 	= B(x) and x is implication minimal
with this property. In other words if y 	= x and y

∗→ x then A(y) = B(y).
Case 1: A(x) = 0 and B(x) = 1. Then B(z) = 1 for all z such that x

∗→ z.
Define the assignment C by C(z) = 1 if x

∗→ z, C(z) = A(z) otherwise. It is
clear that d(C, B) < d(A, B), since C coincides with B on all bits whose value
changes. To show that C is a satisfying assignment, suppose C did not satisfy
some clause W = (α ∨ β). Then one of the following is true.

(1): both α and β are negations of literals implied by x. This leads to a contra-
diction, since it would imply that B does not satisfy clause α ∨ β either.

(2): one of them (say α) is the negation of a literal implied by x. Since x
∗→ α

and α → β, it follows that C(β) = 1, so C satisfies clause W .

(3): none of them is the negation of a literal implied by x. Then C(α) = A(α)
and C(β) = A(β), a contradiction, since A satisfies clause W .

Case 2: A(x) = 1 and B(x) = 0. Then B(z) = 0 for all z such that z
∗→ x.

Define the assignment C by C(z) = 0 if z
∗→ x, C(z) = A(z) otherwise. It is clear

that d(C, B) < d(A, B), since C coincides with B on all the bits that change
value, one of which is x. To show that C is a satisfying assignment, suppose C

did not satisfy some clause α ∨ β. Then one of the following cases must hold

(1): both α and β are literals that imply x. This leads to a contradiction, since
this would mean that B with respect to satisfying clause α ∨ β.

(2): one of them (say α) implies x. Since β
∗→ α, it follows that β

∗→ x, therefore
β is assigned the value TRUE by C, a contradiction.

(3): none of α, β implies x. Then C and A coincide with respect to the values
they give to α, β, a contradiction, since A satisfies clause W .

Theorem 9(ii): We directly construct two satisfying assignments A and B

of overlap qn ± √
n. We will work with a directed weighted graph G2 obtained

from GΦ by contracting every cycle to a node and assigning this node a weight
equal to twice the size of the contracted cycle. G2 is well-defined when cycles
in GΦ do not intersect, an event that happens (cf. Claim 17) with probability
1 − o(1). All literals on a cycle of GΦ need, of course, to be given the same
value in any satisfying assignment. Since we have contracted all cycles in GΦ,
G2 is a directed acyclic graph. The set of nodes corresponding to bad literals is
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downward closed, because if x → y and y is bad then x is bad. Correspondingly,
the set of nodes corresponding to negations of a bad literal is upward closed.

We begin by defining a set S of nodes of G2 that will ultimately contain half
of the nodes in G2. Nodes not chosen in S will be referred to as eliminated). In
parallel we build a partial assignment by assigning those literals corresponding
to eliminated nodes the unique values that are consistent with the satisfiability
of the formula. Set S is recursively specified as follows:

(i) start by defining V to be the set of all nodes in G2.
(ii) add all nodes of of indegree 0 in V to S and eliminate all nodes of outde-

gree 0. Set V to be the set of remaining nodes (not added to S or eliminated).
(iii) continue this process as long as V 	= ∅.

It is easy to see that the set of literals corresponding to nodes in S contains,
for every variable x, exactly one of x and x. Indeed, one cannot add both x and
x to S in one step, otherwise the pure literal implying both would be bad. But
then, when adding one of them we immediately eliminate the other one. On the
other hand, we only eliminate a literal when its opposite has been retained in S.

The first assignment, A simply corresponds to setting all literals correspond-
ing to nodes in S to TRUE. We define the second assignment iteratively by the
following process:

(i) in Stage 1 choose a node of indegree zero, assign its associated variable the
value FALSE and eliminate the node from S. If the eliminated node corresponds
to a cycle in G2 all variables in the cycle are set to FALSE.

(ii) when a remaining node becomes of indegree zero as a result of elimina-
tions, it is labeled by the value of the stage that led to this happening (nodes
that originally had indegree zero are labelled 0).

(iii) the literal chosen to set to FALSE is among those with a smallest stage
number.

(iv) continue the process until the number of variables assigned FALSE is in
the interval [qn−√

n, qn+
√

n]. This is possibly if the sum of all cycle lengths in
the formula graph of Φ is o(

√
n), which happens (cf. Lemma 17 ) with probability

1 − o(1).
(v) The remaining literals in S are set to TRUE.

Because bad literals are assigned identical values in both A and B it is easy to
see that overlap(A, B) ∈ [qn−√

n, qn+
√

n]. We complete the proof of Theorem 9
by:

Lemma20. A and B are satisfying assignments for Φ.

Proof: Suppose there exists a clause C = (x ∨ y) ≡ (x → y) of Φ that is not
satisfied by A. Then x is given a TRUE value and y is given a FALSE value.
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Thus either x is a bad literal, or x is in S. Also, either y is a bad literal or y is
in S. Suppose y were a bad literal. Then, since x → y, x is also bad. But this
contradicts the two possible alternatives (x is a bad literal or x is in S). Suppose
now y is in S. Then C ≡ (y → x). Therefore, either x ∈ S or x is among the
literals (bad literals and their negations) eliminated before defining S. The first
alternative leads to a contradiction with the two possible alternatives (x is a bad
literal or x is in S), so it must be that x is a bad literal. But then y is also bad,
contradicting the assumption that y is in S.

A similar argument shows that B is a satisfying assignment. Indeed, suppose
there existed a clause C = (x ∨ y) ≡ (x → y) of Φ not satisfied by B. Then
B(x) = TRUE, B(y) = FALSE. The choices compatible with this setup are:
(i) x is in S and B(x) = TRUE, or x is bad. (ii) y is bad, or y is in S and
B(y) = FALSE, or y ∈ S and B(y) = TRUE, i.e. B(y) = FALSE. First, if y

were bad then so would be x, contradicting all possible choices in (i). If x, y were
both in S, with y assigned FALSE, since by construction of B the set of literals in
S is downward closed under implication it follows that x would also be assigned
FALSE, a contradiction. The other other possibility is that x is bad. But since
y → x that would mean that y is bad, a contradiction with the assumption that
y ∈ S. Finally, assume y is in S and is assigned TRUE. Since y → x either x ∈ S

or x is a bad literal. In the first case, since the set of literals assigned to TRUE
is upward closed under implication it would mean that x is assigned TRUE by
B, i.e. x is assigned FALSE, a contradiction. Suppose now that x is bad. Then
B(x) = 0, a contradiction. �

6 Conclusions

To sum up, we have analyzed the method introduced by Mora et al. for proving
the existence of multiple clusters of solutions, and identified the factor that
makes their approach fail: the second condition in their approach. We have also
given an example of a problem where this happens, random 2-satisfiability.

Our results raise the question of characterizing all random constraint satisfac-
tion problems that display solution clustering and discontinuity in their overlap
distribution. Note that such general results exist for a couple of problems, such
as the existence of a sharp threshold [Creignou and Daudé 2004], [Istrate 2005]
or the discontinuity of the spine order parameter [Istrate et al. 2005]. In partic-
ular, in this latter problem random 2-satisfiability plays an important role, in
that problems with a continuous spine seem to be ”2-SAT-like”.

We believe that this might be the case for the discontinuity of the overlap
distribution as well. In particular, investigating the geometry of the solution
space of random 1-in-k satisfiability [Achlioptas et al. 2001a, Raymond 2007,

1668 Istrate G.: Satisfying Assignments of Random Boolean Constraint ...



Maneva et al. 2007] is a natural continuation of this work. We have recently ob-
tained some results (amounting to a “physicist’s proof”, but not yet a complete
rigorous argument) that random 1-in-k SAT has a single cluster of solutions.
The gist of this argument is a mapping of the set of solutions of a random 1-in-k
CNF formula of subcritical density lying between two given solutions A and B

to the set of maps from the vertices of a random graph G(n, c/n), c < 1 to {0, 1}
that are constant on each connected component. A and B themselves corre-
spond to the constant maps 0 and 1. The fact that w.h.p. the largest connected
component of the graph has size O(log n) means that A and B are connected
by a sequence of satisfying assignments for the original formula such that two
consecutive assignments differ in O(log n) positions (corresponding to changing
the label on one connected component).

Whether the argument outlined above can be made completely rigorous and,
more generally, whether all problems SAT (C) with a single cluster of solutions
is “2-SAT like” in some well-defined rigorous sense is an interesting research
problem.
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